Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1995 Mar;41(2):111–121. doi: 10.1007/BF01527407

Host immune response in renal cell cancer: Interleukin-4 (IL-4) and IL-10 mRNA are frequently detected in freshly collected tumor-infiltrating lymphocytes

Markus J Maeurer 1,, Dina M Martin 1, Chiara Castelli 2, Elaine Elder 2, Gerd Leder 3, Walter J Storkus 4, Michael T Lotze 4
PMCID: PMC11037792  PMID: 7656270

Abstract

Human renal cell cancer (RCC) is clearly responsive to immunotherapy. Clinical responses may be mediated by “non-specific” (e. g. natural killer, NK, cells) or “specific” MHC-class-I-restricted tumor-specific CD8+ T lymphocytes. Typically RCC progresses, however, despite significant infiltration of various lymphoid cells. We examined freshly isolated RCC tumor-infiltrating lymphocytes (TIL) derived from seven RCC patients for cytokine expression by the polymerase chain reaction (PCR). Established RCC tumor cell lines derived from these RCC patients were negative for interleukin-2 (IL-2), IL-4, IL-10, and interferon γ and found to be positive for tumor necrosis factor α (TNFα), IL-6, IL-1β, granulocyte/macrophage-colony-stimulating factor (GM-CSF), and transforming growth factor β1 (TGFβ1) message as detected by PCR. An identical pattern of cytokine mRNA expression was identified in other long-term RCC lines and in normal human kidney cells upon culture, but not in two Wilms tumor cell lines tested. Short-term-, and long-term-established RCC lines, but not Wilms tumor lines, secreted substantial levels of GM-CSF, TNFα, IL-1β, and IL-6 as detected by enzyme-linked immunosorbent assay. Both RCC lines and Wilms tumor lines secreted TGFβ1. In comparison, normal kidney cells secreted IL-6 and GM-CSF, but not IL-1β, or TFGβ1 under identical in vitro cell culture conditions. We applied PCR-based methods to characterize the cytokine mRNA expression pattern in immune cells infiltrating into renal cell cancer without the need for expansion of such effector cells in vitro. Examining freshly collected RCC TIL by PCR from patients with primary cell cell cancer, we could demonstrate that such cells, but not lympho-mononuclear cells harvested from normal human kidney tissue, typically exhibit IL-4 and IL-10 mRNA expression.

Key words: Renal cell cancer, Tumor-infiltrating lymphocytes (TIL), Interleukin-10

References

  • 1.Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh F-M, Lubensky I, Duan DR, Florence C, Pozzatti R, Walther MM, Bander NH, Grossman HB, Brauch H, Pomer S, Brooks JD, Isaacs WB, Lerman MI, Zbar B, Linehan WM. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genetics. 1994;7:85–90. doi: 10.1038/ng0594-85. [DOI] [PubMed] [Google Scholar]
  • 2.Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Robertson WM, Lee RE, Rubin JT, Seipp CA, Simpson CG, White DE. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin 2 alone. N Engl J Med. 1987;316:889–897. doi: 10.1056/NEJM198704093161501. [DOI] [PubMed] [Google Scholar]
  • 3.Belldegrun A, Muuo LM, Rosenberg SA. Interleukin 2 expanded tumor-infiltrating lymphocytes in human renal cell cancer: isolation, characterization, and antitumor activity. Cancer Res. 1988;48:206–214. [PubMed] [Google Scholar]
  • 4.Kim TY, von Eschenbach AA, Filaccio MD, Hayakawa K, Parkinson DR, Balch CM, Itoh K. Clonal analysis of lymphocytes from tumor, peripheral blood, and nontumorous kidney in primary renal cell carcinoma. Cancer Res. 1990;50:5263–5268. [PubMed] [Google Scholar]
  • 5.Whiteside TL, Miescher S, Hurlimann J, Moretta L, von Fliedner V. Separation, phenotyping and limiting dilution analysis of T-lymphocytes infiltrating human solid tumors. Int J Cancer. 1986;37:803–811. doi: 10.1002/ijc.2910370602. [DOI] [PubMed] [Google Scholar]
  • 6.Finke JH, Zea AH, Stanley J, Longo DL, Mizoguchi H, Tubss R, Wiltrout RH, O'Shea JJ, Kudoh S, Klein E, Bukowski RM, Ochoa AC. Loss of T-cell receptor ζ chain and p65lck in T-cells infiltrating human renal cell carcinoma. Cancer Res. 1993;53:5613–5616. [PubMed] [Google Scholar]
  • 7.Schendel DJ, Gansbacher B, Oberneder R, Kriegmair M, Hofstetter A, Riethmueller G, Segurado OG. Tumor-specific lysis of human renal cell carcinomas by tumor infiltrating lymphocytes. I. HLA-A2-restricted recognition of autologous and allogeneic tumor lines. J Immunol. 1993;151:4209–4221. [PubMed] [Google Scholar]
  • 8.Schendel DJ, Gansbacher B. Tumor-specific lysis of human renal cell carcinomas by tumor-infiltrating lymphocytes: modulation of recognition through retroviral transduction of tumor cells with interleukin 2 complementary DNA and exogenous a interferon treatment. Cancer Res. 1993;53:4020–4025. [PubMed] [Google Scholar]
  • 9.Bernhard H, Karbach J, Wolfel T, Stoerkel S, Huber Ch, Meyer zum Buschenfelde K-H, Knuth A (1995) Human renal cell carcinomas and normal kidney cells share antigens recognized by HLA-A2 restricted cytotoxi T lymphocyte (CTL) clones. Int J Cancer (in press) [DOI] [PubMed]
  • 10.Finke JH, Rayman P, Edinger M, Tubbs RR, Stanley J, Klein E, Bukowski R. Characterization of a human renal cell carcinoma specific cytotoxic CD8+ T cel line. J Immunother. 1992;11:1–11. doi: 10.1097/00002371-199201000-00001. [DOI] [PubMed] [Google Scholar]
  • 11.Taga K, Tosato G. IL-10 inhibits human T cell proliferation and IL-2 production. J Immunol. 1992;148:1143–1150. [PubMed] [Google Scholar]
  • 12.Whiteside TL, Miescher S, MacDonald HR, von Fliedner V. Separation of tumor infiltrating lymphocytes from tumor cells in human solid tumors. A comparison between velocity sedimentation and discontinous density gradients. J Immunol Methods. 1986;90:221–223. doi: 10.1016/0022-1759(86)90079-7. [DOI] [PubMed] [Google Scholar]
  • 13.Elder EM, Whiteside TL (1992) Processing of tumors for vaccine and/or tumor infiltrating lymphocytes: In: Rose NR, Conway de Macario E, Fahey JL, Friedman H, Penn GM (eds) Manual of clinical laboratory immunology, 4th edn. American Society for Microbiology, pp 817–819
  • 14.Finstad CL, Cordon-Caro C, Bander NH, Whitmore WF, Melamed MR, Old LJ. Specificity analysis of mouse monoclonal antibodies defining cell surface antigens of human renal cell cancer. Proc Natl Acad Sci USA. 1985;82:2955–2959. doi: 10.1073/pnas.82.9.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Andy RJ, Finstad CL, Old LJ, Lloyd KO, Kornfeld R. The antigen identified by a mouse monoclonal antibody raised against human renal cell cancer cells is the adenosine deaminase binding protein. J Biol Chem. 1984;259:12844–12849. [PubMed] [Google Scholar]
  • 16.Fradet Y, Cordon-Cardo C, Thomsaon T, Daly ME, Whitmore MF, Lloyd KO, Melamed MR, Old LJ. Cell surface antigens of human bladder cancer defined by mouse monoclonal antibodies. Proc Natl Acad Sci USA. 1984;81:224–228. doi: 10.1073/pnas.81.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rubin JT, Elwood LJ, Rosenberg SA, Lotze MT. Immunohistological correlates of response to recombinant interleukin-2 based immunotherapy in humans. Cancer Res. 1987;49:77–86. [PubMed] [Google Scholar]
  • 18.Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  • 19.Genevee C, Diu A, Nierat J, Caignard A, Dietrich P, Ferradini L, Roman-Roman S, Triebel F, Hercend T. An experimentally validated panel of subfamily-specific oligonucleotide primers (vα1-w29/vβ1-24) for the study of human T cell receptor variable gene segment usage by polymerase chain reaction. Eur J Immunol. 1992;22:1261–1268. doi: 10.1002/eji.1830220522. [DOI] [PubMed] [Google Scholar]
  • 20.Belldegrun A, Kasid A, Uppenkamp M, Topalian SL, Rosenberg SA. Human tumor infiltrating lymphocytes. Analysis of lymphokine mRNA expression and relevance to cancer immunotherapy. J Immunol. 1989;142:4520–4526. [PubMed] [Google Scholar]
  • 21.Alexander JP, Kudoh S, Melsop KA, Hamilton TA, Edinger MG, Tubbs RR, Sica D, Tuason L, Klein E, Bukowski RM. T-cells infiltrating renal cell carcinoma display a poor proliferative response even though they can produce interleukin 2 and express interleukin 2 receptors. Cancer Res. 1993;53:1380–1387. [PubMed] [Google Scholar]
  • 22.Schoof DD, Terashima Y, Peoples GE, Goedegebuure PS, Andrews JVR, Richie JP, Eberlein TJ. CD4+ T cell clones isolated from human renal cell carcinoma posses the functional characteristics of Th2 helper cells. Cell Immunol. 1993;150:114–123. doi: 10.1006/cimm.1993.1183. [DOI] [PubMed] [Google Scholar]
  • 23.Janeway CA, Jr, Bottomly K. Signals and signs for lymphocyte responses. Cell. 1994;76:275–285. doi: 10.1016/0092-8674(94)90335-2. [DOI] [PubMed] [Google Scholar]
  • 24.Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Moldion RL, Bloom BR. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1992;254:279–281. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
  • 25.de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174:1209–1220. doi: 10.1084/jem.174.5.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Enk A, Katz SI. Identification and induction of keratinocyte-derived IL-10. J Immunol. 1992;149:92–95. [PubMed] [Google Scholar]
  • 27.Pisa P, Halapi E, Pisa EK, Gerdin E, Hising C, Bucht A, Gerdin B, Kiessling R. Selective expression of interleukin 10, interferon γ, and granulocyte-macrophage colony-stimulating factor in ovarin cancer biopsies. Proc Natl Acad Sci USA. 1992;89:7708–7712. doi: 10.1073/pnas.89.16.7708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Ghalib H, Piuvezam R, Skeiky Y, Siddig M, Hashim F, El-Hassan A, Russo D, Reed S. Interleukin 10 production correlates with pathology in humanLeishmania donovani infections. J Clin Invest. 1993;92:324–329. doi: 10.1172/JCI116570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Banner BF, Burham JA, Bahnson RR, Ernstoff MS, Auerbach HE. Immunophenotypic markers in renal cell carcinoma. Mod Pathol. 1990;3:129–134. [PubMed] [Google Scholar]
  • 30.Igarashi T, Murakami S, Takahashi H, Matsuzaki O, Shimazaki J. Changes in distribution of CD4+/CD45RA-and CD8+/CD11- cells in tumor-infiltrating lymphocytes of renal cell carcinoma associated with tumor progression. Eur Urol. 1990;22:323–328. doi: 10.1159/000474780. [DOI] [PubMed] [Google Scholar]
  • 31.Krams SM, Chung SJ, Lu Y, Smith H, Lagios M, Martinez OM. T helper cell-derived cytokines may have a role in breast tumor progression. FASEB J. 1994;8:5734. [Google Scholar]
  • 32.Uyemura K, Moy RL, Dubinett S, Tomono S, Modlin RL. IL-10 production in basal cell carcinoma and mechanism for evading the local immune response. FASEB J. 1994;8:1329. [PubMed] [Google Scholar]
  • 33.de Waal Malefyt R, Haanen J, Spits H, Roncarolo M-G, Te Velde A, Figdor CG, Johnson K, Kastelein R, Issel H, de Vries JE. IL-10 and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via down-regulation of class II MHC expression. J Exp Med. 1991;174:279–287. doi: 10.1084/jem.174.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Beissert S, Hosoi J, Grabbe S, Asahina A, Granstein RD. IL-10 inhibitis tumor antigen presentation by epidermal antigen-presenting cells. J Immunol. 1995;154:1280–1286. [PubMed] [Google Scholar]
  • 35.Garvin AJ, Re GG, Tarnowski BI, Hazen-Martin DJ, Sens DA. The G-401 cell line, utilized for studies od chromosomal changes in Wilms tumor, is derived from a rhabdoid tumor of the kidney. Am J Pathol. 1993;142:375–380. [PMC free article] [PubMed] [Google Scholar]
  • 36.Miki S, Ieano M, Miki Y, Yamamoto M, Tang B, Yokokawa K, Sonoda T, Hirano T, Kishimoto T. IL-6 functions as an autocrine growth factor in renal carcinomas. FEBS Lett. 1989;250:607–610. doi: 10.1016/0014-5793(89)80805-1. [DOI] [PubMed] [Google Scholar]
  • 37.Blay J-Y, Negrier S, Combaret V, Attali S, Goillot E, Merrouche Y, Mercatello A, Ravault A, Tourani J-M, Moskovtchenko J-F, Philip T, Favrot M. Serum levels of interleukin 6 as a prognosis factor in metastatic renal cell carcinoma. Cancer Res. 1992;52:3317–3322. [PubMed] [Google Scholar]
  • 38.Rodeck U, Bossler A, Graeven U, Fox FE, Nowell PC, Knabbe C, Kari C. Transforming growth factor β production and responsiveness in normal human melanocytes and melanoma cells. Cancer Res. 1994;54:575–581. [PubMed] [Google Scholar]
  • 39.Maghazachi AA, Al-Aoukaty A. Transforming growth factor beta 1 is chemotactic for interleukin-2-activated natural killer cells. Nat Immun. 1993;12:57–65. [PubMed] [Google Scholar]
  • 40.Ortalso JR, Mason AT, O'Shea JJ, Smyth MJ, Falk LA, Kennedy ICS, Longo DL, Ruscetti FW. Mechanistic studies of transforming growth factor-β inhibition of IL-2-dependent activation of CD3-large granular lymphocyte functions. J Immunol. 1991;146:3791–3798. [PubMed] [Google Scholar]
  • 41.Tsuchiya Y, Igarashi M, Suzuki R, Kumagai K. Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells. J Immunol. 1988;141:699–708. [PubMed] [Google Scholar]
  • 42.Araki M, Yano T, Hayashi H, Takii T, Suzuki K, Onozaki K. Resistance to the anti-proliferative effect of IL-1 on human melanoma cell lines is associated with endogenous production of IL-1 and IL-6. Int J Cancer. 1994;56:275–280. doi: 10.1002/ijc.2910560222. [DOI] [PubMed] [Google Scholar]
  • 43.Springgs DR, Imamura K, Rodriguez C, Sariban E, Kufe DW. Tumor necrosis factor expression in human epithelial tumor cell lines. J Clin Invest. 1988;81:455–460. doi: 10.1172/JCI113341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Spriggs D, Imamura K, Rodriguez C, Horiguchi J, Kufe DW. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line. Proc Natl Acad Sci USA. 1987;84:6563–6566. doi: 10.1073/pnas.84.18.6563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Takeyama H, Wakamiya N, O'Hara C, Arthur K, Niloff J, Kufe D, Sakarai K, Spriggs D. Tumor necrosis factor expression by human ovarian carcinoma in vivo. Cancer Res. 1991;51:4476–4480. [PubMed] [Google Scholar]
  • 46.Sculze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W. Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-induced effects of TNF. EMBO J. 1993;12:3095–3104. doi: 10.1002/j.1460-2075.1993.tb05978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES