Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1994 May;39(3):155–160. doi: 10.1007/BF01533380

Comparative study of inhibitory effects by murine interferon γ and a new bisphosphonate (alendronate) in hypercalcemic, nude mice bearing human tumor (LJC-1-JCK)

Masahiro Tohkin 1,, Shinji Kakudo 1, Hisashi Kasai 1, Hitoshi Arita 1
PMCID: PMC11038344  PMID: 7522963

Abstract

The inhibitory effect of murine interferon γ (muIFNγ) on humoral hypercalcemia in nude mice bearing lower-jaw cancer (LJC-1-JCK), in which parathyroid-hormone(PTH)-related protein is responsible for causing humoral hypercalcemia by activating bone resorption, was examined in comparison with that of a new bisphosphonate, 4-amino-1-hydroxybutylidene-1,1-bisphosphonate (alendronate), muIFNγ was injected into tumor-bearing nude mice for 5 days before the establishment of hypercalcemia. The increase of plasma calcium concentration was delayed and this effect continued for more than 6 days even after the injection was stopped. Alendronate markedly suppressed hypercalcemia in tumor-bearing nude mice but this inhibitory effect continued for less than 6 days. Neither muIFNγ nor alendronate affected the tumor volume or serum PTH-related protein concentration. Injection of muIFNγ into mice for 3 days almost completely abolished the formation of multinucleated osteoclast-like cells from bone marrow cells in vitro, whereas injection of alendronate into mice had no effect. These findings suggested that muIFNγ suppressed the formation of osteoclasts, resulting in the prolonged decrease of plasma calcium concentration in hypercalcemic tumor-bearing nude mice, whereas alendronate is cytotoxic to functionally mature osteoclasts and inhibited osteoclastic bone resorption, resulting in a marked decrease in the plasma calcium concentration in tumor-bearing hypercalcemic nude mice.

Key words: Interferon γ, Hypercalcemia, Bisphosphonate, Bone-resorption, Parathyroid hormone-related protein

References

  • 1.Mundy GR. Hypercalcemia of malignancy revisited. J Clin Invest. 1988;82:1. doi: 10.1172/JCI113555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Stewart AF, Broadus AE. Humoral hypercalcemia of malignancy. Adv Endocrinol Metab. 1990;1:1. doi: 10.1210/jcem-55-2-219. [DOI] [PubMed] [Google Scholar]
  • 3.Broadus AE, Mangin M, Ikeda K, Isogna KL, Weir EC, Burtis WJ, Stewart AF. Humoral hypercalcemia of cancer: identification of a novel parathyroid hormone-like peptide. N Engl J Med. 1988;319:556. doi: 10.1056/NEJM198809013190906. [DOI] [PubMed] [Google Scholar]
  • 4.Sato K, Fujii Y, Kasono K, Ozawa M, Imamura H, Kanaji Y, Kurosawa H, Tsushima T, Shizume K. Parathyroid hormone-related protein and interleukin-1α synergistically stimulate bone resorption in vitro and increase the serum calcium concentration in mice in vivo. Endocrinology. 1989;124:2172. doi: 10.1210/endo-124-5-2172. [DOI] [PubMed] [Google Scholar]
  • 5.Fukumoto S, Matsumoto T, Harada S, Fujisaki J, Kawano M, Ogata E. Pheochromocytoma with pyrexia and marked inflammatory signs: a paraneoplastic syndrome with possible relation to interleukin-6 production. J Clin Endocrinol Metab. 1991;73:877. doi: 10.1210/jcem-73-4-877. [DOI] [PubMed] [Google Scholar]
  • 6.Yoneda T, Alsina MA, Chavez JB, Bonewald L, Nishimura R, Mundy GR. Evidence that tumor necrosis factor plays a pathogenic role in the parancoplastic syndromes of eachexia, hypercalcemia and leukocytosis in a human tumor in nude mice. J Clin Invest. 1991;87:977. doi: 10.1172/JCI115106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Sabatini M, Yates AJP, Garrett IR, Charez J, Dunn JF, Bonewald L, Mundy GR. Increased production of tumor necrosis factor by normal immune cells in a model of the humoral hypercalcemia of malignancy. Lab Invest. 1990;63:676. [PubMed] [Google Scholar]
  • 8.Mundy GR. Malignancy and hypercalcemia. In: Mundy GR, editor. Calcium homeostasis: hypercalcemia and hypocalcemia. London: Martin Dunitz; 1990. p. 69. [Google Scholar]
  • 9.Mundy GR. Treatment of hypercalcemia due to malignancy. In: Mundy GR, editor. Calcium homeostasis: hypercalcemia and hypocalcemia. London: Martin Dunitz; 1990. p. 16. [Google Scholar]
  • 10.Fleisch H, Russell RGG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science. 1969;165:1262. doi: 10.1126/science.165.3899.1262. [DOI] [PubMed] [Google Scholar]
  • 11.Fleisch H, Felix R. Diphosphonate. Calcif Tissue Int. 1979;27:91. doi: 10.1007/BF02441167. [DOI] [PubMed] [Google Scholar]
  • 12.Fleisch H. Bisphosphonate: mechanism of action and clinical application. In: Pech WA, editor. Bone and mineral research. Amsterdam: Excerpta Medica; 1983. p. 319. [Google Scholar]
  • 13.Jung A, Menmillod B, Barras C, Baud M, Courvoisier B. Inhibition by two diphosphonates of bone lysis in tumour-conditioned media. Cancer Res. 1981;41:3233. [PubMed] [Google Scholar]
  • 14.Jung A, Bomand J, Memillod B, Edouard C, Meunier PJ. Inhibition by diphosphonates of bone resorption induced by the Walker tumor of the rat. Cancer Res. 1984;44:3007. [PubMed] [Google Scholar]
  • 15.Abe T, Kawamuki K, Kudo M, Ouchi N, Isomura Y, Takeuchi M, Sakamoto S, Murase K, Kawashima H. Biological activity of a new bisphosphonate, YM-084, in animals. J Bone Miner Res. 1089;4(Suppl 1):539. [Google Scholar]
  • 16.Nemoto R, Nishijima K, Uchida K, Koiso K. Inhibition by a new bisphosphonate (YM-175) of bone resorption induced by the MBT-2 tumour of mice. Br J Cancer. 1993;67:893. doi: 10.1038/bjc.1993.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Peterlik M, Hoffmann O, Swetly P, Kraushofer K, Koller K. Recombinant γ interferon inhibits prostaglandin-mediated and parathyroid hormone-induced bone resorption in cultured neonatal mouse calvaria. FEBS Lett. 1985;188:287. doi: 10.1016/0014-5793(85)80924-8. [DOI] [PubMed] [Google Scholar]
  • 18.Gowen M, Nedwin GE, Mundy GR. Preferential inhibition of cytokine-stimulated bone resorption by recombinant interferon gamma. J Bone Miner Res. 1986;1:469. doi: 10.1002/jbmr.5650010511. [DOI] [PubMed] [Google Scholar]
  • 19.Sato K, Satoh T, Shimizu K, Yamanaka Y, Ono Y, Demura H, Arai T, Takahashi N, Suda T. Prolonged decrease of serum calcium concentration by murine γ-interferon in hypercalcemic, human tumor (EC-GI)-bearing nude mice. Cancer Res. 1992;52:444. [PubMed] [Google Scholar]
  • 20.Gowen M, Mundy GR. Action of recombinant interleukin 1, interleukin 2, and interferon-γ on bone resorption in vitro. J Immunol. 1986;136:2478. [PubMed] [Google Scholar]
  • 21.Takahashi N, Mundy GR, Roodman GR. Recombinant human interferon γ inhibits formation of human osteoclast-like cells. J Immunol. 1986;137:3544. [PubMed] [Google Scholar]
  • 22.Asano S, Urabe A, Okabe T, Sato N, Kondo Y, Yeyama Y, Chiba S, Ohsawa N, Kosaka K. Demonstration of granulopoietic factor(s) in the plasma of nude mice transplanted with a human lung cancer and in the tumour tissue. Blood. 1977;49:845. [PubMed] [Google Scholar]
  • 23.Kondo Y, Sato K, Ohkawa H, Ueyama Y, Okabe T, Sato N, Asano S, Mori M, Ohsawa N, Kosaka K. Association of hypercalcemia with tumors producing colony-stimulating factor(s) Cancer Res. 1983;43:2368. [PubMed] [Google Scholar]
  • 24.Katoh Y, Nakamura M, Ohnishi Y, Shimamura K, Ueyama Y, Tamaoki N. Autonomous production of granulocyte-colony stimulating factor in tumour xenografts associated with leukocytosis. Br J Cancer. 1993;68:715. doi: 10.1038/bjc.1993.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Nagata K, Kikuchi N, Ohara O, Teraoka H, Yoshida N, Kawade Y. Purification and characterization of recombinant murine immune interferon. FEBS Lett. 1986;205:200. doi: 10.1016/0014-5793(86)80897-3. [DOI] [PubMed] [Google Scholar]
  • 26.Mario JJ, de Carli LL. Phosphatase variants in a heteroploid strain of human cells in tissue culture. Nature. 1962;196:600. [Google Scholar]
  • 27.Takahashi N, Akatsu T, Sasaki T, Nicholson GC, Mosely JM, Martin TJ, Suda T. Induction of calcitonin receptors by 1α,25-dihydroxyvitamin D3 in osteoclast-like multinucleated cells formed from mouse bone marrow cells. Endocrinology. 1988;123:1504. doi: 10.1210/endo-123-3-1504. [DOI] [PubMed] [Google Scholar]
  • 28.Flanagan AM, Chambers TJ. Dichloromethylenebis-phosphonate (Cl2MBP) inhibits bone resorption through injury to osteoclasts that resorp Cl2MBP-coated bone. Bone Miner. 1989;6:33. doi: 10.1016/0169-6009(89)90021-4. [DOI] [PubMed] [Google Scholar]
  • 29.Boonekamp PM, van der Wee-Pals, van Wik-van Lennep MML, Thesing CW, Bijvoet OLM. Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner. 1986;1:27. [PubMed] [Google Scholar]
  • 30.Lowik CWGM, van der Pluijm G, van der Wee-Pals LJA, Bloys van Treslong-de Groot H, Bijvoet OLM. Migration and phenotypic transformation of osteoclast precursors into mature osteoclasts: the effects of a bisphosphonate. J Bone Miner Res. 1988;3:185. doi: 10.1002/jbmr.5650030210. [DOI] [PubMed] [Google Scholar]
  • 31.Nanes MS, Mckoy WM, Marx SJ. Inhibitiory effects of tumor necrosis factor-α and interferon-γ on deoxyribonucleic acid and collagen synthesis by rat osteosarcoma cells (ROS 17/2.8) Endocrinology. 1989;124:339. doi: 10.1210/endo-124-1-339. [DOI] [PubMed] [Google Scholar]
  • 32.Smith DD, Gowen M, Mundy GR. Effects of interferon-γ and other cytokines on collagen synthesis in fetal rat bone cultures. Endocrinology. 1987;120:2494. doi: 10.1210/endo-120-6-2494. [DOI] [PubMed] [Google Scholar]
  • 33.Nanes M, Rubin J, Titus L, Hendy GN, Catherwood BD. Interferon-γ inhibits 1,25-dihydroxyvitamin D3-stimulated synthesis of bone GLA protein in rat osteosarcoma cells by a pretranslational mechanism. Endocrinology. 1990;127:588. doi: 10.1210/endo-127-2-588. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES