Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1995 Jul;41(4):257–263. doi: 10.1007/BF01517001

Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies

Byron Ballou 1,2,3,, Gregory W Fisher 2, Alan S Waggoner 2, Daniel L Farkas 2, Jean M Reiland 3, Ronald Jaffe 4, Ratnarkar B Mujumdar 2, Swati R Mujumdar 2, Thomas R Hakala 1,3
PMCID: PMC11037679  PMID: 7489569

Abstract

Far-red-emitting cyanine fluorochromes have many properties desirable for in vivo imaging: absorption and emission at wavelengths where blood and tissue are relatively transparent, high quantum yields, and good solubility even at high molar ratios of fluorochrome to antibody. Potentially, conjugation by multiple linkages should minimize hydrolysis in vivo. We conjugated two tumor-targeting monoclonal antibodies: anti-SSEA-1 (IgM, κ) at ratios of 1.2–35 mol dye/mol antibody and 9.2.27 (IgG2a, κ) at 0.6–6 mol dye/mol antibody, using the cyanine fluorochromes Cy3.18, Cy5.18, and Cy5.5.18. Nude mice were inoculated using the SSEA-1-expressing MH-15 teratocarcinoma or the 9.2.27 antigen-expressing SK-MEL-2 melanoma to give tumors at several sites. Conjugated antibody was injected, and mice were imaged immediately after injection and at appropriate intervals thereafter using a standard camera lens, dissecting microscope, or endoscopes. Images were acquired using either an image-intensified video camera or cooled CCD cameras. Immediately after injection, major blood vessels and the heart, liver, and kidneys were readily visualized. After 1 day, tumor-targeting antibody conjugates were concentrated in tumors and there was little circulating conjugate; however, the bladder and kidneys were still visible. Tumors labeled by specific antibody were the most fluorescent tissues at 2 days after injection, but non-specific antibody conjugates did not concentrate in the tumors. The small intestine was weakly visualized by both specific and non-specific antibody conjugates. These data support the possibility of visualizing tumor metastasis by optical means, including currently available endoscopes.

Key words: Photoimmunodiagnosis, Monoclonal antibodies, Fluorescence

Footnotes

This work was supported by funds of the Division of Urologic Surgery, Department of Surgery, University of Pittsburgh; by an NSF Center Grant (MCB-8920118) to the Center for Light Microscope Imaging and Biotechnology, Carnegie-Mellon University; and by intramural funds of the VAMC

References

  • 1.Andersson-Engels S, Johansson J, Svanberg K, Svanberg S. Fluorescence imaging and point measurements of tissue: application of the demarcation of malignant tumors and atherosclerotic lesions from normal tissue. Photochem Photobiol. 1991;5:807. doi: 10.1111/j.1751-1097.1991.tb09895.x. [DOI] [PubMed] [Google Scholar]
  • 2.Andersson-Engels S, Ankerst J, Johansson J, Svanberg K, Svanberg S. Laser-induced fluorescence in malignant and normal tissue of rats injected with benzoporphyrin derivative. Photochem Photobiol. 1993;57:978. doi: 10.1111/j.1751-1097.1993.tb02958.x. [DOI] [PubMed] [Google Scholar]
  • 3.Arnold MW, Schneebaum S, Berens A, Mojzisik C, Hinkle G, Martin EW., Jr Radioimmunoguided surgery challenges traditional decision making in patients with primary colorectal cancer. Surgery. 1992;112:624. [PubMed] [Google Scholar]
  • 4.Baert L, Berg R, Van Damme B, D'Hallewin MA, Johansson J, Svanberg K, Svanberg S. Clinical fluorescence diagnosis of human bladder carcinoma following low-dose Photofrin injection. Urology. 1993;41:322. doi: 10.1016/0090-4295(93)90588-2. [DOI] [PubMed] [Google Scholar]
  • 5.Ballou B, Reiland JM, Levine G, Taylor RJ, Shen W-C, Ryser HJ-P, Solter D, Hakala TR. Tumor location and drug targeting using a monoclonal antibody (anti-SSEA-1) and antigen-binding fragments. J Surg Oncol. 1986;31:1. doi: 10.1002/jso.2930310102. [DOI] [PubMed] [Google Scholar]
  • 6.Ballou B, Jaffe R, Persiani S, Shen W-C, Langone JJ, Sands H, Reiland JM, Curley J, Hakala TR. Tissue localization of methotrexate-monoclonal IgM immunoconjugates: anti-SSEA-1 and MOPC 104E in mouse teratocarcinomas and normal tissues. Cancer Immunol Immunother. 1992;35:251. doi: 10.1007/BF01789331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Ballou B, Fisher G, Waggoner AS, Farkas DL, Reiland JM, Hakala TR. Tumor labeling in vivo using Cy5-monoclonal antibody. Proc Am Assoc Cancer Res. 1994;35:504. [Google Scholar]
  • 8.D'Hallewin MA, Baert L, Vanherzeele H. In vivo fluorescence detection of human bladder carcinoma without sensitizing agents. J Am Paraplegia Soc. 1994;17:161. doi: 10.1080/01952307.1994.11735929. [DOI] [PubMed] [Google Scholar]
  • 9.Dougherty TJ. Photodynamic therapy. Photochem Photobiol. 1993;58:895. doi: 10.1111/j.1751-1097.1993.tb04990.x. [DOI] [PubMed] [Google Scholar]
  • 10.Farkas DL, Ballou B, Fisher GW, Taylor DL. From in vitro to in vivo by dynamic multiwavelength imaging. Proc SPIE (Society of Photo-Optical Instrumentation Engineers) 1995;2386:138. [Google Scholar]
  • 11.Folli S, Wagnieres G, Pelegrin A, Calmes J-M, Braichotte D, Buchegger F, Chaladon Y, Hardman N, Heusser C, Givel J-C, Chapus G, Chatelain A, van der Bergh H, Mach J-P. Immunophotodiagnosis of colon carcinomas in patients injected with fluoresceinated chimeric antibodies against carcinoembryonic antigen. Proc Natl Acad Sci. 1992;89:7973. doi: 10.1073/pnas.89.17.7973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Folli S, Westerman P, Braichotte D, Pelegrin A, Wagnieres G, van den Bergh H, Mach J-P. Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res. 1994;54:2643. [PubMed] [Google Scholar]
  • 13.Goff BA, Hermato U, Rumbaugh J, Blake J, Bamberg M, Hasan T. Photoimmunotherapy and biodistribution with an OC125-chlorin immunoconjugate in an in vivo murine ovarian cancer model. Br J Cancer. 1994;70:474. doi: 10.1038/bjc.1994.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hemming AW, Davis NL, Dubois B, Quenville NF, Finley RJ. Photodynamic therapy of squamous cell carcinoma. An evaluation of a new photosensitizing agent, benzoporphyrin derivative and new photoimmunoconjugate. Surg Oncol. 1993;2:187. doi: 10.1016/0960-7404(93)90006-k. [DOI] [PubMed] [Google Scholar]
  • 15.Jain RK. Drug resistance in oncology. New York: Marcel Dekker; 1993. Physiological resistance to the treatment of solid tumors; p. 87. [Google Scholar]
  • 16.Jaing EN, Liu DJ, Neyandorff H, Chester M, Jiang SY, Levy JG. Photodynamic killing of human squamous cell carcinoma cells using a monoclonal antibody-photosensitizer conjugate. J Natl Cancer Inst. 1991;83:1218. doi: 10.1093/jnci/83.17.1218. [DOI] [PubMed] [Google Scholar]
  • 17.Jaing FN, Richter AM, Jain AK, Levy JG, Smits C. Biodistribution of a benzoporphyrin derivative-monoclonal antibody conjugate in A549-tumor-bearing nude mice. Biotechnol Ther. 1993;4:43. [PubMed] [Google Scholar]
  • 18.Kluftinger AM, Davis NL, Quenville NF, Lam S, Hung J, Palcic B. Detection of squamous cell cancer and pre-cancerous lesions by imaging of tissue autofluorescence in the hamster cheek pouch model. Surg Oncol. 1992;1:183. doi: 10.1016/0960-7404(92)90032-g. [DOI] [PubMed] [Google Scholar]
  • 19.Lam S, MacAulay C, Hung J, LeRiche J, Profio AE, Palcic B. Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device. J Thorac Cardiovasc Surg. 1993;105:1035. [PubMed] [Google Scholar]
  • 20.Lin K, Nagy JA, Xu H, Schockley TR, Yarmush ML, Dvorak HF. Compartmental distribution of tumor-specific monoclonal antibodies in human melanoma xenografts. Cancer Res. 1994;54:2269. [PubMed] [Google Scholar]
  • 21.Mew D, Wat CK, Towers GH, Levy JL. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 1983;130:1473. [PubMed] [Google Scholar]
  • 22.Morgan AC, Galloway DR, Reisfeld RA. Production and characterization of monoclonal antibody to a melanoma specific glycoprotein. Hybridoma. 1981;1:27. doi: 10.1089/hyb.1.1981.1.27. [DOI] [PubMed] [Google Scholar]
  • 23.Moshakis V, McIlhinney RAJ, Raghavan D, Neville AM. Monoclonal antibodies to detect human tumors: an experimental approach. J Clin Pathol. 1981;34:314. doi: 10.1136/jcp.34.3.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS. Cyanine labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem. 1993;4:105. doi: 10.1021/bc00020a001. [DOI] [PubMed] [Google Scholar]
  • 25.Pelegrin A, Folli S, Bucchegger F, Mach J-P, Wagnieres G, van der Bergh H. Antibody-fluorescein conjugates for photoimmunodiagnosis of human colon carcinoma in nude mice. Cancer. 1991;67:2529. doi: 10.1002/1097-0142(19910515)67:10<2529::aid-cncr2820671024>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
  • 26.Pogrebniak HW, Matthews W, Black C, Russo A, Mitchell JB, Smith P, Roth JA, Pass HT. Targeted phototherapy with sensitizer-monoclonal antibody conjugate and light. Surg Oncol. 1993;2:31. doi: 10.1016/0960-7404(93)90042-w. [DOI] [PubMed] [Google Scholar]
  • 27.Reddi E, Segalla A, Jori G, Kerrigan PK, Liddell PA, Moore AL, Moore TA, Gust D. Carotenoporphyrins as selective photodiagnostic agents for tumors. Br J Cancer. 1994;69:40. doi: 10.1038/bjc.1994.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Shockley TR, Lin K, Nagy JA, Tompkins RG, Dvork HF, Yarmush ML. A quantitative analysis of tumor specific monoclonal antibody uptake by human melanoma xenografts: effects of antibody immunological properties and tumor antigen expression levels. Cancer Res. 1992;52:357. [PubMed] [Google Scholar]
  • 29.Shockley TR, Lin K, Nagy JA, Tompkins RG, Yarmush ML, Dvorak HF. Spatial distribution of tumor specific monoclonal antibodies in human melanoma. Cancer Res. 1992;52:367. [PubMed] [Google Scholar]
  • 30.Sung C, Shockley TR, Morrison PF, Dvorak HF, Yarmush ML, Dedrick RL. Predicted and observed effects of antibody affinity and antigen density on monoclonal antibody uptake in solid tumors. Cancer Res. 1992;52:377. [PubMed] [Google Scholar]
  • 31.Tanford C. Physical chemistry of Macromolecules. New York: Wiley; 1967. [Google Scholar]
  • 32.Taylor DL, De Biasio R, LaRocca G, Pane D, Post P, Kolega J, Giuliano K, Burton K, Gough A, Dow A, Yu J, Waggoner AS, Farkas DL. Potential of machine-vision light microscopy in toxicologic pathology. Toxicol Pathol. 1994;22:145. doi: 10.1177/019262339402200208. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES