Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1990 Sep 1;31(5):305–311. doi: 10.1007/BF01740939

Active specific immunotherapy with vaccinia colon oncolysate enhances the immunomodulatory and antitumor effects of interleukin-2 and interferon α in a murine hepatic metastasis model

Pedro J Arroyo 1,, Jerry A Bash 1, Marc K Wallack 1
PMCID: PMC11038662  PMID: 2376048

Abstract

The role of cytokines as primary or adjuvant antineoplastic agents has been well established. Interleukin-2 (IL-2) and the interferons have, particularly, proven to be effective antitumor agents when given alone, and seem to act synergistically on the eradication of metastases from immunogenic tumors. Active specific immunotherapy, in the form of viral oncolysates, has also shown effectiveness in cancer therapy. Bearing this in mind, we decided to combine these agents in an adjuvant triple regimen and compare their effectiveness to other treatments in terms of tumor burden and survival in a murine colon cancer hepatic metastases model. BALB/c mice were injected with CC-36, a weakly immunogenic murine colon adenocarcinoma, intrasplenically, to produce artificial liver metastases. The animals were divided into one control group and seven treatment groups receiving either vaccinia colon oncolysate (VCO), IL-2, interferon-α (IFNα) alone, or combinations of these agents. Half the animals were followed for survival and the other half were sacrificed at the end of the experiment for quantification of tumor burden. The blood of the sacrificed animals was utilized in a series of immunological tests in order to demonstrate the cytolytic potential of the peripheral blood lymphocytes (PBL) in each treatment group, as well as to characterize phenotypically the cells acting as effectors. The tripleadjuvant regimen group was by far the most effective treatment group, demonstrating 100% survival and a significant reduction in tumor burden when compared to other groups. Furthermore, the PBL from the animals in this group showed 69.4% lysis of the CC-36 target cells in vitro. These effector lymphocytes were characterized as ASMG1-/Lyt2.2+ cytolytic lymphocytes. We conclude that these lymphocytes were stimulated by the administration of VCO and further augmented by the immunomodulation of the cytokines given in the triple regimen, and that such a regimen might prove beneficial in the treatment of established hepatic metastases from weakly immunogenic tumors.

Keywords: Peripheral Blood Lymphocyte, Hepatic Metastasis, Vaccinia, Cytolytic Activity, Nodule Count

Footnotes

Surgical Oncology Research Fellow, supported by the Julian Rickles Fellowship

References

  • 1.Ansel S, Blangy D. In vivo induction of tumor-specific immunity by glycolipid extracts of SV40-transformed cells. Int J Cancer. 1984;34:555. doi: 10.1002/ijc.2910340419. [DOI] [PubMed] [Google Scholar]
  • 2.Barnavon Y, Iwaki H, Bash JA, Brettschneider F, Hilsenbeck S, Darnell E, Wallack MK. Treatment of murine hepatic metastases with vaccinia colon oncolysates and IL-2. J Surg Res. 1988;45:523. doi: 10.1016/0022-4804(88)90139-4. [DOI] [PubMed] [Google Scholar]
  • 3.Barnavon Y, Iwaki H, Bash JA, Wallack MK. Vaccinia colon oncolysates immunotherapy for murine hepatic metastases can be modulated with low-dose interleukin-2. Am Surg. 1988;54:696. [PubMed] [Google Scholar]
  • 4.Brunda MJ, Bellantoni D, Sulich V. In vivo antitumor activity of combinations of alpha interferon and interleukin-2 in a murine model. Correlation of efficacy with the induction of cytotoxic cells resembling natural killer cells. Int J Cancer. 1987;40:365. doi: 10.1002/ijc.2910400314. [DOI] [PubMed] [Google Scholar]
  • 5.Cameron RB, McIntosh JK, Rosenberg SA. Synergistic antitumor effects of combination immunotherapy with recombinant interleukin-2 and a recombinant hybrid alpha interferon in the treatment of established murine hepatic metastases. Cancer Res. 1988;48:5810. [PubMed] [Google Scholar]
  • 6.Chen BD, Najor F. Macrophage activation by interferon alpha and beta is associated with a loss of proliferative capacity: role of interferon alpha and beta in the regulation of macrophage proliferation and function. Cell Immunol. 1987;106:343. doi: 10.1016/0008-8749(87)90177-8. [DOI] [PubMed] [Google Scholar]
  • 7.Corbett TH, Griswold DP, Robert BJ, Peckman JC, Schabel FM. Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays with a note on carcinogenic structure. Cancer Res. 1975;35:2434. [PubMed] [Google Scholar]
  • 8.Fekete E. A comparative morphological study of the mammary gland in high and low tumor strain in mice. Am J Pathol. 1938;14:557. [PMC free article] [PubMed] [Google Scholar]
  • 9.Fertsch D, Schoenberg DR, Germain RN, Tou JYL, Vogel SN. Induction of macrophage Ia antigen expression by rIFN-gamma and down-regulation by IFN-a/a and dexamethasone are mediated by changes in steady state levels of Ia mRNA. J Immunol. 1987;139:244. [PubMed] [Google Scholar]
  • 10.Fidler IJ, Heicappell R, Saiki I, Grutter G, Horisberger MA, Nuesch J. Direct antiproliferative effect of recombinant human interferon-alpha B/D hybrids on human tumor cell lines. Cancer Res. 1987;47:2020. [PubMed] [Google Scholar]
  • 11.Foon KA. Biological response modifiers: the new immunotherapy. Cancer Res. 1989;49:1621. [PubMed] [Google Scholar]
  • 12.Fujiwara H, Shimizu Y, Takai Y, Wakamiya N, Ueda S, Kato S, Hamaoka T. The augmentation of tumor-specific immunity by virus help. I. Demonstration of vaccinia virus reactive helper T-cell activity involved in enhanced induction of cytotoxic T-lymphocytes and antibody responses. Eur J Immunol. 1984;14:171. doi: 10.1002/eji.1830140212. [DOI] [PubMed] [Google Scholar]
  • 13.Galili N, Mavor B, Asjo B, Klein A. Induction of immune responsiveness in a genetically low-responsive tumor-host combination by chemical modification of immunogen. Eur J Immunol. 1976;6:473. doi: 10.1002/eji.1830060705. [DOI] [PubMed] [Google Scholar]
  • 14.Goldstein D, Laszlo J. Interferon therapy in cancer: from imaginon to interferon. Cancer Res. 1986;46:4315. [PubMed] [Google Scholar]
  • 15.Gresser I. On the varied biologic effects of interferon. Cell Immunol. 1977;34:406. doi: 10.1016/0008-8749(77)90262-3. [DOI] [PubMed] [Google Scholar]
  • 16.Gutterman JU, Blumeschein GR, Alexanian R, Yap HY, Bugdai AU, Cabanillas F, Hortobagui GN, Hersh EM, Rasmussen SL, Harmon M, Kramer M, Pestka S. Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma and malignant lymphoma. Ann Intern Med. 1980;93:399. doi: 10.7326/0003-4819-93-3-399. [DOI] [PubMed] [Google Scholar]
  • 17.Herberman RB, Ortaldo JR, Timonen T, Reynolds CW, Djeu JY, Pestka S, Stanton J. Interferon and natural killer (NK) cells. Texas Rep Biol Med. 1981;41:590. [PubMed] [Google Scholar]
  • 18.Heron I, Hokland M, Berg K. Enhanced expression of beta-2-microglobulin and HLA antigens on human lymphoid cells by interferon. Proc Natl Acad Sci USA. 1981;75:6515. doi: 10.1073/pnas.75.12.6215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Hersey P, Edward A, D'Alessamdro G, MacDonald M. Phase II study of vaccinia melanoma cell lysates (VMCL) as adjuvant to surgical treatment of stage II melanoma. Cancer Immunol Immunother. 1986;22:221. doi: 10.1007/BF00200037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Hicks NJ, Morris AG, Burke DC. Partial reversion of transformed phenotype of murine sarcoma virus-transformed cells in the presence of interferon: a possible mechanism for the antitumor effect of interferon. J Cell Sci. 1981;49:225. doi: 10.1242/jcs.49.1.225. [DOI] [PubMed] [Google Scholar]
  • 21.Iwaki H, Barnavon Y, Bash JA, Wallack MK. Vaccinia virusinfected CC-36 colon tumor cell lysates stimulate cellular responses in vitro and protect syngeneic BALB/c mice from tumor cell challenge. J Surg Oncol. 1989;40:90. doi: 10.1002/jso.2930400207. [DOI] [PubMed] [Google Scholar]
  • 22.Jett JR, Mantovani A, Herberman RB. Augmentation of human monocyte-mediated cytolysis by interferon. Cell Immunol. 1980;540:425. doi: 10.1016/0008-8749(80)90222-1. [DOI] [PubMed] [Google Scholar]
  • 23.Kataoka T, Matsuura N, Oh-hashi F, Suhara Y. Treatment regimen and host T-cell dependent therapeutic effect of interferon in mouse solid tumors. Cancer Res. 1985;45:3548. [PubMed] [Google Scholar]
  • 24.Krigel RL, Padavic-Shaller KA, Rudolph AR, Litwin S, Konrad M, Bradley EC, Comis RL. A phase I study of recombinant interleukin-2 plus recombinant beta interferon. Cancer Res. 1988;48:3875. [PubMed] [Google Scholar]
  • 25.Kuribayashi K, Gillis S, Kern DE, Henney CS. Murine NK cell cultures: effects of interleukin-2 and interferon on cell growth and cytotoxic reactivity. J Immunol. 1981;126:2321. [PubMed] [Google Scholar]
  • 26.Lafreniere R, Rosenberg SA. Adoptive immunotherapy of experimental hepatic metastases with lymphokine-activated killer cells (LAK) and recombinant interleukin-2 can mediate the regression of both immunogenic and non-immunogenic sarcomas and an adenocarcinoma in a murine system. J Immunol. 1985;135:4273. [PubMed] [Google Scholar]
  • 27.Lafreniere R, Rosenberg SA. A novel approach to the generation and identification of experimental hepatic metastases in a murine model. J Natl Cancer Inst. 1986;76:309. [PubMed] [Google Scholar]
  • 28.Lindenman J, Klein PA. Viral oncolysis increased immunogenicity of host cell antigen associated with influenza virus. J Exp Med. 1967;126:93. doi: 10.1084/jem.126.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Lotze MT, Chang AE, Seipp CA, Simpson CG, Vetto JT, Rosenberg SA. High-dose recombinant interleukin-2 in the treatment of patients with disseminated cancer. J Am Med Assoc. 1986;256:3117. doi: 10.1001/jama.1986.03380220083027. [DOI] [PubMed] [Google Scholar]
  • 30.Lotze MT, Matory YT, Rayner AA, Ettingehausen SE, Vetto JT, Seipp CA, Rosenberg SA. Clinical effects and toxicity of interleukin-2 in patients with cancer. Cancer. 1986;58:2764. doi: 10.1002/1097-0142(19861215)58:12<2764::AID-CNCR2820581235>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  • 31.Martin WJ, Wunderlich JR, Fletcher F, Inman JK. Enhanced immunogenicity of chemical coated syngeneic tumor cells. Proc Natl Acad Sci USA. 1971;68:469. doi: 10.1073/pnas.68.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Merigan TC. Human interferon as a therapeutic agent. N Engl J Med. 1988;318:1458. doi: 10.1056/NEJM198806023182208. [DOI] [PubMed] [Google Scholar]
  • 33.Mule JJ, Shu S, Schwarz SL, Rosenberg SA. Successful adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant IL-2. Science. 1984;225:1487. doi: 10.1126/science.6332379. [DOI] [PubMed] [Google Scholar]
  • 34.Quesada JR, Reuben JR, Manning JT. Alpha interferon for induction of remission in hairy cell leukemia. N Engl J Med. 1984;310:15. doi: 10.1056/NEJM198401053100104. [DOI] [PubMed] [Google Scholar]
  • 35.Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938;27:493. [Google Scholar]
  • 36.Rehberg E, Kelder B, Hoal EG, Pestka S. Specific molecular activities of recombinant and hybrid leukocyte interferons. J Biol Chem. 1982;257:11497. [PubMed] [Google Scholar]
  • 37.Rosenberg SA, Mule JJ, Speiss PJ, Reichert CM, Schwarz SL. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin-2. J Exp Med. 1985;161:1169. doi: 10.1084/jem.161.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Rosenberg SA, Speiss PJ, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233:1318. doi: 10.1126/science.3489291. [DOI] [PubMed] [Google Scholar]
  • 39.Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertston CN, Lee RE, Rubin JT, Seipp CA, Simpson CG, White DE. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med. 1987;316:889. doi: 10.1056/NEJM198704093161501. [DOI] [PubMed] [Google Scholar]
  • 40.Rosenberg SA, Schwarz SL, Spiess PJ. Combination immunotherapy for cancer: Synergistic antitumor interactions of interleukin-2, alfa interferon and tumor-infiltrating lymphocytes. J Natl Cancer Inst. 1988;80:1393. doi: 10.1093/jnci/80.17.1393. [DOI] [PubMed] [Google Scholar]
  • 41.Sato N, Michaelides MC, Wallack MK. Characterization of tumorigenicity, mortality, metastasis, and splenomegaly of two cultured murine colon lines. Cancer Res. 1981;41:2267. [PubMed] [Google Scholar]
  • 42.Sato N, Michaelides MC, Wallack MK. Transplantation immunity and cross-protection of two cultured murine colon lines. J Natl Cancer Inst. 1983;70:231. [PubMed] [Google Scholar]
  • 43.Shimizu Y, Fujiwara H, Ueda S, Wakamiya N, Kato S, Hamaoka T. The augmentation of tumor-specific immunity by virus help. II. Enhanced induction of tumor antigens by vaccinia virus-reactive helper T-cells. Eur J Immunol. 1984;14:839. doi: 10.1002/eji.1830140913. [DOI] [PubMed] [Google Scholar]
  • 44.Shimizu Y, Hasumi K, Masubuchi K, Okudaira Y. Immunotherapy of tumor-bearing mice utilizing virus help. Cancer Immunol Immunother. 1988;27:223. doi: 10.1007/BF00205443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Speiss PJ, Yang JC, Rosenberg SA. Tumor infiltrating lymphocytes expanded in recombinant interleukin-2 mediate potent antitumor activity in vivo. J Natl Cancer Inst. 1987;79:1067. [PubMed] [Google Scholar]
  • 46.Spiegel RJ. The alpha interferons: clinical overview. Semin Oncol. 1987;14(Suppl 2):1. [PubMed] [Google Scholar]
  • 47.Takeichi N, Austin FC, Tsuneyuki O, Boone CW. Augmented immunogenicity produced by interferon with influenza virus as compared to Moloney sarcoma virus. Cancer Res. 1978;38:4580. [PubMed] [Google Scholar]
  • 48.Tamura T, Sasaki Y, Shinkai T, Euuchi K, Sakurai M, Fujiwara Y, Nakagawa K, Minato K, Bungo M, Aijo N. Phase I study of combination therapy with interleukin-2 and beta interferon in patients with advanced malignancy. Cancer Res. 1989;49:730. [PubMed] [Google Scholar]
  • 49.Thompson JA, Peace DJ, Klarnet JP, Kern E, Greenberg PD, Cheever MA. Eradication of disseminated murine leukemia by treatment with high-dose interleukin-2. J Immunol. 1986;137:3675. [PubMed] [Google Scholar]
  • 50.Wallack MK. Vaccinia virus augmented vaccines a new form of immunotherapy. GANN Monogr Cancer Res. 1979;23:273. [Google Scholar]
  • 51.Wallack MK, Steplewski Z, Koprowski H, Rosato E, George J, Hullihan B, Johnson J. A new approach in specific active immunotherapy. Cancer. 1977;39:560. doi: 10.1002/1097-0142(197702)39:2<560::AID-CNCR2820390227>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  • 52.Wallack MK, Meyer M, Bourgoin A, Dore JF, Leftheriotis E, Carcagne J, Koprowski H. A preliminary trial of vaccinia oncolysates in the treatment of recurrent melanoma with serologic responses to treatment. J Biol Response Mod. 1983;2:586. [PubMed] [Google Scholar]
  • 53.Wallack MK, McNally KR, Leftheriotis E, Siegler H, Balch C, Wanebo H, Bartolucci A, Bash JA. A Southeastern Cancer Study Group phase I/II trial with vaccinia melanoma oncolysates. Cancer. 1986;57:649. doi: 10.1002/1097-0142(19860201)57:3<649::AID-CNCR2820570342>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  • 54.Wan YJ, Orrison BM, Lieberman R, Lazarovici P, Ozato K. Induction of major histocompatibility class I antigens by interferons in undifferentiated F9 cells. J Cell Physiol. 1987;130:276. doi: 10.1002/jcp.1041300214. [DOI] [PubMed] [Google Scholar]
  • 55.Welsh RM. Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. I. Characterization of natural killer cell induction. J Exp Med. 1978;148:163. doi: 10.1084/jem.148.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES