Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1993 Nov;36(6):381–386. doi: 10.1007/BF01742254

The immunogenic properties of drug-resistant murine tumor cells do not correlate with expression of the MDR phenotype

Jerald J Killion 1,, Robert Radinsky 1, Zhongyun Dong 1, Randi Fishbeck 1, Patrick Whitworth 1, Isaiah J Fidler 1
PMCID: PMC11038117  PMID: 8098991

Abstract

Alterations in the immunogenic properties of tumor cells frequently accompany selection for multipledrug-resistant (MDR) variants. Therefore, studies were performed to examine the hypothesis that overexpression of membrane P-glycoprotein, commonly observed in MDR tumor cells, is associated with enhanced immunogenic properties. Immunogenicity was determined by (a) the ability of drug-sensitive parental UV2237M fibrosarcoma cells and drug-resistant UV2237M variant cells to immunize normal mice against rechallenge with parental tumor cells and (b) the ability of normal syngeneic mice to reject cell inocula that caused progressive tumor growth in immunocompromised mice. Variant UV2237M cell lines included subpopulations selected for a six- to ten-fold increase in mRNA for P-glycoprotein and expression of the MDR phenotype (resistance to doxorubicin) and cells sensitive to doxorubicin (and no expression of MDR properties) but resistant to ouabain. All UV2237M drug-resistant cells were highly immunogenic in immunocompetent mice, regardless of their MDR phenotype. Additional studies showed that CT-26 murine adenocarcinoma cells, sensitive or resistant to doxorubicin (expressing high levels of P-glycoprotein), injected into normal syngeneic Balb/c mice produced rapidly growing tumors. The data do not demonstrate a correlation between the immunogenic properties of drug-resistant tumor cells and the expression of P-glycoprotein.

Key words: P-glycoprotein, MDR phenotype, Immunogenicity, Drug resistance

Footnotes

Supported in part by core grant CA-16672 R35-CA42 107 from the National Cancer Institute, and postdoctoral fellowship grant PF-3446 from the American Cancer Society (R. R.)

References

  • 1.Bech-Hansen NT, Till JE, Ling V. Pleiotropic phenotype of colchicine-resistant CHO cells: cross-resistance and collateral sensitivity. J Cell Physiol. 1976;88:23. doi: 10.1002/jcp.1040880104. [DOI] [PubMed] [Google Scholar]
  • 2.Bucana CD, Giavazzi R, Nayar R, O'Brian CA, Seid C, Earnest LE, Fan D. Retention of vital dyes correlates inversely with the multidrug-resistant phenotype of Adriamycin-selected murine fibrosarcoma variants. Expt Cell Res. 1990;190:69. doi: 10.1016/0014-4827(90)90145-z. [DOI] [PubMed] [Google Scholar]
  • 3.Cifone MA, Fidler IJ. Increasing metastatic potential is associated with increasing genetic instability of clones isolated from murine neoplasms. Proc Natl Acad Sci USA. 1981;78:6949. doi: 10.1073/pnas.78.11.6949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Curt GA, Clendeninn NJ, Chabner BA. Drug resistance in cancer. Cancer Treat Rep. 1984;68:87. [PubMed] [Google Scholar]
  • 5.Dano K. Active outward transport of daunomycin resistant Ehrlich ascites tumor cells. Biochim Biophys Acta. 1973;323:426. doi: 10.1016/0005-2736(73)90191-0. [DOI] [PubMed] [Google Scholar]
  • 6.Deffie AM, Alam T, Senevirantne C, Beenken SW, Batra JK, Shea TC, Henner WS, Goldenberg GJ. Multifactorial resistance to Adriamycin: relationship of DNA repair, glutathione transferase activity, drug-efflux, and P-glycoprotein in cloned cell lines of adriamycin-sensitive and resistant P388 leukemia. Cancer Res. 1988;48:3595. [PubMed] [Google Scholar]
  • 7.Deffie AM, Butra JK, Goldenberg GJ. Direct correlation between DNA topoisomerase II activity and cytotoxicity in Adriamycin-sensitive and -resistant P388 leukemia cell lines. Cancer Res. 1989;43:58. [PubMed] [Google Scholar]
  • 8.DeVita VT., Jr. The relationship between tumor mass and resistance to chemotherapy. Cancer. 1983;51:1209. doi: 10.1002/1097-0142(19830401)51:7<1209::aid-cncr2820510707>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  • 9.Dexter DL, Leith JT. Tumor heterogeneity and drug resistance. J Clin Oncol. 1986;4:244. doi: 10.1200/JCO.1986.4.2.244. [DOI] [PubMed] [Google Scholar]
  • 10.Fan D, Bucana CD, O'Brian CA, Zwelling LA, Seid C, Fidler IJ. Enhancement of murine tumor cell sensitivity to Adriamycin by presentation of the drug in phosphatidylcholine-phosphatidylserine liposomes. Cancer Res. 1990;50:3619. [PubMed] [Google Scholar]
  • 11.Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983;132:6. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  • 12.Fidler IJ, Cifone MA. Properties of metastatic and nonmetastatic cloned subpopulations of an ultraviolet-light-induced murine fibrosarcoma of recent origin. Am J Pathol. 1979;97:633. [PMC free article] [PubMed] [Google Scholar]
  • 13.Fidler IJ, Poste G. The cellular heterogeneity of malignant neoplasms: implications for adjuvant chemotherapy. Semin Oncol. 1985;12:207. [PubMed] [Google Scholar]
  • 14.Flintoff WF, Nagainis CR. Transport of methotrexate in Chinese hamster ovary cells: a mutant defective in methotrexate uptake and cell binding. Arch Biochem Biophys. 1983;223:443. doi: 10.1016/0003-9861(83)90607-0. [DOI] [PubMed] [Google Scholar]
  • 15.Fort P, Marty L, Peichaczyk M, Sabrouty SE, Dani C, Jeanteur P, Blanchard JM. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1989;13:1431. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Fortner GW, Lill PH. Immune response to ultraviolet-induced tumors. I. Transplantation immunity developing in syngeneic mice in response to progressor ultraviolet-induced tumors. Transplantation. 1985;39:44. doi: 10.1097/00007890-198501000-00004. [DOI] [PubMed] [Google Scholar]
  • 17.Frei E., III The national cancer chemotherapy program. Science. 1982;217:600. doi: 10.1126/science.7046055. [DOI] [PubMed] [Google Scholar]
  • 18.Gambacorti-Passerini C, Rivoltini L, Supino R, Rodolfo M, Radrizzani M, Fossati G, Parmiani G. Susceptibility of chemoresistant murine and human tumor cells to lysis by interleukin 2-activated lymphocytes. Cancer Res. 1988;48:2372. [PubMed] [Google Scholar]
  • 19.Gerlach JH, Endicott JA, Juranka PF, Henderson G, Sarangi F, Deuchars KI, Ling V. Homology between P-glycoprotein and bacterial hemolysin transport protein suggests a model for multidrug resistance. Nature. 1986;324:485. doi: 10.1038/324485a0. [DOI] [PubMed] [Google Scholar]
  • 20.Giavazzi R, Miller L, Hart IR. Metastatic behavior of an Adriamycin-resistant murine tumor. Cancer Res. 1983;43:5081. [PubMed] [Google Scholar]
  • 21.Goldie JH, Coldman AJ. The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res. 1984;44:3643. [PubMed] [Google Scholar]
  • 22.Gros P, Ben Neriah Y, Croop JA, Housman DE. Isolation and expression of a complementary DNA that confers multidrug resistance. Nature (Lond) 1986;323:728. doi: 10.1038/323728a0. [DOI] [PubMed] [Google Scholar]
  • 23.Heppner GH, Dexter DL, De Nucci T, Miller FR, Calibresi P. Heterogeneity in drug sensitivity among tumor cell subpopulations of a single mammary tumor. Cancer Res. 1985;38:3758. [PubMed] [Google Scholar]
  • 24.Killion JJ. Immunotherapy with tumor cell subpopulations. II. Therapy of drug-resistant L1210 leukemia and EL4 lymphoma. Cancer Immunol Immunother. 1978;5:21. [Google Scholar]
  • 25.Kimmig A, Gekeler V, Neumann M, Frese G, Handgretinger R, Kardos G, Diddens H, Niethammer D. Susceptibility of multidrug-resistant human leukemia cell lines to human interleukin 2-activated killer cells. Cancer Res. 1990;50:6793. [PubMed] [Google Scholar]
  • 26.Kripke ML. Latency, histology and antigenicity of tumors induced by ultraviolet light in three inbred mouse strains. Cancer Res. 1977;37:1395. [PubMed] [Google Scholar]
  • 27.Kripke ML. Immunological effects of ultraviolet radiation. J Dermatol. 1991;18:429. doi: 10.1111/j.1346-8138.1991.tb03111.x. [DOI] [PubMed] [Google Scholar]
  • 28.Kripke ML, Gruys E, Fidler IJ. Metastatic heterogeneity of cells from an ultraviolet-light induced murine fibrosarcoma of recent origin. Cancer Res. 1978;38:2962. [PubMed] [Google Scholar]
  • 29.LeFever AV, Killion JJ, Kollmorgen GM. Active immunotherapy of L1210 leukemia with neuraminidase-treated, drugresistant L1210 sublines. Cancer Immunol Immunother. 1976;1:211. [Google Scholar]
  • 30.Ling V, Thompson LH. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974;83:103. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
  • 31.Marquardt D, Center SM. Drug transport mechanisms in HL60 cells isolated for resistance to Adriamycin: evidence for nuclear drug accumulation and redistribution in resistant cells. Cancer Res. 1992;52:3157. [PubMed] [Google Scholar]
  • 32.Mihich E, Kitano M. Differences in the immunogenicity of leukemia L1210 sublines in DBA/2 mice. Cancer Res. 1971;31:1999. [PubMed] [Google Scholar]
  • 33.Nicolin A, Vadlamudi S, Goldin A. Antigenicity of L1210 leukemia sublines induced by drugs. Cancer Res. 1972;32:653. [PubMed] [Google Scholar]
  • 34.Radinsky R, Culp LA. Clonal dominance of select subsets of viral keirstenras +-transformed 3T3 cells during tumor progression. Int J Cancer. 1991;48:148. doi: 10.1002/ijc.2910480126. [DOI] [PubMed] [Google Scholar]
  • 35.Radinsky R, Kraemer PM, Raines MA, Kung H-J, Culp LA. Amplification and rearrangement of the kirstenras oncogene in virus-transformed BALB/c 3T3 cells during malignant tumor progression. Proc Natl Acad Sci USA. 1987;84:5143. doi: 10.1073/pnas.84.15.5143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Riodan JR, Ling V. Genetic and biochemical characterization of multidrug resistance. Pharmacol Ther. 1985;28:51. doi: 10.1016/0163-7258(85)90082-8. [DOI] [PubMed] [Google Scholar]
  • 37.Scheper RJ, Dalton WS, Grogan TM, Schlosser A, Bellamy WT, Taylor CW, Scuder P, Spier C. Altered expression of P-glycoprotein and cellular adhesion molecules on human multidrug-resistant tumor cells does not affect their susceptibility to NK- and LAK-mediated cytotoxicity. Int J Cancer. 1991;48:562. doi: 10.1002/ijc.2910480414. [DOI] [PubMed] [Google Scholar]
  • 38.Sharp JD, Capecchi NE, Capecchi MR. Altered enzymes in drug-resistant variants of mammalian tissue culture cells. Proc Natl Acad Sci USA. 1973;70:3145. doi: 10.1073/pnas.70.11.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Staroselsky AN, Fan D, O'Brian CA, Bucana CD, Gupta KP, Fidler IJ. Site-dependent differences in response of the UV-2237 murine fibrosarcoma to systemic therapy with Adriamycin. Cancer Res. 1990;50:7775. [PubMed] [Google Scholar]
  • 40.Staroselsky AN, Radinsky R, Fidler IJ, Pathak S, Chernajovsky Y, Frost P (in press) The use of molecular genetic markers to demonstrate the effect of organ environment on clonal dominance in a human renal-cell carcinoma grown in nude mice. Int J Cancer [DOI] [PubMed]
  • 41.Streeter PR, Fortner GW. Immune response to ultraviolet-induced tumors. II. Effector cells in tumor immunity. Transplantation. 1988;46:250. doi: 10.1097/00007890-198808000-00013. [DOI] [PubMed] [Google Scholar]
  • 42.Tsuruo T, Iida H, Kawabara H, Tsukagoshi S, Sakurai Y. High calcium content of pleiotropic drug-resistant P388 and K562 leukemia and Chinese hamster ovary cells. Cancer Res. 1984;44:5095. [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES