Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1993 Nov;36(6):409–416. doi: 10.1007/BF01742258

Factors, including transforming growth factor β, released in the glioblastoma residual cavity, impair activity of adherent lymphokine-activated killer cells

Pier Adelchi Ruffini 1, Licia Rivoltini 1, Antonio Silvani 2, Amerigo Boiardi 2, Giorgio Parmiani 1,
PMCID: PMC11038209  PMID: 8500113

Abstract

Adherent lymphokine-activated killer (A-LAK) cells were obtained from peripheral blood lymphocytes of patients with recurrent glioblastoma. In vitro features of A-LAK cultures were assessed in comparison to those of non-adherent lymphokine-activated killer (NA-LAK) cells of the same patients with regard to cytotoxic activity, proliferation and surface markers. Only in a minority of cases did A-LAK cells show a markedly higher cytotoxicity on K562, Daudi and allogeneic glioblastoma cells. Nevertheless, A-LAK cells proliferated significantly better than NA-LAK and contained higher percentages of CD16+, CD56+ and CD25+ cells, indicating that A-LAK cells from these patients represent a subpopulation of lymphocytes enriched for activated natural killer cells. We also investigated whether immunosuppressive factor(s) were present in the tumour bed of recurrent gliomas. To this end, samples of glioblastoma cavity fluid (GCF), which accumulates in the cavity of subtotally removed tumour, were recovered and tested for the presence of immunosuppressive activity. All GCF samples analysed were shown to inhibit in vitro proliferation and antitumour cytotoxicity of 1-week-cultured A-LAK cells in a dose-dependent manner. Such GCF activity was effectively antagonized by a transforming growth factor β (TGFβ) neutralizing antibody, indicating the involvement of TGFβ in lymphocyte inhibition. These results show that in the tumour cavity remaining after subtotal glioblastoma resection a marked immunosuppressive activity, probably due to local release of TGFβ, is present; such activity may negatively influence the therapeutic effectiveness of local cellular immunotherapy.

Key words: Glioblastoma, A-LAK cells, In vivo immunosuppression, TGFβ

References

  • 1.Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A. Immunosuppression and transforming growth factor-β in glioblastoma. Preferential production of transforming growth factor-β2. J Immunol. 1989;143:3222. [PubMed] [Google Scholar]
  • 2.Brooks WH, Netsky MG, Normansell DE, Horwitz DA. Depressed cell-mediated immunity in patients with primary intracranial tumors. J Exp Med. 1972;136:1631. doi: 10.1084/jem.136.6.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.De Martin R, Haendler B, Hofer-Warbinek R, Gaugitsch H, Wrann M, Schlusener H, Seifert JM, Bodmer S, Fontana A, Hofer E. Complementary DNA for human glioblastoma-derived T cell suppressor factor, a novel member of the transforming growth factor-β gene family. EMBO J. 1987;6:3673. doi: 10.1002/j.1460-2075.1987.tb02700.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Elliott LH, Brooks WH, Roszman TL. Suppression of high affinity IL-2 receptors on mitogen activated lymphocytes by gliomaderived suppressor factor. J Neurooncol. 1992;14:1. doi: 10.1007/BF00170940. [DOI] [PubMed] [Google Scholar]
  • 5.Espevik T, Figari IS, Ranges GE, Palladino MA., Jr Transforming growth factor-β1 (TGF-β1) and recombinant human tumor necrosis factor-α reciprocally regulate the generation of lymphokineactivated killer cell activity. Comparison between natural porcine platelet-derived TGF-β1 and TGF-β2, and recombinant human TGF-β1. J Immunol. 1988;140:2312. [PubMed] [Google Scholar]
  • 6.Fontana A, Hengartner H, de Tribolet N, Weber E. Glioblastoma cells release interleukin-1 and factors inhibiting interleukin-2 mediated effects. J Immunol. 1984;132:1837. [PubMed] [Google Scholar]
  • 7.Fontana A, Frei K, Bodmer S, Hofer E, Schreier MH, Palladino MA, Jr, Zinkernagel RM. Transforming growth factor-β inhibits the generation of cytotoxic T cells in virus-infected mice. J Immunol. 1989;143:323. [PubMed] [Google Scholar]
  • 8.Inge TH, Hoover SK, Susskind BM, Barrett SK, Bear HD. Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor-β1. Cancer Res. 1992;52:1386. [PubMed] [Google Scholar]
  • 9.Ioli G, Yamamoto R, Jacques D, Neal J, Granger G. Blocking factors (soluble receptors) for human TNF and LT in the serum, cerebrospinal fluid (CSF) and tumor cyst fluid (TCF) of human glioma patients. Proc Am Assoc Cancer Res. 1992;33:309. [Google Scholar]
  • 10.Jaaskelainen J, Kalliomaki P, Paetau A, Timonen T. Effect of LAK cells against three-dimensional tumor tissue. In vitro study using multi-cellular human glioma spheroids as targets. J Immunol. 1989;142:1036. [PubMed] [Google Scholar]
  • 11.Jaaskelainen J, Maenpaa A, Patarroyo M, Gahmberg CG, Somersalo K, Tarkkanen J, Kallio M, Timonen T. Migration of recombinant IL-2-activated T and natural killer cells in the intercellular space of human H-2 glioma spheroids in vitro. A study on adhesion molecules involved. J Immunol. 1992;149:260. [PubMed] [Google Scholar]
  • 12.Jaeckle KA, Mittelman A, Hill FH. Phase II trial ofSerratia marcescens extract in recurrent malignant astrocytoma. J Clin Oncol. 1990;8:1408. doi: 10.1200/JCO.1990.8.8.1408. [DOI] [PubMed] [Google Scholar]
  • 13.Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, Fauci AS. Production of transforming growth factor-β by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986;163:1037. doi: 10.1084/jem.163.5.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Kuppner MC, Hamou MF, Bodmer S, Fontana A, de Tribolet N. The glioblastoma-derived T-cell suppressor factor/transforming growth factor-β2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int J Cancer. 1988;42:562. doi: 10.1002/ijc.2910420416. [DOI] [PubMed] [Google Scholar]
  • 15.Kuppner MC, Hamou MF, Sawamura Y, Bodmer S, de Tribolet N. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor-β2. J Neurosurg. 1989;71:211. doi: 10.3171/jns.1989.71.2.0211. [DOI] [PubMed] [Google Scholar]
  • 16.Kuppner MC, Sawamura Y, Hamou MF, de Tribolet N. Influence of PGE2 and cAMP-modulating agents on human glioblastoma cell killing by interleukin-2 activated lymphocytes. J Neurosurg. 1990;72:619. doi: 10.3171/jns.1990.72.4.0619. [DOI] [PubMed] [Google Scholar]
  • 17.Mahaley MS, Brooks WH, Roszman TL, Bigner DD, Dudka L, Richardson S. Immunobiology of primary intracranial tumors. Part I. Studies of the cellular and humoral general immune competence of brain tumor patients. J Neurosurg. 1977;46:467. doi: 10.3171/jns.1977.46.4.0467. [DOI] [PubMed] [Google Scholar]
  • 18.Melder RJ, Whiteside TL, Vujanovic NL, Hiserodt JC, Herberman RB. A new approach to generating antitumor effectors for adoptive immunotherapy using adherent lymphokine-activated killer cells. Cancer Res. 1988;48:3461. [PubMed] [Google Scholar]
  • 19.Merchant RE, Ellison MD, Young HF. Immunotherapy for malignant glioma using human recombinant interleukin-2 and activated autologous lymphocytes. A review of preclinical and clinical investigations. J Neurooncol. 1990;8:173. doi: 10.1007/BF00177842. [DOI] [PubMed] [Google Scholar]
  • 20.Mulé JJ, Schwarz SL, Roberts AB, Sporn MB, Rosenberg SA. Transforming growth factor-β inhibits the in vitro generation of lymphokine-activated killer cells and cytotoxic T cells. Cancer Immunol Immunother. 1988;26:95. doi: 10.1007/BF00205600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Nitta T, Sato K, Yagita H, Okumura K, Ishii S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet. 1990;335:368. doi: 10.1016/0140-6736(90)90205-j. [DOI] [PubMed] [Google Scholar]
  • 22.Palma L, Di Lorenzo N, Guidetti B. Lymphocyte infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate and relevance to prognosis in 228 operated cases. J Neurosurg. 1978;49:854. doi: 10.3171/jns.1978.49.6.0854. [DOI] [PubMed] [Google Scholar]
  • 23.Ranges GE, Figari IS, Espevik T, Palladino MA., Jr Inhibition of cytotoxic T cell development by transforming growth factor-β and reversal by recombinant tumor necrosis factor α. J Exp Med. 1987;166:991. doi: 10.1084/jem.166.4.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Rivoltini L, Cattoretti G, Arienti F, Mastroianni A, Melani C, Colombo MP, Parmiani G. The high lysability by LAK cells of colon-carcinoma cells resistant to doxorubicin is associated with a high expression of ICAM-1, LFA-3, NCA and a less-differentiated phenotype. Int J Cancer. 1991;47:746. doi: 10.1002/ijc.2910470521. [DOI] [PubMed] [Google Scholar]
  • 25.Rivoltini L, Arienti F, Orazi A, Cefalo G, Gasparini M, Gambacorti-Passerini C, Fossati-Bellani F, Parmiani G. Phenotypic and functional analysis of lymphocytes infiltrating paediatric tumors, with a characterization of the tumor phenotype. Cancer Immunol Immunother. 1992;34:241. doi: 10.1007/BF01741792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Rook AH, Kehrl JH, Wakefield LM, Roberts AB, Sporn MB, Burlington DB, Lane HC, Fauci AS. Effects of transforming growth factor-β on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol. 1986;136:3916. [PubMed] [Google Scholar]
  • 27.Roszman T, Elliott L, Brooks W. Modulation of T-cell function by gliomas. Immunol Today. 1991;12:370. doi: 10.1016/0167-5699(91)90068-5. [DOI] [PubMed] [Google Scholar]
  • 28.Sander B, Andersson J, Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol Rev. 1991;119:65. doi: 10.1111/j.1600-065x.1991.tb00578.x. [DOI] [PubMed] [Google Scholar]
  • 29.Sawamura Y, Diserens AC, de Tribolet N. In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J Neurooncol. 1990;9:125. doi: 10.1007/BF02427832. [DOI] [PubMed] [Google Scholar]
  • 30.Schuster JM, Bigner DD. Immunotherapy and monoclonal antibody therapies. Curr Opin Oncol. 1992;4:547. doi: 10.1097/00001622-199206000-00020. [DOI] [PubMed] [Google Scholar]
  • 31.Schwarz RE, Vujanovic NL, Hiserodt JC. Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by their adherence to plastic. Cancer Res. 1989;49:1441. [PubMed] [Google Scholar]
  • 32.Schwyzer M, Fontana A. Partial purification and biochemical characterization of a T cell suppressor factor produced by human glioblastoma cells. J Immunol. 1985;134:1003. [PubMed] [Google Scholar]
  • 33.Siepl C, Bodmer S, Frei K, Robson MacDonald H, De Martin R, Hofer E, Fontana A. The glioblastoma-derived T cell suppressor factor/transforming growth factor-β2 inhibits T cell growth without affecting the interaction of interleukin-2 with its receptor. Eur J Immunol. 1988;18:593. doi: 10.1002/eji.1830180416. [DOI] [PubMed] [Google Scholar]
  • 34.Smyth MJ, Strobl SL, Young HA, Ortaldo JR, Ochoa AC. Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-β. J Immunol. 1991;146:3289. [PubMed] [Google Scholar]
  • 35.Torre-Amione G, Beauchamp RD, Koeppen H, Park BH, Schreiber H, Moses HL, Rowley DA. A highly immunogenic tumor transfected with a murine transforming growth factor type β1 cDNA escapes immune surveillance. Proc Natl Acad Sci USA. 1990;87:1486. doi: 10.1073/pnas.87.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Ushio Y. Treatment of gliomas in adults. Curr Opin Oncol. 1991;3:467. doi: 10.1097/00001622-199106000-00005. [DOI] [PubMed] [Google Scholar]
  • 37.Whiteside TL, Wang YL, Selker RG, Herberman RB. In vitro generation and antitumor activity of adherent lymphokine-activated killer cells from the blood of patients with brain tumors. Cancer Res. 1988;48:6069. [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES