Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1987 Nov;25(3):175–179. doi: 10.1007/BF00199144

Antigenicity of UV radiation-induced murine tumors correlates positively with the level of adenosine deaminase activity

Sharon Lea Aukerman 1,, Isaiah J Fidler 1
PMCID: PMC11038244  PMID: 2824050

Abstract

The specific activities of adenosine deaminase (ADA) in 16 murine tumor cell lines derived from seven UV light-induced neoplasms (melanoma and fibrosarcoma) were determined. In each case, the specific activity of ADA correlated positively with the antigenicity of the tumor cells. Highly antigenic cell lines that regress upon introduction into syngeneic hosts had on average 4- to 6-fold higher ADA specific activities than cell lines of low antigenicity that grow progressively in syngeneic hosts. The antigenic differences are probably not related to intracellular cAMP levels, as the level of cAMP differed only 2-fold between the two groups of cell lines.

Keywords: Tumor Cell, Melanoma, Adenosine, Cancer Research, Tumor Cell Line

References

  • 1.Aukerman SL, Siciliano MJ, Fidler IJ. Heterogeneity of isozyme expression in tumor cells does not correlate with metastatic potential. Clin Exp Metastasis. 1986;4:177. doi: 10.1007/BF00117931. [DOI] [PubMed] [Google Scholar]
  • 2.Balis ME. Adenosine deaminase and malignant cells. Ann NY Acad Sci. 1985;451:142. doi: 10.1111/j.1749-6632.1985.tb27105.x. [DOI] [PubMed] [Google Scholar]
  • 3.Barankiewicz J, Cohen A. Evidence for distinct catabolic pathways of adenine ribonucleotides in human T lymphoblastoid cells. J Biol Chem. 1984;259:15178. [PubMed] [Google Scholar]
  • 4.Brooker G, Harper JF, Terasaki WL, Moylan RD. Radioimmunoassay of cyclic AMP and cyclic GMP. Adv Cyclic Nucleotide Res. 1979;19:1. [PubMed] [Google Scholar]
  • 5.Elgebaly S, Kunkel S, Lovett EJ, Varani J. cAMP differences between clones of high and low malignant fibrosarcoma cells. Oncology. 1982;39:163. doi: 10.1159/000225629. [DOI] [PubMed] [Google Scholar]
  • 6.Fidler IJ, Gersten DM, Kripke ML. Influence of immune status on the metastasis of three murine fibrosarcomas of different immunogenicities. Cancer Res. 1979;39:3816. [PubMed] [Google Scholar]
  • 7.Fidler IJ, Gruys E, Cifone MA, Barnes Z, Bucana C. Demonstration of multiple phenotypic diversity in a murine melanoma of recent origin. J Natl Cancer Inst. 1981;67:947. [PubMed] [Google Scholar]
  • 8.Fisher MS, Kripke ML. Further studies on the tumor-specific suppressor cells induced by ultraviolet radiation. J Immunol. 1978;121:1139. [PubMed] [Google Scholar]
  • 9.Fortner GW, Kripke ML. In vitro reactivity of splenic lymphocytes from normal and UV-irradiated mice against syngeneic UV-induced tumors. J Immunol. 1977;118:1483. [PubMed] [Google Scholar]
  • 10.Fox IH, Kelley WN. The role of adenosine and 2′-deoxyadenosine in mammalian cells. Annu Rev Biochem. 1978;47:655. doi: 10.1146/annurev.bi.47.070178.003255. [DOI] [PubMed] [Google Scholar]
  • 11.Hakim AA. Correlation of immunogenicity with suppression of lymphocyte adenosine 3′-5′-monophosphate-dependent protein kinase. Experientia. 1979;35:1378. doi: 10.1007/BF01964019. [DOI] [PubMed] [Google Scholar]
  • 12.Hershfield MS, Kurtzberg J, Aiyar VN, Suh EJ, Schiff R. Abnormalities in S-adenosylhomocysteine hydrolysis, ATP catabolism, and lymphoid differentiation in adenosine deaminase deficiency. Ann NY Acad Sci. 1985;451:78. doi: 10.1111/j.1749-6632.1985.tb27098.x. [DOI] [PubMed] [Google Scholar]
  • 13.Johnston JM, Kredich NM. Inhibition of methylation by adenosine in adenosine deaminase-inhibited, phytohemagglutinin-stimulated human lymphocytes. J Immunol. 1979;123:97. [PubMed] [Google Scholar]
  • 14.Koizumi H, Iizuka H, Aoyagi T, Miura Y. Characterization of adenosine deaminase from normal human epidermis and squamous cell carcinoma of the skin. J Invest Dermatol. 1985;84:199. doi: 10.1111/1523-1747.ep12264833. [DOI] [PubMed] [Google Scholar]
  • 15.Kripke ML. Antigenicity of murine skin tumors induced by ultraviolet light. J Natl Cancer Inst. 1974;53:1333. doi: 10.1093/jnci/53.5.1333. [DOI] [PubMed] [Google Scholar]
  • 16.Kripke ML. Latency, histology, and antigenicity of tumors induced by ultraviolet light in three inbred mouse strains. Cancer Res. 1977;37:1395. [PubMed] [Google Scholar]
  • 17.Kripke ML. Speculations on the role of ultraviolet radiation in the development of malignant melanoma. J Natl Cancer Inst. 1979;63:541. doi: 10.1093/jnci/63.3.541. [DOI] [PubMed] [Google Scholar]
  • 18.Kripke ML. Immunologic mechanisms in UV radiation carcinogenesis. Adv Cancer Res. 1981;34:69. doi: 10.1016/s0065-230x(08)60239-0. [DOI] [PubMed] [Google Scholar]
  • 19.Kripke ML, Gruys E, Fidler IJ. Metastatic heterogeneity of cells from an ultraviolet light-induced murine fibrosarcoma of recent origin. Cancer Res. 1978;38:2962. [PubMed] [Google Scholar]
  • 20.Lee CH, Evans SP, Rozenberg MC, Bagnara AS, Ziegler JB, Van der Weyden MB. In vitro platelet abnormality in adenosine deaminase deficiency and severe combined immunodeficiency. Blood. 1979;53:465. [PubMed] [Google Scholar]
  • 21.Lin AL, Elford HL. Adenosine deaminase impairment and ribonucleotide reductase activity and levels in HeLa cells. J Biol Chem. 1980;255:8523. [PubMed] [Google Scholar]
  • 22.Lowry O, Rosenbrough N, Farr A, Randall R. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265. [PubMed] [Google Scholar]
  • 23.McMillian M, Lewis KD, Rovner DM. Molecular characterization of novel H-2 class I molecules expressed by a C3H UV-induced fibrosarcoma. Proc Natl Acad Sci USA. 1985;82:5485. doi: 10.1073/pnas.82.16.5485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Poplack DG, Blatt J, Reaman G. Purine pathway enzyme abnormalities in acute lymphoblastic leukemia. Cancer Res. 1981;41:4824. [PubMed] [Google Scholar]
  • 25.Schmalstieg FC, Nelson JA, Mills GC, Monahan TM, Goldman AS, Goldblum RM. Increased purine nucleotides in adenosine deaminase-deficient lymphocytes. J Pediatr. 1977;91:48. doi: 10.1016/s0022-3476(77)80442-3. [DOI] [PubMed] [Google Scholar]
  • 26.ten Kate J, Wijnen JT, van der Goes RGM, Quadt R, Griffioen G, Bosman FT, Meera Khan P. Quantitative changes in adenosine deaminase isozymes in human colorectal adenocarcinomas. Cancer Res. 1984;44:4688. [PubMed] [Google Scholar]
  • 27.Thompson LF, Seegmiller JE. Adenosine deaminase deficiency and severe combined immunodeficiency disease. Adv Enzymol. 1980;51:167. doi: 10.1002/9780470122969.ch4. [DOI] [PubMed] [Google Scholar]
  • 28.Urban JL, Burton RC, Holland JM, Kripke ML, Schreiber H. Mechanisms of syngeneic tumor rejection: Susceptibility of host-selected progressor variants to various immunological effector cells. J Exp Med. 1982;155:557. doi: 10.1084/jem.155.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Wortzel RD, Philipps C, Schreiber H. Multiple tumor-specific antigens expressed on a single tumour cell. Nature. 1983;304:165. doi: 10.1038/304165a0. [DOI] [PubMed] [Google Scholar]
  • 30.Wortzel RD, Urban JL, Schreiber H. Malignant growth in the normal host after variant selection in vitro with cytolytic T cell lines. Proc Natl Acad Sci USA. 1984;81:2186. doi: 10.1073/pnas.81.7.2186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Zimmerman TP, Deeprose RD, Wolberg G, Duncan GS. Potentiation by homocysteine of adenosine-stimulated elevation of cellular adenosine 3′5′-monophosphate. Biochem Pharmacol. 1979;28:2375. doi: 10.1016/0006-2952(79)90703-2. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES