Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1990 Mar;32(2):110–116. doi: 10.1007/BF01754207

Interleukin-2-induced lymphoproliferative responses

Alan Winkelstein 1,, Leslie D Weaver 1, Nan Salva 1, Laurie L Machen 1
PMCID: PMC11038427  PMID: 1705176

Abstract

Interleukin-2 (IL-2) is capable of both stimulating an in vitro lymphoproliferative response and augmenting non-major-histocompatibility-complex-(MHC)-restricted cytotoxicity. However, there are conflicting reports about the phenotypes of responding cells. In the present studies, we determined phenotypes of Ficoll/Hypaque-separated peripheral blood mononuclear cells stimulated with 50, 100 or 1000 U/ml IL-2; analyses were performed after 1, 3 and 5 weeks. With all concentrations, there was a progressive increase in CD3+ cells; after 3–5 weeks more than 90% of the cells reacted with this antibody. However, the proportions of CD4+ and CD8+ cells proved to be a function of the IL-2 concentration. Cultures containing 50 U/ml or 100 U/ml favored the expansion of the CD4+ subset. By contrast, in cultures stimulated with 1000 U/ml, CD8+ cells predominated. At baseline, CD8+ cells comprised 28±2%; after 3 weeks, this value increased to 51±5%. In addition, the proportion of CD56+ (Leu19, NKH-1) cells depended on the amount of IL-2. At 50 U/ml, there was no appreciable change in CD56+ cells. However, at 1000 U/ml, CD56+ cells increased from 17±1% (day 0) to 39±4% (3 weeks). This increase was primarily due to an expansion of the CD3+ CD56+ subset (non-NMC restricted cytotoxic T cells). By contrast, natural killer (NK) cells, as measured by the CD16 antibody, steadily declined at all IL-2 concentrations.

Keywords: Cancer Research, Natural Killer, Mononuclear Cell, Peripheral Blood Mononuclear Cell, Progressive Increase

Footnotes

These studies were supported by a grant from the National Cancer Institute, NIH (RO1 CA24429-15)

References

  • 1.Braakman E, Van Tunen A, Meager A, Lucas CJ. IL-2- and IFNγ-enhanced natural cytotoxic activity: analysis of the role of different lymphoid subsets and implications for activation routes. Cell Immunol. 1986;99:476. doi: 10.1016/0008-8749(86)90255-8. [DOI] [PubMed] [Google Scholar]
  • 2.Byrne JA, Butler JL, Cooper MD. Differential activation requirements for virgin and memory T cells. J Immunol. 1988;141:3249. [PubMed] [Google Scholar]
  • 3.Damle NK, Doyle LV, Bradley EC. Interleukin 2-activated human killer cells are derived from phenotypically heterogeneous precursors. J Immunol. 1986;137:2814. [PubMed] [Google Scholar]
  • 4.Ferrini S, Miescher S, Zocchi MR, Von Fliedner V, Moretta A. Phenotypic and functional characterization of recombinant interleukin 2 (rIL-2)-induced activated killer cells: analysis at the population and clonal levels. J Immunol. 1987;138:1297. [PubMed] [Google Scholar]
  • 5.Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. J Exp Med. 1982;155:1823. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Grimm EA, Ramsey KM, Mazumder A, Wilson DJ, Djeu JY, Rosenberg SA. Lymphokine-activated killer cell phenomenon. II. Precursor phenotype is serologically distinct from peripheral T lymphocytes, memory cytotoxic thymus-derived lymphocytes, and natural killer cells. J Exp Med. 1983;157:884. doi: 10.1084/jem.157.3.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Gullberg M, Smith KA. Regulation of T cell autocrine growth. T4+ cells become refractory to interleukin 2. J Exp Med. 1986;163:270. doi: 10.1084/jem.163.2.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Harel-Bellan A, Bertoglio J, Quillet A, Marchiol C, Wakasugi H, Mishall Z, Fradelizi D. Interleukin 2 (IL 2) up-regulates its own receptor on a subset of human unprimed peripheral blood lymphocytes and triggers their proliferation. J Immunol. 1986;136:2463. [PubMed] [Google Scholar]
  • 9.Herberman RB. Lymphokine-activated killer cell activity. Immunol Today. 1987;8:178. doi: 10.1016/0167-5699(87)90035-1. [DOI] [PubMed] [Google Scholar]
  • 10.Holter W, Majdic O, Liszka K, Stockinger H, Knapp W. Kinetics of activation antigen expression by in vitro-stimulated human T lymphocytes. Cell Immunol. 1985;90:322. doi: 10.1016/0008-8749(85)90197-2. [DOI] [PubMed] [Google Scholar]
  • 11.Itoh K, Tilden AB, Kumagai K, Balch CM. Leu-11+ lymphocytes with natural killer (NK) activity are precursors of recombinant interleukin 2 (rIL 2)-induced activated killer (AK) cells. J Immunol. 1985;134:802. [PubMed] [Google Scholar]
  • 12.Kabelitz D, Kirchner H, Armerding D, Wagner H. Recombinant interleukin 2 rapidly augments human natural killer cell activity. Cell Immunol. 1985;93:38. doi: 10.1016/0008-8749(85)90386-7. [DOI] [PubMed] [Google Scholar]
  • 13.Kanar MC, Winkelstein A, Platt D. Naturally occurring cell-medicated cytotoxicity against SV40 3T3 murine tumor cells. J Natl Cancer Inst. 1983;70:267. [PubMed] [Google Scholar]
  • 14.Kronke M, Leonard WJ, Depper JM, Greene WC. Sequential expression of genes involved in human T lymphocyte growth and differentiation. J Exp Med. 1985;161:1593. doi: 10.1084/jem.161.6.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Lanier LL, Le AM, Ding A, Evans EL, Krensky AM, Clayberger C, Phillips JH. Expression of Leu 19 (NKH-1) antigen on IL-2 dependent cytotoxic and non cytotoxic T cell lines. J Immunol. 1983;138:2019. [PubMed] [Google Scholar]
  • 16.Lanier LL, Le AM, Phillips JH, Warner NL, Babcock GF. Subpopulations of human natural killer cells defined by expression of the Leu-7 (HNK-1) and Leu-11 (NK-15) antigens. J Immunol. 1983;131:1789. [PubMed] [Google Scholar]
  • 17.Lanier LL, Benike CJ, Phillips JH, Engleman EG. Recombinant interleukin 2 enhanced natural killer cell-mediated cytotoxicity in human lymphocyte subpopulations expressing the Leu 7 and Leu 11 antigens. J Immunol. 1985;134:794. [PubMed] [Google Scholar]
  • 18.Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu-11) and Leu-19 (NHK-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986;136:4480. [PubMed] [Google Scholar]
  • 19.Lanier LL, Le AM, Cwirla S, Federspiel N, Phillips JH. Antigenic, functional, and molecular genetic studies of human natural killer cells and cytotoxic T lymphocytes not restricted by the major histocompatibility complex. Fed Proc. 1986;45:2823. [PubMed] [Google Scholar]
  • 20.Malek TR, Ashwell JD. Interleukin 2 upregulates expression of its receptor on a T cell clone. J Exp Med. 1985;161:1575. doi: 10.1084/jem.161.6.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Michon JM, Caligiuri MA, Hazanow SM, Levine H, Schlossman SF, Ritz J. Induction of natural killer effectors from human thymus with recombinant IL-2. J Immunol. 1988;140:3660. [PubMed] [Google Scholar]
  • 22.Mookerjee BK, Pauly JL. Human recombinant interleukin-2 is mitogenic to human lymphocytes. J Leukocyte Biol. 1985;38:553. doi: 10.1002/jlb.38.4.553. [DOI] [PubMed] [Google Scholar]
  • 23.Morimoto C, Letvin NL, Distaso JA, Aldrich WR, Schlossman SF. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol. 1985;134:1508. [PubMed] [Google Scholar]
  • 24.Morimoto C, Letvin NL, Boyd AW, Hagan M, Brown HM, Kornacki MM, Schlossman SF. The isolation and characterization of human helper inducer T cell subset. J Immunol. 1985;134:3762. [PubMed] [Google Scholar]
  • 25.Ortaldo JR, Mason A, Overton R. Lymphokine-activated killer cells: analysis of progenitors and effectors. J Exp Med. 1986;164:1193. doi: 10.1084/jem.164.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Phillips JH, Lanier LL. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986;164:814. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Ramsdell FJ, Shau H, Golub SH. Role of proliferation in LAK cell development. Cancer Immunol Immunother. 1988;26:139. doi: 10.1007/BF00205607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Roosnek EE, Brouwer MC, Kipp JB, Aarden LA. Monocytedependent induction of proliferation of human peripheral T cells by recombinant interleukin 2. Eur J Immunol. 1986;16:35. doi: 10.1002/eji.1830160108. [DOI] [PubMed] [Google Scholar]
  • 29.Rosenberg SA, Lotze MT. Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol. 1986;4:681. doi: 10.1146/annurev.iy.04.040186.003341. [DOI] [PubMed] [Google Scholar]
  • 30.Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT, Seipp CA, Simpson C, Reichert CM. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985;313:1485. doi: 10.1056/NEJM198512053132327. [DOI] [PubMed] [Google Scholar]
  • 31.Sanders ME, Makgoba MW, Shaw S. Human naive and memory T cells. Immunol Today. 1988;9:195. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  • 32.Sawada H, Abo T, Sugawara S, Kumagai K. Prerequisite for the induction of lymphokine-activated killer cells from T lymphocytes. J Immunol. 1988;140:3668. [PubMed] [Google Scholar]
  • 33.Smith KA, Cantrell DA. Interleukin 2 regulates its own receptors. Proc Natl Acad Sci USA. 1985;82:864. doi: 10.1073/pnas.82.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Talmadge JE, Wiltrout RH, Counts DF, Herberman RB, McDonald T, Ortaldo JR. Proliferation of human peripheral blood lymphocytes induced by recombinant human interleukin 2: contribution of large granular lymphocytes and T lymphocytes. Cell Immunol. 1986;102:261. doi: 10.1016/0008-8749(86)90420-x. [DOI] [PubMed] [Google Scholar]
  • 35.Taylor DS, Kern JA, Nowell PC. IL-2 alone is mitogenic only for TAC-positive lymphocytes in human peripheral blood. J Immunol. 1986;136:1620. [PubMed] [Google Scholar]
  • 36.Tilden AB, Itoh K, Balch CM. Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells. J Immunol. 1987;138:1068. [PubMed] [Google Scholar]
  • 37.Toribio ML, De Landazuri MO, Lopez-Botet M. Induction of natural killer-like cytotoxicity in cultured human thymocytes. Eur J Immunol. 1983;13:964. doi: 10.1002/eji.1830131203. [DOI] [PubMed] [Google Scholar]
  • 38.Trinchieri G, Matsumoto-Kobayashi M, Clark SC, Seehra J, London L, Perussia B. Response of resting human peripheral blood natural killer cells to interleukin 2. J Exp Med. 1984;160:1147. doi: 10.1084/jem.160.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Umiel T, Saltz-Tal E. Phenotypic analysis of activation antigens on mitogen-stimulated T cells utilizing monoclonal antibodies. In: Reinherz EL, Haynes BF, Nadler LM, Berstein ID, editors. Leukocyte typing: II, vol 1. New York: Springer-Verlag; 1986. pp. 441–451. [Google Scholar]
  • 40.Welte K, Andreeff M, Platzer E, Holloway K, Rubin BY, Moore MAS, Mertelsmann R. Interleukin 2 regulates the expression of TAC antigen on peripheral blood T lymphocytes. J Exp Med. 1984;160:1390. doi: 10.1084/jem.160.5.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.White WB, Ballow M. Modulation of suppressor-cell activity by cimetidine in patients with common variable hypogammaglobulinemia. N Engl J Med. 1985;312:198. doi: 10.1056/NEJM198501243120402. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES