Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1991 Nov;32(6):382–390. doi: 10.1007/BF01741333

Potentiation of growth suppression and modulation of the antigenic phenotype in human melanoma cells by the combination of recombinant human fibroblast and immune interferons

Gary M Graham 1, Ludovico Guarini 2, Thomas A Moulton 2, Subashree Datta 1, Soldano Ferrone 3, Patrizio Giacomini 4, Robert S Kerbel 5, Paul B Fisher 1,
PMCID: PMC11038122  PMID: 1672507

Abstract

Administration of interferon as a single therapeutic regimen in cancer patients with various neoplasias has had only limited efficacy in ameliorating the negative clinical course of their disease. In the present study, we have evaluated the effect of recombinant human fibroblast (IFNβ) and immune (IFNγ) interferon, alone and in combination, on growth, differentiation and the expression of class I and II histocompatibility locus antigens (HLA) and melanoma-associated antigens on the human melanoma cell line H0-1. The effect of combinations of interferons on the antigenic profile of human melanoma cells displaying different organ colonization and spontaneous metastatic potential in athymic nude mice was also determined. H0-1 cells were more sensitive to the antiproliferative activity of IFNβ than to IFNγ and the combination of interferons resulted in a potentiation of growth suppression. The antiproliferative effect of both interferons was greater in later-passage than in earlier-passage H0-1 cells, possibly reflecting alterations in the evolving tumor cell population as a result of long-term in vitro propagation and/or the selective outgrowth of cells with an increased growth rate. The enhanced growth suppression observed in H0-1 cells treated with the combination of IFNβ plus IFNγ was not associated with a significant increase in the level of melanin, a marker of melanoma differentiation, above that observed with either interferon used alone. IFNβ and IFNγ differentially modulated the expression of class I and II HLA and melanoma-associated antigens in H0-1 cells and a series of melanoma cells with different organ colonization and metastatic potential, including MeWo, MeM 50-10, MeM 50-17, 3S5 and 70W. No consistent potentiation or antagonism in the expression of any specific antigen was observed in any of the melanoma cell lines exposed to the combination of interferons. The present study demonstrates that the combination of IFNβ plus IFNγ can potentiate growth suppression in H0-1 human melanoma cells and that this effect is not associated with an increase in differentiation or a potentiation in antigenic modulation. In addition, no direct correlation between the expression of any specific antigen or its modulation by IFNβ or IFNγ, alone or in combination, and organ colonization and metastatic potential in nude mice was observed in the different melanoma cell lines.

Key words: Human melanoma cells, Recombinant interferons, Growth suppression, Differentiation, Antigenic phenotype

References

  • 1.Ahmed MA, Guarini L, Ferrone S, Fisher PB. Induction of differentiation in human melanoma cells by the combination of different classes of interferons or interferon plus mezerein. Ann NY Acad Sci. 1989;567:333. [Google Scholar]
  • 2.Ahmed MA, Nielsch U, Guarini L, Hermo H, Jr, Fisher PB. Modulation of differentiation: a potential mechanism by which interferons induce antitumor activity. In: Fisher PB, editor. Mechanisms of differentiation: II. Modulation of differentiation by exogenous agents. Boca Raton: CRC Press; 1990. pp. 1–56. [Google Scholar]
  • 3.Barnstable CJ, Bodmer WF, Brown G, Galfre G, Milstein C, Williams AF, Ziegler A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens — new tool for genetic analysis. Cell. 1978;14:9. doi: 10.1016/0092-8674(78)90296-9. [DOI] [PubMed] [Google Scholar]
  • 4.Clemens MJ, McNurlan MA. Regulation of cell proliferation and differentiation by interferons. Biochem J. 1985;226:345. doi: 10.1042/bj2260345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Cornil I, Man S, Fernandez B, Kerbel RS. Enhanced tumorigenicity, melanogenesis, and metastases of a human malignant melanoma after subdermal implantation in nude mice. J Natl Cancer Inst. 1989;81:938. doi: 10.1093/jnci/81.12.938. [DOI] [PubMed] [Google Scholar]
  • 6.Czarniecki CW, Fennie CW, Powers PB, Estell DA. Synergistic antiviral and antiproliferative activities ofEscherichia coli derived human alpha, beta and gamma interferons. J Virol. 1984;49:490. doi: 10.1128/jvi.49.2.490-496.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Fetell MR, Housepian EM, Oster MW, Cote DN, Sisti MB, Marcus SG, Fisher PB. Intratumor administration of beta-interferon in recurrent malignant gliomas: a phase I clinical and laboratory study. Cancer. 1990;65:78. doi: 10.1002/1097-0142(19900101)65:1<78::aid-cncr2820650117>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  • 8.Fisher PB, Grant S. Effects of interferon on differentiation of normal and tumor cells. Pharmacol Ther. 1985;27:143. doi: 10.1016/0163-7258(85)90067-1. [DOI] [PubMed] [Google Scholar]
  • 9.Fisher PB, Prignoli D, Hermo H, Jr, Weinstein IB, Pestka S. Effects of combined treatment with interferon and mezerein on melanogenesis and growth in human melanoma cells. J Interferon Res. 1985;5:11. doi: 10.1089/jir.1985.5.11. [DOI] [PubMed] [Google Scholar]
  • 10.Fisher PB, Babiss LE, Miranda AF. Measurement of the effects of interferons on cellular differentiation in murine and human melanoma cultures. Methods Enzymol. 1986;119:611. doi: 10.1016/0076-6879(86)19082-3. [DOI] [PubMed] [Google Scholar]
  • 11.Fisher PB, Hermo H, Jr, Solowey WE, Dietrich MC, Edwalds GM, Weinstein IB, Langer JA, Pestka S, Giacomini P, Kusama M, Ferrone S. Effect of recombinant human fibroblast interferon and mezerein on growth, differentation, immune interferon binding and tumor associated antigen expression in human melanoma cells. Anticancer Res. 1986;6:765. [PubMed] [Google Scholar]
  • 12.Friedman RL, Stark GR. α-Interferon induced transcription of HLA and metallothionein genes containing homologous upstream sequences. Nature. 1985;314:637. doi: 10.1038/314637a0. [DOI] [PubMed] [Google Scholar]
  • 13.Giacomini P, Veglia F, Cordiali C, Fei P, Rehle T, Natali PG, Ferrone S. Level of a membrane-bound high-molecularweight melanoma-associated antigen and of a cytoplasmic melanoma-associated antigen in surgically removed tissues and in sera from patients with melanoma. Cancer Res. 1984;44:1281. [PubMed] [Google Scholar]
  • 14.Giacomini P, Fisher PB, Duigou GJ, Gambari R, Natali PG. Regulation of class II MHC expression by interferons: insights into the mechanism of action of interferon (review) Anticancer Res. 1988;8:1153. [PubMed] [Google Scholar]
  • 15.Giovanella BC, Stehlin JS, Santamaria C, Yim SO, Morgan AC, Williams LJ, Leibowitz A, Fialkow PY, Mumford DM. Human neoplastic and normal cells in tissue culture. I. Cell lines derived from malignant melanomas and normal melanocytes. J Natl Cancer Inst. 1976;56:1131. doi: 10.1093/jnci/56.6.1131. [DOI] [PubMed] [Google Scholar]
  • 16.Goldstein D, Laszlo J. Interferon therapy in cancer: from imagination to interferon. Cancer Res. 1986;46:4315. [PubMed] [Google Scholar]
  • 17.Greiner JW, Schlom J, Pestka S, Langer JA, Giacomini P, Kusama M, Ferrone S, Fisher PB. Modulation of tumor associated antigen expression and shedding by recombinant human leukocyte and fibroblast interferon. Pharmacol Ther. 1987;31:209. doi: 10.1016/0163-7258(85)90023-3. [DOI] [PubMed] [Google Scholar]
  • 18.Gresser I, Tovey M. Antitumor effects of interferon. Biochim Biophys Acta. 1978;516:231. doi: 10.1016/0304-419x(78)90009-4. [DOI] [PubMed] [Google Scholar]
  • 19.Guadagni F, Kantor J, Schlom J, Greiner JW. Regulation of tumor antigen expression by recombinant interferons. In: Fisher PB, editor. Mechanisms of differentiation: II. Modulation of differentiation by exogenous compounds. Boca Raton: CRC Press; 1990. pp. 57–80. [Google Scholar]
  • 20.Guarini L, Temponi M, Edwalds GM, Vita JR, Fisher PB, Ferrone S. In vitro differentiation and antigenic changes in human melanoma cell lines. Cancer Immunol Immunother. 1989;30:262. doi: 10.1007/BF01744892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Guarini L, Temponi M, Bruce JN, Bollon AP, Duigou GJ, Moulton TA, Ferrone S, Fisher PB (1991) Expression and modulation by cytokines of the intercellular adhesion molecule-1 (ICAM-1) in human central nervous system tumor cell cultures. Int J Cancer (in press) [DOI] [PubMed]
  • 22.Hannigan GE, Fish EN, Williams BRG. Modulation of human interferon-α receptor expression by γ-interferon. J Biol Chem. 1984;259:8084. [PubMed] [Google Scholar]
  • 23.Hubbell HR, Craft JA, Leibowitz PJ, Gillespie DH. Synergistic antiproliferative effect of recombinant α-interferons with recombinant γ-interferon. J Biol Response Mod. 1987;6:141. [PubMed] [Google Scholar]
  • 24.Imai K, Natali PG, Kay NE, Wilson BS, Ferrone S. Tissue distribution and molecular profile of a differentiation antigen detected by a monoclonal antibody (345.134S) produced against human melanoma cells. Cancer Immunol Immunother. 1982;12:159. [Google Scholar]
  • 25.Imai K, Wilson BS, Bigotti A, Natali PG, Ferrone S. A 94,000-Dalton glycoprotein expressed by human melanoma and carcinoma cells. J Natl Cancer Inst. 1982;68:761. [PubMed] [Google Scholar]
  • 26.Ishikawa M, Dennis JW, Man S, Kerbel RS. Isolation and characterization of spontaneous wheat germ agglutinin-resistant human melanoma mutants displaying remarkably different metastatic profiles in nude mice. Cancer Res. 1988;48:665. [PubMed] [Google Scholar]
  • 27.Johnson JD, Stade BG, Holzmann B, Schwable W, Riethmuller G. De novo expression of intercellular-adhesion molecule 1 in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci USA. 1989;86:641. doi: 10.1073/pnas.86.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Kelly JM, Porter ACG, Chernajovsky Y, Gilbert CS, Stark GR, Kerr IM. Characterization of a human gene inducible by α- and β-interferons and its expression in mouse cells. EMBO J. 1986;5:1601–1606. doi: 10.1002/j.1460-2075.1986.tb04402.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kerbel RS, Man MS. Single-step selection of unique human melanoma variants displaying unusually aggressive metastatic behavior in nude athymic mice. Invasion Metastasis. 1984;4(Suppl 1):31. [PubMed] [Google Scholar]
  • 30.King H-F, Pan Y-CE, Moschera J, Tsai K, Bekesi F, Chang M, Sugino H, Honda S. Purification of recombinant human immune interferon. Methods Enzymol. 1986;119:204. doi: 10.1016/0076-6879(86)19031-8. [DOI] [PubMed] [Google Scholar]
  • 31.Krown SE. Clinical trials of interferons in human malignancy. In: Pfeffer LW, editor. Mechanisms of interferon actions, vol 2. Boca Raton: CRC Press; 1987. p. 143. [Google Scholar]
  • 32.Larner AC, Jonak G, Cheng Y-SE, Korant B, Knight E, Darnell JE. Transcriptional induction of two genes by β interferon. Proc Natl Acad Sci USA. 1984;81:6733. doi: 10.1073/pnas.81.21.6733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Leon JA, Mesa-Tejada R, Gutierrez MC, Estabrook A, Greiner JW, Schlom J, Fisher PB. Increased surface expression and shedding of tumor associated antigens by human breast carcinoma cells treated with recombinant human interferons or phorbol ester tumor promoters. Anticancer Res. 1989;9:1639. [PubMed] [Google Scholar]
  • 34.Maio M, Gulwani B, Tombesi S, Langer JA, Duigou GJ, Kerbel RS, Fisher PB, Ferrone S. Differential induction by immune interferon of the gene products of the HLA-D region on the melanoma cell line MeWo and its metastatic variant MeM 50-10. J Immunol. 1988;141:913. [PubMed] [Google Scholar]
  • 35.Maio M, Gulwani B, Langer JA, Kerbel RS, Duigou GJ, Fisher PB, Ferrone S. Modulation by interferons of HLA antigen, high-molecular-weight melanoma associated antigen, and intercellular adhesion molecule 1 expression by cultured melanoma cells with different metastatic potential. Cancer Res. 1989;49:2980. [PubMed] [Google Scholar]
  • 36.Mark DV, Lu SD, Creasey A, Yamamoto R, Lin L. Site-specific mutagenesis of the human fibroblast interferon gene. Proc Natl Acad Sci USA. 1984;81:5562. doi: 10.1073/pnas.81.18.5662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Matsui M, Temponi M, Ferrone S. Characterization of a monoclonal antibody-defined human melanoma-associated antigen susceptible to modulation by immune interferon. J Immunol. 1987;139:2088. [PubMed] [Google Scholar]
  • 38.Natali PG, Wilson BS, Imai K, Bigotti A, Ferrone S. Tissue distribution, molecular profile and shedding of a cytoplasmic antigen identified by the monoclonal antibody 465.12S to human melanoma cells. Cancer Res. 1982;42:583. [PubMed] [Google Scholar]
  • 39.Natali PG, Nicotra MR, Cavaliere R, Bigotti A, Romano G, Temponi M, Ferrone S. Differential expression of intercellular adhesion molecule 1 (ICAM-1) in primary and metastatic melanoma lesions. Cancer Res. 1990;50:1271. [PubMed] [Google Scholar]
  • 40.Oleszak E, Stewart WE., II Potentiation of the antiviral and anticellular activities of interferons by mixtures of HuIFNγ and HuIFNα or HuIFNβ. J Interferon Res. 1985;5:361. doi: 10.1089/jir.1985.5.361. [DOI] [PubMed] [Google Scholar]
  • 41.Pellegrino MA, Ng AK, Russo C, Ferrone S. Heterogeneous distribution of determinants defined by monoclonal antibodies on HLA-A and B antigen bearing molecules. Transplantation. 1982;34:18. doi: 10.1097/00007890-198207000-00004. [DOI] [PubMed] [Google Scholar]
  • 42.Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu Rev Biochem. 1987;56:727. doi: 10.1146/annurev.bi.56.070187.003455. [DOI] [PubMed] [Google Scholar]
  • 43.Pfeffer LM, editor. Mechanisms of interferon action, vol I, II. Boca Raton: CRC Press; 1987. [Google Scholar]
  • 44.Quaranta V, Pellegrino MA, Ferrone S. Serological and immunochemical characterization of the specificity of four monoclonal antibodies to distinct antigenic determinants expressed on subpopulations of human Ia-like antigens. J Immunol. 1981;126:548. [PubMed] [Google Scholar]
  • 45.Rehberg E, Kelder B, Hoal EG, Pestka S. Specific molecular activities of recombinant and hybrid leukocyte interferons. J Biol Chem. 1982;257:11497. [PubMed] [Google Scholar]
  • 46.Rossi GB. Interferons and cell differentiation. In: Gresser I, editor. Interferon, vol 6. New York: Academic Press; 1985. p. 31. [PubMed] [Google Scholar]
  • 47.Schiller JH, Groveman DS, Schmid SM, Willson JKV, Cummings KB, Borden EC. Synergistic antiproliferative effects of human recombinant α54- or βser-interferon with γ-interferon on human cell lines of various histogenesis. Cancer Res. 1986;46:483. [PubMed] [Google Scholar]
  • 48.Schiller JH, Bushmeyer SM, Ruzicka FJ, Princler GL, Faltynek CR, Borden EC. Modulation of interferon receptor expression during combination βser-interferon and γ-interferon treatment of human colon carcinoma cells. Cancer Res. 1990;50:26. [PubMed] [Google Scholar]
  • 49.Springer TA, Dustin ML, Takashi K, Kishimoto TK, Marlin SD. The lymphocyte function-associated LFA-1, CD2 and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223. doi: 10.1146/annurev.iy.05.040187.001255. [DOI] [PubMed] [Google Scholar]
  • 50.Temponi M, Romano G, D'Urso CM, Wang Z, Kekish U, Ferrone S. Profile of intercellular adhesion molecule-1 (ICAM-1) synthesized by human melanoma cell lines. Semin Oncol. 1988;15:595. [PubMed] [Google Scholar]
  • 51.Tsujisaki M, Igarashi M, Sakaguchi K, Eisinger M, Herlyn M, Ferrone S. Immunochemical and functional analysis of HLA class II antigens induced by recombinant immune interferon on normal epidermal melanocytes. J Immunol. 1987;138:1310. [PubMed] [Google Scholar]
  • 52.Vita JR, Edwalds GM, Gorey T, Housepian EM, Fetell MR, Guarini L, Langer JA, Fisher PB. Enhanced in vitro growth suppression of human glioblastoma cultures treated with the combination of recombinant fibroblast and immune interferons. Anticancer Res. 1988;8:297. [PubMed] [Google Scholar]
  • 53.Watson AJ, DeMars R, Trowbridge IS, Bach FH. Detection of a novel human class II HLA antigen. Nature. 1983;304:358. doi: 10.1038/304358a0. [DOI] [PubMed] [Google Scholar]
  • 54.Wilson BS, Imai K, Natali PG, Ferrone S. Distribution and molecular characterization of a cell-surface and a cytoplasmic antigen detectable in human melanoma cells with monoclonal antibodies. Intl J Cancer. 1981;28:293. doi: 10.1002/ijc.2910280307. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES