Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1995 Mar;40(2):79–87. doi: 10.1007/BF01520288

Neurotransmitter suppression of the in vitro generation of a cytotoxic T lymphocyte response against the syngeneic MOPC-315 plasmacytoma

Joan M Cook-Mills 1, Margalit B Mokyr 2, Rhonna L Cohen 1, Robert L Perlman 3,4, Donald A Chambers 1,2,
PMCID: PMC11037700  PMID: 7882386

Abstract

We have previously shown that, as a consequence of low-dose melphalan (l-phenylalanine mustard (l-PAM) therapy, the hitherto immunosuppressed spleen cells from BALB/c mice bearing a large MOPC-315 tumor (in contrast to spleen cells from normal mice) acquire the ability to generate a greatly enhanced anti-MOPC-315 cytotoxic T lymphocyte (CTL) response upon in vitro stimulation with MOPC-315 tumor cells. Here we show that the catecholamines norepinephrine, epinephrine, and isoproterenol suppressed the in vitro generation of anti-MOPC-315 cytotoxicity by spleen cells from mice that had just completed the eradication of a large MOPC-315 tumor following low-dosel-PAM therapy (l-PAM TuB spleen cells), as well as by spleen cells from normal mice. In contrast to the marked suppression obtained with catecholamines, the cholinergic agonist carbachol had no effect on the in vitro generation of splenic anti-MOPC-315 cytotoxicity. The inhibitory effect of the catecholamines was “mimicked” by the membranepenetrating analog of cAMP, dibutyryl-cAMP, and by cholera toxin at concentrations that stimulate the endogenous production of cAMP. The β-adrenergic receptor antagonist propranolol did not block norepinephrine-induced inhibition of the generation of anti-MOPC-315 cytotoxicity by either normal orl-PAM TuB spleen cells. Since the curative effectiveness of low-dosel-PAM therapy for MOPC-315 tumor bearers requires the participation of CD8+ T cells that exploit a CTL response in tumor eradication, it is conceivable that norepinephrine may reduce the therapeutic outcome of low-dose chemotherapy by inhibiting the acquisition of CTL activity.

Key words: Catecholamine, CTL, Low-dose chemotherapy

References

  • 1.Ben-Efraim S, Bocian RC, Mokyr MB, Dray S. Increase in the effectiveness of melphalan therapy with progression of MOPC-315 plasmacytoma tumor growth. Cancer Immunol Immunother. 1983;15:101. doi: 10.1007/BF00199699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Besedovsky HO, DelRey A, Sorkin E, DaPrada M, Keller HH. Immunoregulation mediated by the sympathetic nervous system. Cell Immunol. 1979;48:346. doi: 10.1016/0008-8749(79)90129-1. [DOI] [PubMed] [Google Scholar]
  • 3.Burton RC, Thompston J, Warner NL. In vitro induction of tumor specific immunity. J Immunol Methods. 1975;8:133. doi: 10.1016/0022-1759(75)90090-3. [DOI] [PubMed] [Google Scholar]
  • 4.Carlson SL, Brooks WH, Roszman TL. Neurotransmitter-lymphocyte interactions: dual receptor modulation of lymphocyte proliferation and cAMP production. J Neuroimmunol. 1989;24:155. doi: 10.1016/0165-5728(89)90109-4. [DOI] [PubMed] [Google Scholar]
  • 5.Chambers DA, Cohen RL, Perlman RL. Neuroimmune modulation: signal transduction and catecholamines. Neurochem Int. 1993;22:95. doi: 10.1016/0197-0186(93)90002-m. [DOI] [PubMed] [Google Scholar]
  • 6.Chambers DA, Martin DW, Jr, Weinstein Y. The effect of cyclic nucleotides on purine biosynthesis and the induction of PRPP synthetase during lymphocyte activation. Cell. 1974;3:375. doi: 10.1016/0092-8674(74)90053-1. [DOI] [PubMed] [Google Scholar]
  • 7.Coffey RG, Hadden JW. Neurotransmitters, hormones, cyclic nucleotides in lymphocyte regulation. Fed Proc. 1985;44:112. [PubMed] [Google Scholar]
  • 8.Cook-Mills J, Jacobson P, Perlman R, Chambers DA. Norepinephrine modulation of T and B-cell proliferation. FASEB J. 1988;2:A311. [Google Scholar]
  • 9.Daniel V, Bourne HR, Tomkins GM. Altered metabolism and endogenous cyclic AMP in cultured cells deficient in cyclic AMP-binding protein. Nature. 1973;244:167. doi: 10.1038/newbio244167a0. [DOI] [PubMed] [Google Scholar]
  • 10.Ellenhorn JDI, Schreiber H, Bluestone JA. Mechanism of tumor rejection in anti-CD3 monoclonal antibody-treated mice. J Immunol. 1990;144:2840. [PubMed] [Google Scholar]
  • 11.Felten DL, Felten SY, Carlson SL, Olschowka JA, Livnat S. Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol. 1985;135:755s. [PubMed] [Google Scholar]
  • 12.Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackerman KD, Madden KS, Olschowka JA, Livnat S. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol Rev. 1987;100:225. doi: 10.1111/j.1600-065x.1987.tb00534.x. [DOI] [PubMed] [Google Scholar]
  • 13.Fuchs BA, Campbell KS, Munson AE. Norepinephrine and serotonin content of the murine spleen: its relationship to lymphocyte β-adrenergic receptor density and the humoral immune response in vivo and in vitro. Cell Immunol. 1988;117:339. doi: 10.1016/0008-8749(88)90123-2. [DOI] [PubMed] [Google Scholar]
  • 14.Hadden JW, Hadden EM, Middleton E., Jr Lymphocyte blast transformation. 1. Demonstration of adrenergic receptors in human peripheral lymphocytes. Cell Immunol. 1970;1:583. doi: 10.1016/0008-8749(70)90024-9. [DOI] [PubMed] [Google Scholar]
  • 15.Hatfield SM, Petersen BH, Dimicco JA. Beta adrenoceptor modulation of the generation of murine cytotoxic T lymphocytes in vitro. J Pharmacol Exp Ther. 1986;239:460. [PubMed] [Google Scholar]
  • 16.Hill JO, Awwad M, North RJ. Elimination of CD4+ suppressor T cells from susceptible BALB/c mice releases CD8+ T lymphocytes to mediate protective immunity against Leishmania. J Exp Med. 1989;169:1819. doi: 10.1084/jem.169.5.1819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hughes RJ, Mahan LC, Insel PA. Certain β-blockers can decrease β-adrenergic receptor number. II. Down regulation of receptor number by alprenolol and propranolol in cultured lymphoma and muscle cells. Circ Res. 1988;63:279. doi: 10.1161/01.res.63.2.279. [DOI] [PubMed] [Google Scholar]
  • 18.Khan MM, Sansoni P, Silverman ED, Engleman EG, Melmon KL. Beta-adrenergic receptors on human suppressor, helper, and cytolytic lymphocytes. Biochem Pharmacol. 1986;35:1137. doi: 10.1016/0006-2952(86)90150-4. [DOI] [PubMed] [Google Scholar]
  • 19.Loveland BE, Jarrott B, McKenzie IFC. The detection of β-adrenoceptors on murine lymphocytes. Int J Immunopharmacol. 1981;3:45. doi: 10.1016/0192-0561(81)90044-8. [DOI] [PubMed] [Google Scholar]
  • 20.Madden KS, Livnat S. Catecholamine action and immunologic reactivity. In: Ader R, Felten DL, Cohen N, editors. Psychoneuroimmunology. 2nd edn. San Diego: Academic Press; 1991. p. 283. [Google Scholar]
  • 21.Mokyr MB, Braun DP, Usher D, Reiter H, Dray S. The development of in vitro and in vivo antitumor cytotoxicity in noncytotoxic tumor bearer spleen cells “educated” in vitro with MOPC-315 tumor cells. Cancer Immunol Immunother. 1978;4:143. [Google Scholar]
  • 22.Mokyr MB, Barker E, Weiskirch LM, Takesue BY, Pyle JM. Importance of Lyt 2+ T-cells in the curative effectivenes of a low dose of melphalan for mice bearing a large MOPC-315 tumor. Cancer Res. 1989;49:4597. [PubMed] [Google Scholar]
  • 23.Niaudet P, Beauraine G, Bach MA. Differences in effect of isoproterenol stimulation on levels of cyclic AMP in human B and T lymphocytes. Eur J Immunol. 1976;6:834. doi: 10.1002/eji.1830061117. [DOI] [PubMed] [Google Scholar]
  • 24.O'Dorisio MS, Wood CL, O'Dorisio TM. Vasoactive intestinal peptide and neuropeptide modulation of the immune response. J Immunol. 1985;135:7925. [PubMed] [Google Scholar]
  • 25.Rasenick MM, Kaplan RS. Guanine nucleotide activation of adenylate cyclase in saponin permeabilized glioma cells. FEBS Lett. 1986;207:296. doi: 10.1016/0014-5793(86)81508-3. [DOI] [PubMed] [Google Scholar]
  • 26.Rollinghoff M, Rouse BT, Warner NL. Tumor immunity to murine plasma cell tumors. I. Tumor-associated transplantation antigens of NZB and BALB/c plasma cell tumors. J Natl Cancer Inst. 1973;50:159. doi: 10.1093/jnci/50.1.159. [DOI] [PubMed] [Google Scholar]
  • 27.Roszman TL, Brooks WH. Signaling pathways of the neurotransmitter-immune network. In: Freier S, editor. The neuroendocrine-immune network. Boca Raton, Fla: CRC; 1990. p. 53. [Google Scholar]
  • 28.Saloman Y. Adenylate cyclase assay. Adv Cyclic Nucleotide Res. 1979;10:35. [PubMed] [Google Scholar]
  • 29.Simpson JR, Hoffman-Goetz L. Exercise stress and murine natural killer cell function. Proc Soc Exp Biol Med. 1990;195:129. doi: 10.3181/00379727-195-43131. [DOI] [PubMed] [Google Scholar]
  • 30.Steel RGD, Torrie JH (1980) Principles and procedures of statistics. McGraw Hill, 1980, pp 188–189
  • 31.Strom TD, Lundin AP, Carpenter CB. The role of cyclic nucleotides in lymphocyte activation and function. Prog Clin Immunol. 1977;3:115. [PubMed] [Google Scholar]
  • 32.Sugiyama H, Chen P, Hunter M, Taffs R, Sitkovsky M. The dual role of the cAMP-dependent protein kinase Cα subunit in T-cell receptor-triggered T-lymphocytes effector functions. J Biol Chem. 1992;267:25256. [PubMed] [Google Scholar]
  • 33.Takesue BY, Pyle JM, Mokyr MB. Importance of tumor-specific cytotoxic CD8+ T-cells in eradication of a large subcutaneous MOPC-315 tumor following low-dose melphalan therapy. Cancer Res. 1990;50:7641. [PubMed] [Google Scholar]
  • 34.Vischer TL. The differential effect of cyclic AMP on lymphocyte stimulation by T- or B-cell mitogens. Immunology. 1976;30:735. [PMC free article] [PubMed] [Google Scholar]
  • 35.Watson J. The influence of intracellular levels of cyclic nucleotides on cell proliferation and the induction of antibody synthesis. J Exp Med. 1975;141:97. doi: 10.1084/jem.141.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Widmer MB, Grabstein KH. Regulation of cytolytic T-lymphocyte generation by B-cell stimulatory factor. Nature. 1987;326:795. doi: 10.1038/326795a0. [DOI] [PubMed] [Google Scholar]
  • 37.Williams LT, Synderman R, Lefkowitz RJ. Identification of β-adrenergic receptors in human lymphocytes by (−)[3H]-alprenolol binding. J Clin Invest. 1976;57:149. doi: 10.1172/JCI108254. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES