Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1987 Jun;24(3):221–224. doi: 10.1007/BF00205633

High-dose, unlabeled, nonspecific antibody pretreatment: influence on specific antibody localization to human melanoma xenografts

Richard L Wahl 1,, Barry S Wilson 2, Monica Liebert 1, William H Beierwaltes 1
PMCID: PMC11037974  PMID: 3594484

Abstract

Nonspecific uptake of radiolabeled monoclonal antibodies in normal tissues is a significant problem for tumor imaging. A potential means of decreasing nonspecific antibody binding is to “blockade” nonspecific antibody binding sites by predosing with cold, nonspecific isotypematched antibody, before injecting specific antibody. Nontumor-specific murine monoclonal antibody LK2H10 (IgG1) or Ab-1 (IgG2a) was given i.v. at doses of 0 to 3.5 mg to nude mice with xenografts of human melanoma. These mice were then given i.v. 4 μg of 131I anti-high molecular weight antigen of melanoma (HMWMAA) monoclonal antibody 763.24T (IgG1) or 225.28S (IgG2a), respectively. These mice were also given a tracer dose of 125I LK2H10 or Ab-1, respectively. Specific tumor uptake of anti-HMWMAA antibodies was see in all cases. No drop in tumor or nontumor uptake was demonstrated for either of the tumor-specific or nonspecific monoclonal antibodies due to nonspecific monoclonal antibody pretreatment. These data suggest that high doses of isotype-matched unlabeled nonspecific monoclonal antibody given before 131I tumor-specific monoclonal antibody, will not enhance tumor imaging.

Keywords: Melanoma, Monoclonal Antibody, Human Melanoma, Tumor Uptake, Tumor Imaging

Footnotes

Present address: Hybritech, San Diego, CA, USA

References

  • 1.Buraggi GL, Callegaro L, Mariani G, et al. Imaging with 131I-labeled monoclonal antibodies to a high-molecular-weight melanoma-associated antigen in patients with melanoma: Efficacy of whole immunoglobulin and tis F(ab')2 fragments. Cancer Res. 1985;45(7):3378. [PubMed] [Google Scholar]
  • 2.Clarkson SB, Bussel JB, Kimberly RP, et al. Treatment of refractory immune thrombocytopenic purpura with an anti-Fc receptor antibody. N Engl J Med. 1986;314(19):1236. doi: 10.1056/NEJM198605083141907. [DOI] [PubMed] [Google Scholar]
  • 3.Colcher D, Zalutsky M, Kaplan W, et al. Radiolocalization of human mammary tumors in athymic mice by a monoclonal antibody. Cancer Res. 1983;43:736. [PubMed] [Google Scholar]
  • 4.Ey P, Prowse S, Jenkins C. Isolation of pure IgG1, IgG2a, and IgG2b from mouse serum using protein A-sepharose. Immunochemistry. 1978;15:429. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  • 5.Giacomini P, Veglia F, Cordiali-Fei P, et al. Level of membrane-bound high-molecular-weight melanoma-associated antigen and a cytoplasmic melanoma-associated antigen in surgically removed tissues and in sera from patients with melanoma. Cancer Res. 1984;44(3):1281. [PubMed] [Google Scholar]
  • 6.Ghose T, Ferrone S, Imia K, et al. Imaging of human melanoma xenografts in nude mice with a radiolabeled monoclonal antibody. J Natl Cancer Inst. 1982;69:823. [PubMed] [Google Scholar]
  • 7.Halpern SE, Buchegger F, Schreyer M, Mach J-P. Effect of size of radiolabeled antibody and fragements on tumor uptake and distribution in nephrectomized mice. J Nucl Med. 1984;25(5):112. [Google Scholar]
  • 8.Imbach P, Barandun S, d'Apuzzo V, et al. High-dose intravenous gamma-globulin for idiopathic thrombocytopenic purpura in childhood. Lancet. 1981;I:1228. doi: 10.1016/S0140-6736(81)92400-4. [DOI] [PubMed] [Google Scholar]
  • 9.Laemmli VK. Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature. 1970;222:680. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 10.Lindmo T, Boven E, Cuttitta F, et al. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72:77. doi: 10.1016/0022-1759(84)90435-6. [DOI] [PubMed] [Google Scholar]
  • 11.Otsuka FL, Welch MJ. Attempts to saturate the hepatic clearance mechanism for (In-111) labeled monoclonal antibodies. J Nucl Med. 1986;27(6):921. [Google Scholar]
  • 12.Parham P. On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J Immunol. 1983;131(6):2895. [PubMed] [Google Scholar]
  • 13.Pierce Chemical Product Guide, Pierce Chemical, Rockford, Ill., USA
  • 14.Shah SA, Pollock RR, Brown BA, et al. Pharmacokinetics and imaging using mutant monoclonal anti-ARS antibodies. Proc of AACR. 1986;27:335. [Google Scholar]
  • 15.Siccardi AG, Buraggi GL, Callegaro L, et al. Multicenter study of immunoscintigraphy with radiolabeled monoclonal antibodies in patients with melanoma. Cancer Res. 1986;46(9):4817. [PubMed] [Google Scholar]
  • 16.Stauss HW, Carrasquillo JA, Larson SM. Antibody imaging: The smoke, the fire and the false alarm. Int J Nucl Med Biol. 1985;12(5):401. [Google Scholar]
  • 17.Wahl RL, Parker CW, Philpott GW. Improved radio-imaging and tumor localization with monoclonal F(ab')2 . J Nucl Med. 1983;24:316. [PubMed] [Google Scholar]
  • 18.Wahl RL, Philpott GW, Parker CW. Monoclonal antibody radioimmunodetection of human-derived colon cancer. Invest Rad. 1983;18:58. doi: 10.1097/00004424-198301000-00010. [DOI] [PubMed] [Google Scholar]
  • 19.Wahl RL, Sherman P, Fisher S. The effect of specimen processing on radiolabeled monoclonal antibody biodistribution. Eur J Nucl Med. 1984;9(8):382. doi: 10.1007/BF00252876. [DOI] [PubMed] [Google Scholar]
  • 20.Wahl RL, Liebert M, Carey JE, et al. Quality control of radiolabeled monoclonal antibodies: Immunologic and radiochemical. Cancer Drug Deliv. 1986;2(3):236. [Google Scholar]
  • 21.Wilson BS, Lloyd RV. Detection of chromogranin in neuroendocrine cells with a monoclonal antibody. Am J Pathol. 1984;115:458. [PMC free article] [PubMed] [Google Scholar]
  • 22.Wilson BS, Imai K, Natali PG, Ferrone S. Distribution and molecular characterization of a cell surface and cytoplasmic antigen detectable in human melanoma cells with monoclonal antibodies. Int J Cancer. 1981;28:293. doi: 10.1002/ijc.2910280307. [DOI] [PubMed] [Google Scholar]
  • 23.Wilson BS, Platt JL, Kay NE. Monoclonal antibodies to the 140,000 mol at glycoprotein B-lymphocyte membranes (CR2 receptor) initiates proliferation of B-cells in vitro. Blood. 1985;66(4):824. [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES