Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1990 Mar;32(2):117–124. doi: 10.1007/BF01754208

Enhanced tumor susceptibility of immunocompetent mice infected with lymphocytic choriomeningitis virus

Markus Kohler 1, Barbara Rüttner 1, Suzanne Cooper 1, Hans Hengartner 1, Rolf M Zinkernagel 1,
PMCID: PMC11038360  PMID: 2289203

Abstract

Mice infected i.v. with high doses of lymphocytic choriomeningitis virus (LCMV; 105–106 plaqueforming units) 8–10 days prior to challenge with the methylcholanthrene-induced fibrosarcoma tumor cell line MC57G or the melanoma cell line B16 tumor cells showed an enhanced tumor susceptibility with respect to both growth kinetics of the tumor and the minimal dose necessary for tumor take. After transient initial growth, MC57G tumor cells were all rejected by uninfected C57BL/6 mice by day 14. Mice preinfected i.v. with LCMV 3 weeks before or at the time of tumor challenge, but not those infected 2 months before or 7 days after, showed increasing tumor growth, the tumor take being 100% for 106, 50% for 105 and 37% for 104 MC57G tumor cells injected into the footpad compared with resistance to 106 cells in normal mice. B16 melanoma cells also grew more rapidly in LCMV-preinfected mice and by day 40 tumors were established with about 100 times fewer cells, i.e. about 103 compared with 3×104−3×105 for uninfected mice. Analysis of the growth of tumor cells in normal and in LCMV-carrier mice revealed that the latter mice were not more susceptible to LCMV-infected than to uninfected MC57G. Since LCMV-carrier mice fail to mount LCMV-specific T cell responses, these results suggest that anti-LCMV-specific T cells may be responsible for acquired immunodeficiency hampering immune surveillance against the tumors studied.

Keywords: Melanoma, Melanoma Cell, Tumor Cell Line, Melanoma Cell Line, Fibrosarcoma

Footnotes

Supported by grants from the Swiss National Science Foundation 3.259–0.87 and the Kanton of Zürich

References

  • 1.Aden DP, Knowles BB. Cell surface antigen coded for the human chromosome 7. Immunogenetics. 1976;3:209. [Google Scholar]
  • 2.Ahmed R, King C, Oldstone MBA. Virus-lymphocyte interaction: T cells of the helper subset are infected with lymphocytic choriomeningitis virus during persistent infection in vivo. J Virol. 1987;61:1571. doi: 10.1128/jvi.61.5.1571-1576.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Bekesi JG, St-Arneault G, Holland JF. Immunogenicity of leukemia L1210 cells after neuraminidase treatment. J Natl Cancer Inst. 1972;49:107. [PubMed] [Google Scholar]
  • 4.Boog CJP, Boes J, Melief CJM. Stimulation with dendritic cells decreases or obviates the CD4+ helper cell requirement in cytotoxic T lymphocyte responses. Eur J Immunol. 1988;18:219. doi: 10.1002/eji.1830180206. [DOI] [PubMed] [Google Scholar]
  • 5.Boone CW, Blackman K. Augmented immunogenicity of tumor cell homogenates infected with influenza virus. Cancer Res. 1972;32:1018. [PubMed] [Google Scholar]
  • 6.Bro-Jörgensen K, Volkert M. Defect in the immune system of mice infected with lymphocytic choriomeningitis virus. Infect Immun. 1974;9:605. doi: 10.1128/iai.9.4.605-614.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Buchmeier MJ, Welsh RM, Dutko FJ, Oldstone MBA. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv Immunol. 1980;30:275. doi: 10.1016/s0065-2776(08)60197-2. [DOI] [PubMed] [Google Scholar]
  • 8.Centers of Disease Control Task Force Epidemiological aspects of the current outbreak of Kaposi's sarcoma and opportunistic infections. N Engl J Med. 1982;306:248. doi: 10.1056/NEJM198201283060431. [DOI] [PubMed] [Google Scholar]
  • 9.Cobbold SP, Jayasuriya A, Nash A, Prospero TD, Waldmann H. Therapy with monoclonal antibodies by elimination of T cell subsets in vivo. Nature. 1984;312:548. doi: 10.1038/312548a0. [DOI] [PubMed] [Google Scholar]
  • 10.Cole GA, Nathanson N, Prendergast RA. Requirement for thetabearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972;238:335. doi: 10.1038/238335a0. [DOI] [PubMed] [Google Scholar]
  • 11.Doherty PC, Zinkernagel RM. T cell-mediated immunopathology in viral infection. Transplant Rev. 1974;19:89. doi: 10.1111/j.1600-065x.1974.tb00129.x. [DOI] [PubMed] [Google Scholar]
  • 12.Fauci AS. The human immunodeficiency virus: Infectivity and mechanisms of pathogenesis. Science. 1988;239:617. doi: 10.1126/science.3277274. [DOI] [PubMed] [Google Scholar]
  • 13.Fernandez-Cruz E, Woda BA, Feldman JD. Elimination of syngeneic sarcomas in rats by a subset of T lymphocytes. J Exp Med. 1980;152:823. doi: 10.1084/jem.152.4.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Fidler IJ. Selection of successive tumor lines for metastasis. Nature. 1973;242:148. doi: 10.1038/newbio242148a0. [DOI] [PubMed] [Google Scholar]
  • 15.Fidler IJ, Nicolson GL. Brief communication: organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst. 1976;57:1199. doi: 10.1093/jnci/57.5.1199. [DOI] [PubMed] [Google Scholar]
  • 16.Fujiwara H, Moriyama Y, Suda T, Tsuchida T, Shearer GM, Hamaoka T. Enhanced TNP-reactive helper T cell activity and its utilization in the induction of amplified tumor immunity that results in tumor regression. J Immunol. 1984;132:1571. [PubMed] [Google Scholar]
  • 17.Fujiwara H, Yoshioka T, Shima J, Kosugi A, Itoh K, Hamaoka T. Helper T cells against tumor-associated antigens (TAA): preferential induction of helper T cell activities involved in anti-TAA cytotoxic T lymphocyte and antibody responses. J Immunol. 1986;136:2715. [PubMed] [Google Scholar]
  • 18.Gold K, Thomas D, Garret TJ. Aggressive Kaposi's sarcoma in a heterosexual drug addict (New York City) N Engl J Med. 1982;307:498. [PubMed] [Google Scholar]
  • 19.Hamburg V, Svet-Moldavsky G. Suppression of viral and chemical carcinogenesis by means of artificial heterogenization. Nature. 1967;215:230. doi: 10.1038/2151300a0. [DOI] [PubMed] [Google Scholar]
  • 20.Hotchin J. Persistent and slow virus infections. Monogr Virol. 1971;3:1. [Google Scholar]
  • 21.Jacobson S, Friedman RM, Pfau CJ. Interferon induction by lymphocytic choriomeningitis viruses correlates with maximum virulence. J Gen Virol. 1981;57:275. doi: 10.1099/0022-1317-57-2-275. [DOI] [PubMed] [Google Scholar]
  • 22.Lehmann-Grube F. Lymphocytic choriomeningitis virus. Virol Monogr. 1971;10:1. [Google Scholar]
  • 23.Lehmann-Grube F. Bacterial and viral inhibition and modulation of host defences. London: Academic Press; 1984. pp. 211–242. [Google Scholar]
  • 24.Lehmann-Grube F, Ambrassat J. A new method to detect lymphocytic choriomeningitis virus-specific antibody in human sera. J Gen Virol. 1977;37:85. doi: 10.1099/0022-1317-37-1-85. [DOI] [PubMed] [Google Scholar]
  • 25.Lehmann-Grube F, Assmann-Wischer U, Löliger C, Moskophidis D, Löhler J. Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in clearance of lymphocytic choriomeningitis virus from spleens of mice. J Immunol. 1985;134:608. [PubMed] [Google Scholar]
  • 26.Leist TP, Cobbold SP, Waldmann H, Aguet M, Zinkernagel RM. Functional analysis of T lymphocyte subsets in antiviral host defense. J Immunol. 1987;138:2278. [PubMed] [Google Scholar]
  • 27.Leist TP, Eppler M, Rüedi E, Zinkernagel RM. Virus triggered AIDS in mice is a T cell mediated immunopathology caused by virus-specific cytotoxic T cells: prevention by tolerance or by treatment with anti-CD8 antibodies. J Exp Med. 1988;167:1749. doi: 10.1084/jem.167.5.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Leist TP, Eppler M, Zinkemagel RM. Enhanced virus replication and inhibition of lymphocytic choriomeningitis virus disease in anti-IFN gamma-treated mice. J Virol. 1989;63:2813. doi: 10.1128/jvi.63.6.2813-2819.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Levy JA, Ziegler JL. Acquired immune deficiency syndrome (AIDS) is an opportunistic infection and Kaposi's sarcoma results from secondary immune stimulation. Lancet. 1983;2:78. doi: 10.1016/s0140-6736(83)90062-4. [DOI] [PubMed] [Google Scholar]
  • 30.Lindenmann J, Klein PA. Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J Exp Med. 1967;126:93. doi: 10.1084/jem.126.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Löhler J, Lehmann-Grube F. Immunopathologic alterations of lymphatic tissues of mice infected with lymphocytic choriomeningitis virus. I Histopathologic findings. Lab Invest. 1981;44:193. [PubMed] [Google Scholar]
  • 32.Mims CA. Immunofluorescene study of the carrier state and mechanism of vertical transmission in lymphocytic choriomeningitis virus infection in mice. Pathol Bacteriol. 1966;91:395. doi: 10.1002/path.1700910214. [DOI] [PubMed] [Google Scholar]
  • 33.Mims CA, Subrahmanyan TP. Immunofluorescence study of the mechanism of resistance to superinfection in mice carrying the lymphocytic choriomeningitis virus. J Pathol Bacteriol. 1966;91:403. doi: 10.1002/path.1700910215. [DOI] [PubMed] [Google Scholar]
  • 34.Mims CA, Wainwright S. The immunodepressive action of lymphocytic choriomeningitis virus in mice. J Immunol. 1968;101:717. [PubMed] [Google Scholar]
  • 35.Minato N, Bloom BR, Jones Ch, Holland J, Reid LM. Mechanism of rejection of virus persistently infected tumor cells by athymic nude mice. J Exp Med. 1979;119:1117. doi: 10.1084/jem.149.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Molomut N, Padnos M, Gross L, Satory V. Inhibition of a transplantable murine leukaemia by a lymphocytopenic virus. Nature. 1964;204:1003. doi: 10.1038/2041003b0. [DOI] [PubMed] [Google Scholar]
  • 37.Moore A. The oncolytic viruses. Prog Exp Tumor Res. 1960;1:411. doi: 10.1159/000385945. [DOI] [PubMed] [Google Scholar]
  • 38.Oldstone MBA, Tishon A, Chiller JM, Weigle WO, Dixon FJ. Effect of chronic viral infection on the immune system: I. comparison of the immune responsiveness of mice chronically infected with LCM virus with that of noninfected mice. J Immunol. 1973;110:1268. [PubMed] [Google Scholar]
  • 39.Popescu M, Löhler J, Lehmann-Grube F. Infectious lymphocytes in lymphocytic choriomeningitis virus carrier mice. J Gen Virol. 1979;42:481. doi: 10.1099/0022-1317-42-3-481. [DOI] [PubMed] [Google Scholar]
  • 40.Quinn TC, Mann JM, Curran JW, Piot P. AIDS in africa: an epidemiologic paradigm. Science. 1986;234:955. doi: 10.1126/science.3022379. [DOI] [PubMed] [Google Scholar]
  • 41.Rogers MF, Morens DM, Stewart JA, et al. National casecontrol study of Kaposi's sarcoma and pneumocystis carinii pneumonia in homosexual men: II. Laboratory results. Ann Intern Med. 1983;99:151. doi: 10.7326/0003-4819-99-2-151. [DOI] [PubMed] [Google Scholar]
  • 42.Roost HP, Charan S, Gobet R, Rüedi E, Hengartner H, Althage A, Zinkernagel RM. An acquired immunodeficiency in mice caused by infection with lymphocytic choriomeningitis virus. Eur J Immunol. 1988;18:511. doi: 10.1002/eji.1830180404. [DOI] [PubMed] [Google Scholar]
  • 43.Schroff R, Gottlieb MS, Prince HE, et al. Immunological studies of homosexual men with immunodeficiency and Kaposi's sarcoma. Clin Immunol Immunopathol. 1983;27:300. doi: 10.1016/0090-1229(83)90083-1. [DOI] [PubMed] [Google Scholar]
  • 44.Shearer GM. AIDS: an autoimmune pathologic model for the destruction of a subset of helper T lymphocytes. Mount Sinai. 1986;53:609. [PubMed] [Google Scholar]
  • 45.Takai Y, Kosugi A, Yoshioka T, Tomita S, Fujiwara H, Hamaoka T. T-T cell interaction in the induction of delayed-type hypersensitivity (DTH) respones: vaccinia virus-reactive helper T cell activity involved in enhanced in vivo induction of DTH responses and its application to augmentation of tumor-specific DTH responses. J Immunol. 1985;134:108. [PubMed] [Google Scholar]
  • 46.Traub E. Persistence of lymphocytic choriomeningitis virus in immune animals and its relation to immunity. J Exp Med. 1936;63:847. doi: 10.1084/jem.63.6.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Traub E. Can LCMV virus cause lymphomatosis in mice? Arch Gesamte Virusforsch. 1962;11:667. doi: 10.1007/BF01243307. [DOI] [PubMed] [Google Scholar]
  • 48.Van Pel A, Boon Th. Protection against a nonimmunogenic mouse leukemia by an immunogenic variant obtained by mutagenesis. Proc Natl Acad Sci USA. 1982;79:4718. doi: 10.1073/pnas.79.15.4718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Walker CM, Moody DJ, Stites DP, Levy JA. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986;234:1563. doi: 10.1126/science.2431484. [DOI] [PubMed] [Google Scholar]
  • 50.Welsh RM, Zinkernagel RM. Heterospecific cytotoxic cells during acute lymphocytic choriomeningitis virus infection. Nature. 1977;268:646. doi: 10.1038/268646a0. [DOI] [PubMed] [Google Scholar]
  • 51.Wheelock EF, Toy ST. Participation of lymphocytes in viral infections. Adv Immunol. 1973;16:123. doi: 10.1016/s0065-2776(08)60297-7. [DOI] [PubMed] [Google Scholar]
  • 52.Wise KS. Vesicular stomatitis virus-infected L1210 murine leukemia cells: increased immunogenicity and altered surface antigens. J Natl Cancer Inst. 1977;58:83. doi: 10.1093/jnci/58.1.83. [DOI] [PubMed] [Google Scholar]
  • 53.Youn JK, Barski G. Interference between lymphocytic choriomeningitis and rauscher leukemia in mice. J Natl Cancer Inst. 1966;37:381. doi: 10.1093/jnci/37.3.381. [DOI] [PubMed] [Google Scholar]
  • 54.Yu AS, Bernstein ID. T helper cells in immune mice amplify the primary anti-tumor cytotoxic response. J Immunol. 1982;129:856. [PubMed] [Google Scholar]
  • 55.Zeigler JL, Stites DP. Hypothesis: AIDS is an autoimmune disease directed at the immune system and triggered by a lymphotropic retrovirus. Clin Immunol Immunopathol. 1986;41:305. doi: 10.1016/0090-1229(86)90001-2. [DOI] [PubMed] [Google Scholar]
  • 56.Zinkernagel RM. Virus triggered AIDS is a T cell mediated immunopathology: prevention by tolerance or by treatment with anti-CD8 antibodies. Immunol Today. 1988;9:370. doi: 10.1016/0167-5699(88)91235-2. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES