Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1995 May;40(3):182–190. doi: 10.1007/BF01517350

Bispecific antibodies retarget murine T cell cytotoxicity against syngeneic breast cancer in vitro and in vivo

M Belen Moreno 1,2, Julie A Titus 1, Michael S Cole 3, J Yun Tso 3, Nhat Le 4, Chang H Paik 4, Tibor Bakács 1, Charles M Zacharchuk 2, David M Segal 5,, John R Wunderlich 1
PMCID: PMC11037834  PMID: 7728777

Abstract

Bispecific antibodies with specificity for CD3 and a tumor antigen can redirect cytolytic T cells to kill tumor targets, regardless of their natural specificity. To assess the clinical potential of bispecific antibodies for treatment of human cancers we have, in the present study, adapted a totally syngeneic mouse model to the targeting of mouse T cells against mouse tumors in immunocompetent mice. We show that gp52 of the mouse mammary tumor virus (MTV) can serve as a tumor-specific antigen for redirected cellular cytotoxicity. Chemically crosslinked and genetically engineered bispecific antibodies with specificities for gp52 and murine CD3 ε-chain induced activated mouse T cells to specifically lyse mouse mammary tumor cells from cultured lines and primary tumors from C3H-MTV+ mice. Retargeted T cells also blocked the growth of mammary tumors in vitro as well as their growth in syngeneic mice. These findings identify murine MTV-induced mammary adenocarcinomas as a solid-tumor, animal model for retargetin T cells with bispecific antibodies against syngeneic breast cancer.

Key words: Bispecific antibody, Redirected lysis, Targeted cytotoxicity, Mammary tumor, Mouse model

References

  • 1.Agarwal RK, Ostaszwwski ML, Feld LG, Springate JE, Moxey-Mims MM, O'Neil KM. Tumor necrosis factor and interleukin-6 in cerebrospinal fluid of a patient with recurrent adverse central nervous system events following OKT3. Transplant Proc. 1993;25:2143. [PubMed] [Google Scholar]
  • 2.Andrew SM, Titus JA. Purification and fragmentation of antibodies. In: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W, editors. Current protocols in immunology, vol 1. New York: Current Protocols; 1992. p. 2.7.1. [Google Scholar]
  • 3.Barth RJ, Jr., Mule JJ, Spiess PJ, Rosenberg SA. Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med. 1991;173:647. doi: 10.1084/jem.173.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Beun GD, van de Velde CJ, Fleuren GJ. T-cell based cancer immunotherapy: direct or redirected tumor-cell recognition? Immunol Today. 1994;15:11. doi: 10.1016/0167-5699(94)90019-1. [DOI] [PubMed] [Google Scholar]
  • 5.Beun GD, van de Velde CJ, Fleuren GJ, Eggermont AM. T-cell retargeting using bispecific monoclonal antibodies in a rat colon carcinoma model: IV. Tumor neutralization in Winn type assays. J Immunother. 1993;14:11. doi: 10.1097/00002371-199307000-00002. [DOI] [PubMed] [Google Scholar]
  • 6.Brissinck J, Demanet C, Moser M, Leo O, Thielemans K. Treatment of mice bearing BCL1 lymphoma with bispecific antibodies. J Immunol. 1991;147:4019. [PubMed] [Google Scholar]
  • 7.Capone PM, Cohen ME. Seizures and cerebritis associated with administration of OKT3. Pediatr Neurol. 1991;7:299. doi: 10.1016/0887-8994(91)90050-u. [DOI] [PubMed] [Google Scholar]
  • 8.Cerottini J-C, Brunner KT. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv Immunol. 1974;18:67. doi: 10.1016/s0065-2776(08)60308-9. [DOI] [PubMed] [Google Scholar]
  • 9.Charpentier B, Hiesse C, Lantz O, Ferran C, Stephens S, O'Shaugnessy D, Bodmer M, Benoit G, Bach JF, Chatenoud L. Evidence that antihuman tumor necrosis factor monoclonal antibody prevents OKT3-induced acute syndrome. Transplantation. 1992;54:997. doi: 10.1097/00007890-199212000-00011. [DOI] [PubMed] [Google Scholar]
  • 10.Dickson C, Peters G. Proteins encoded by mouse mammary tumour virus. Curr Top Microbiol Immunol. 1983;106:1. doi: 10.1007/978-3-642-69357-1_1. [DOI] [PubMed] [Google Scholar]
  • 11.Dower SK, Ozato K, Segal DM. The interaction of monoclonal antibodies with MHC class I antigens on mouse spleen cells. I. Analysis of the mechanism of binding. J Immunol. 1984;132:751. [PubMed] [Google Scholar]
  • 12.Fanger MW, Morganelli PM, Guyre PM. Bispecific antibodies. Crit Rev Immunol. 1992;12:101. [PubMed] [Google Scholar]
  • 13.Garrido MA, Valdayo MJ, Winkler DF, Titus JA, Hecht TT, Perez P, Segal DM, Wunderlich JR. Targeting human T-lymphocytes with bispecific antibodies to react against human ovarian carcinoma cells growing in nu/nu mice. Cancer Res. 1990;50:4227. [PubMed] [Google Scholar]
  • 14.Hoffman RW, Bluestone JA, Leo O, Shaw S. Lysis of anti-T3-bearing murine hybridoma cells by human allospecific cytotoxic T cell clones and inhibition that lysis by anti-T3 and anti-LFA-1 antibodies. J Immunol. 1985;135:5. [PubMed] [Google Scholar]
  • 15.Karpovsky B, Titus JA, Stephany DA, Segal DM. Production of target-specific effector cells using hetero-cross-linked aggregates containing anti-target cell and anti-Fcγ receptor antibodies. J Exp Med. 1984;160:1686. doi: 10.1084/jem.160.6.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Kostenlny SA, Cole MS, Tso JY. Formation of a bispecific antibody by the use of leucine zippers. J Immunol. 1992;148:1547. [PubMed] [Google Scholar]
  • 17.Massey RJ, Schochetman G. topographical analysis of viral epitopes using monoclonal antibodies: mechanism of virus neutralization. Virology. 1981;115:20. doi: 10.1016/0042-6822(81)90085-4. [DOI] [PubMed] [Google Scholar]
  • 18.Medina D. Mammary tumors. In: Foster HL, Small JD, Fox JG, editors. The Mouse in Biomedical Research. New York: Academic Press; 1982. p. 373. [Google Scholar]
  • 19.Mezzanzanica D, Garrido MA, Neblock DS, Daddona PE, Andrew SM, Zurawski VR, Segal DM, Wunderlich JR. Human T-lymphocytes targeted against an established ovarian carcinoma with bispecific F (ab′)2 antibody prolong host survival in a murine xenograft model. Cancer Res. 1991;51:5716. [PubMed] [Google Scholar]
  • 20.Michalides R, van Ooyen A, Nusse R. Mouse mammary tumor virus expression and mammary tumor development. Curr Top Microbiol Immunol. 1983;106:57. doi: 10.1007/978-3-642-69357-1_3. [DOI] [PubMed] [Google Scholar]
  • 21.Nandi S, McGrath CM. Mammary neoplasia in mice. Adv Cancer Res. 1973;17:353. [Google Scholar]
  • 22.Nelson H, Ramsey PS, Kerr LA, McKean DJ, Donohue JH. Regional and systemic distribution of anti-tumor×anti-CD3 heteroaggregate antibodies and cultured human peripheral blood lymphocytes in an human colon cancer xenograft. J Immunol. 1990;145:3507. [PubMed] [Google Scholar]
  • 23.Nelson H, Ramsey PS, McKean DJ, Dozois RR, Donohue JH. Anti-tumor×anti-lymphocyte heteroconjugates augment colon tumor cell lysis in vitro and prevent tumor growth in vivo. Dis Colon Rectum. 1991;34:140. doi: 10.1007/BF02049988. [DOI] [PubMed] [Google Scholar]
  • 24.Owens RB, Hackett AJ. Tissue culture studies of mouse mammary tumor cells and associated viruses. J Natl Cancer Inst. 1972;49:1321. [PubMed] [Google Scholar]
  • 25.Qian JH, Titus JA, Andrew SM, Mezzanzanica D, Garrido MA, Wunderlich JR, Segal DM. Human peripheral blood lymphocytes targeted with bispecific antibodies relaease cytokines that are essential for inhibiting tumor growth. J Immunol. 1991;146:3250. [PubMed] [Google Scholar]
  • 26.Rak JW, McEachern D, Miller FR. Sequential alteration of peanut agglutinin binding-glycoprotein expression during progression of murine mammary neoplasia. Br J Cancer. 1992;65:641. doi: 10.1038/bjc.1992.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Renner C, Jung W, Sahin U, Denfeld R, Pohl C, Trumper L, hartmann F, Diehl V, Van Lier R, Pfreundschun M. Cure of xenografted human tumors by bispecific monoclonal antibodies and human T cells. Science. 1994;264:833. doi: 10.1126/science.8171337. [DOI] [PubMed] [Google Scholar]
  • 28.Roehm NW, Rodgers GH, Hatfield SM, Glasebrook AL. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods. 1991;142:257. doi: 10.1016/0022-1759(91)90114-u. [DOI] [PubMed] [Google Scholar]
  • 29.Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985;161:1169. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Salmons B, Gunzburg WH. Current prespectives in the biology of mouse mammary tumour virus. Virus Res. 1987;8:81. doi: 10.1016/0168-1702(87)90022-0. [DOI] [PubMed] [Google Scholar]
  • 31.Sarkar NH, Racevskis J. Expression and disposition of the murine mammary tumor virus (MuMTV) envelope gene products by murine mammary tumor cells. virology. 1983;126:279. doi: 10.1016/0042-6822(83)90479-8. [DOI] [PubMed] [Google Scholar]
  • 32.Segal DM, Hurwitz E. Dimers and trimers of immunoglobulin G vovalently cross-linked with a bivalent affinity label. Biochemistry. 1976;15:5253. doi: 10.1021/bi00669a009. [DOI] [PubMed] [Google Scholar]
  • 33.Segal DM, Snider DP. Targeting and activation of cytotoxic lymphocytes. Chem Immunol. 1989;47:179. [PubMed] [Google Scholar]
  • 34.Segal DM, Titus JA, Stephany DA. The use of fluorescence flow cytometry for the study of lymphod cell receptors. In: Di Sabato G, editor. Methods of enzymology: immunolocial techniques, part K. In vitro models of B and T cell function and lymphoid cell receptors. New York: Academic Press; 1987. p. 478. [DOI] [PubMed] [Google Scholar]
  • 35.Segal DM, Urch CE, George AJT, Jost CR. Bispecific antibodies in cancer treatment. In: DeVita VT, Hellman S, Rosenberg SA, editors. Biologic therpay of cancer updates, vol 2. Philadelphia: Lippincott; 1992. p. 1. [Google Scholar]
  • 36.Segal DM, Jost CR, George AJT. Targeted cellular cytotoxicity. In: Sitkovsky MV, Henkart PA, editors. Cytotoxic cells: generation, recognition, effector functions, methods. Berlin Heidelberg New York: Springer; 1993. p. 96. [Google Scholar]
  • 37.Sentman CL, Hackett JJr, Moore TA, Tutt MM, Bennett M, Kumar V. Pan natural killer cell monoclonal antibodies and their relationship to the NK1.1 antigen. Hybridoma. 1989;8:605. doi: 10.1089/hyb.1989.8.605. [DOI] [PubMed] [Google Scholar]
  • 38.Staerz UD, Bevan MJ. Use of anti-receptor antibodies to foucus T cell activity. Immunol Today. 1986;7:241. doi: 10.1016/0167-5699(86)90112-X. [DOI] [PubMed] [Google Scholar]
  • 39.Tibben JG, Boerman OC, Claessens RAMJ, Corstens FHM, Van Deuren M, De Mulder PHM, Van der Meer JWM, Keijser KGG, Massuger LFAG. Cytokine release in an ovarian cancer patient following intravenous administration of bispecific antibody OC/TR F (ab′)2. J Natl Cancer Inst. 1993;85:1003. doi: 10.1093/jnci/85.12.1003. [DOI] [PubMed] [Google Scholar]
  • 40.Titus JA, Garrido MA, Winkler DF, Wunderlich JR, Segal DM. Human T cells targeted with anti-T3 crosslinked to antitumor antibody prevent tumor growth in nude mice. J Immunol. 1987;138:4018. [PubMed] [Google Scholar]
  • 41.Unkeless JC. Characterization of a monoclonal atibody directed against mouse macrophage and lymphocyte Fe receptors. J Exp Med. 1979;150:580. doi: 10.1084/jem.150.3.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Weiner GJ, Hillstrom JR. Bispecific anti-idiotype/anti-CD3 antibody therapy of murine B cell lymphoma. J Immunol. 1991;147:4035. [PubMed] [Google Scholar]
  • 43.Weiner GJ, Kostelny SA, Hillstrom JR, Cole MS, Link BK, Wang SL, Tso JY. The role of T cell activation in anti-CD3 X antitumor bispecific antibody therpy. J Immunol. 1994;152:2385. [PubMed] [Google Scholar]
  • 44.Winn HJ. Immune mechanisms in homotransplantation. II. Quantitative assay of the immunologic activity of lymphoid cells stimulated by tumor homografts. J Immunol. 1961;86:228. [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES