Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1991 Jul;33(4):203–209. doi: 10.1007/BF01744938

Local immunity and the uterine cervix: Implications for cancer-associated viruses

James K Roche 1,, Christopher P Crum 1
PMCID: PMC11038934  PMID: 1647870

Abstract

Studies of cervical secretions as well as cells composing the endocervix have provided evidence for a functional and potentially important immunological system in the mucosa of that organ. The availability of the tools of cell biology as well as three agents that may be used as probes to infect cervical mucosa experimentally has made possible a detailed approach to define the structural and functional characteristics of local cervical immunity. A long-term goal of these studies is to determine how the cervical immune response may be regulated to reduce local viral replication and virus-associated diseases. With Langerhans cells for antigen presentation, cervical immune responses generally remain detectable for more than 30 days, are predominantly of the IgA isotype, can be influenced by estrogen or progesterone, and are best elicited by local rather than systemic exposure to antigen. Cervical immune responses to the human papillomaviruses (HPV) are of particular importance in this regard because this virus is associated with cervical neoplasia. While responses in serum to HPV-16 proteins L1, E4, and E7 has been found in up to 78% of persons with HPV-associated cervical neoplasms, data showing that a local response of comparable frequency consistently occurs have yet to be confirmed. The current status of local HPV-16-specific immunoglobulin as a potentially useful indicator of HPV-16-related infection or pre-cancer is controversial, and is confounded by several potentially important factors, including patient age, estrogen/progesterone level, smoking status, and sample admixture with serum immunoglobulin.

Key words: Immunity, Cervical cancer, Mucosal immunity, Cancer associated viruses

References

  • 1.Reference deleted
  • 2.Becker J, Behem J, Loning TH, Reichart P, Geerlings H. Quantitative analysis of immunocompetent cells in human normal oral and uterine cervical mucosa, oral papillomavirus and leukoplakias. Arch Oral Biol. 1985;30:257–264. doi: 10.1016/0003-9969(85)90042-1. [DOI] [PubMed] [Google Scholar]
  • 3.Boshart M, Gissman L, Ikenberg H, Kleinheinz A, Scheurlen W, Zur Hausen H. A new type of papillomavirus DNA and its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 1984;3:1151–1157. doi: 10.1002/j.1460-2075.1984.tb01944.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Broker TR, Chow MT, Chin MT, Rhodes CR, Wolinsky SM, Whitbech H, Stoler M (1990) A molecular portrait of human papillomavirus carcinogenesis. In: Cancer cells. Cold Spring Harbor Laboratory, pp 197–207
  • 5.Reference deleted
  • 6.Chipperfield EJ, Evans BA. The influence of local infection on immunoglobulin formation in the human endocervix. Clin Exp Immunol. 1972;11:219–223. [PMC free article] [PubMed] [Google Scholar]
  • 7.Crum CP, Ikenberg H, Richart RM, Gissman L. Human papillomavirus type and early cervical neoplasia. N Engl J Med. 1984;310:880–883. doi: 10.1056/NEJM198404053101403. [DOI] [PubMed] [Google Scholar]
  • 8.De Villiers E-M, Weidauer H, Otto H, Zur Hausen H. Papillomavirus DNA in human tongue carcinomas. Int J Cancer. 1985;36:575–578. doi: 10.1002/ijc.2910360510. [DOI] [PubMed] [Google Scholar]
  • 9.Dillner J, Dillner L, Robb J, Willems J, Jones I, Lancaster W, Smith R, Lerner R. A synthetic peptide defines a serologic IgA response to a human papillomavirus-encoded nuclear antigen expressed in virus-carrying cervical neoplasia. Proc Natl Acad Sci USA. 1989;86:3838–3841. doi: 10.1073/pnas.86.10.3838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Dillner J, Dillner L, Utter G, Eklund C, Rotola A, Costa S, Diluca D. Mapping of linear epitopes of human papillomavirus type 16: the L1 and L2 open reading frames. Int J Cancer. 1990;45:529–535. doi: 10.1002/ijc.2910450326. [DOI] [PubMed] [Google Scholar]
  • 11.Dillner L, Bekassy Z, Jonsson N, Moreno-Lopez J, Blomberg J. Detection of IgA antibodies against human papillomavirus in cervical secretions from patients with cervical intraepithelial neoplasia. Int J Cancer. 1989;43:36–40. doi: 10.1002/ijc.2910430109. [DOI] [PubMed] [Google Scholar]
  • 12.Durst M, Gissman L, Ikenberg H, Zur Hausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA. 1983;80:3812–3815. doi: 10.1073/pnas.80.12.3812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Eisen HN. Immunoglobulins and immunoglobulin genes. In: Eisen HN, editor. General immunology. Philadelphia: Lippincott; 1990. p. 78. [Google Scholar]
  • 14.Firzlaff JM, Kiviat NB, Beckmann AM, Jenison SA, Galloway DA. Detection of human papillomavirus capsid antigens in various squamous epithelial lesions using antibodies directed against the L1 and L2 open reading frames. Virology. 1988;164:467–477. doi: 10.1016/0042-6822(88)90561-2. [DOI] [PubMed] [Google Scholar]
  • 15.Gissman L, Wolnick L, Ikenberg H, Koldovsky U, Schnurch HG, Zur Hausen H. Human papillomavirus type 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proc Natl Acad Sci USA. 1983;80:560–563. doi: 10.1073/pnas.80.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Hart DNJ, Fabre JW. Demonstration and characterization of Ia-positive dandritic cells in the interstitial connective tissue of rat heart and other tissues, but not brain. J Exp Med. 1981;153:347–361. doi: 10.1084/jem.154.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Head JR, Billingham RE. Concerning the immunology of the uterus. Am J Reprod Immunol. 1986;10:76–81. [PubMed] [Google Scholar]
  • 18.Reference deleted
  • 19.Jenison SA, Yu X-P, Valentine JM, Koutsky LA, Christeansen AE, Beckmann AM, Galloway DA. Evidence of prevalent genitaltype human papillomavirus infections in adults and children. J Infect Dis. 1990;162:60–69. doi: 10.1093/infdis/162.1.60. [DOI] [PubMed] [Google Scholar]
  • 20.Kutteh WH, Hatch KD, Blackwell RE, Mestecky J. Secretory immune system of the female reproductive tract: I. Immunoglobulin and secretory component-containing cells. Obstet Gynecol. 1988;71:56–60. [PubMed] [Google Scholar]
  • 21.Lentinen M, Parkkonen P, Luoto H, Yla-outin A, Romppanaen U, Rantala I, Paavanen J. Anti-peptide IgA antibody to a human papillomavirus type 16 E2 — derived synthetic peptide prediat the natural history of cervical HPV infection. In: Monsonego J, editor. Seron symposia 18. New York: Ravin Press; 1990. p. 509. [Google Scholar]
  • 22.Lorincz AT, Temple GF, Patterson JA, et al. Correlation of cellular atypia and human papillomavirus DNA sequences in exfoliated cells of the uterine cervix. Obstet Gynecol. 1986;68:508–512. [PubMed] [Google Scholar]
  • 23.Mayer L, Shlien R. Evidence for function of Ia molecules on gut epithelial cells in man. J Exp Med. 1987;166:1471–1483. doi: 10.1084/jem.166.5.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.McDermott MR, Smiley JR, Leslie P, Brais J, Rudzroga HE, Bienstock J. Immunity in the female genital tract after intravaginal vaccination of mice with an attenuated strain of herpes simplex virus type 2. J Virol. 1984;51:747–753. doi: 10.1128/jvi.51.3.747-753.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.McDonnell JM, Mayr AJ, Martin WJ. DNA of human papillomavirus type 16 in dysplastic and malignant lesions of the conjunctiva and cornea. N Engl J Med. 1989;320:1442–1446. doi: 10.1056/NEJM198906013202202. [DOI] [PubMed] [Google Scholar]
  • 26.Merriman H, Woods S, Winter C, Fahnlander A, Corey C. Secretory IgA antibody in cervicovaginal secretions from women with genital infection due to herpes simplex virus. J Infect Dis. 1984;149:505–510. doi: 10.1093/infdis/149.4.505. [DOI] [PubMed] [Google Scholar]
  • 27.Moy RL, Elierzri YD, Nuovo GJ, Zitelli JA, Bennett RG, Silverstein SJ. Human papillomavirus type 16 DNA in periungual squamous cell carcinomas. JAMA. 1989;261:2669–2673. [PubMed] [Google Scholar]
  • 28.Murdoch AJM, Buckley CH, Fox H. Hormonal control of the secretory immune system of the human cervix. J Reprod Immunol. 1982;4:23–30. doi: 10.1016/0165-0378(82)90020-1. [DOI] [PubMed] [Google Scholar]
  • 29.Nuovo GJ, Pedemonte BM. Human papillomavirus types and recurrent cervical warts. JAMA. 1990;263:1223–1226. [PubMed] [Google Scholar]
  • 30.Nuovo GH, Darfler MM, Impraim CC, Bromley SE. Occurrence of multiple types of human papillomavirus in genital tract lesions: analysis by in-situ hybridization and the polymerase chain reaction. Am J Path. 1991;138:53–58. [PMC free article] [PubMed] [Google Scholar]
  • 31.Ogra PL, Ogra SS. Local antibody response to poliovaccine in the human female genital tract. J Immunol. 1973;110:1307–1311. [PubMed] [Google Scholar]
  • 32.Ogra PL, Yamanaka T, Losonsky GA (1981) Local immunologic defenses in the genital tract. Reprod Immunol 381–394 [PubMed]
  • 33.O'Reilly RJ, Lee L, Welch BG. Secretory IgA antibody responses toneisseria gonorrhoeae in the genital secretions of infected females. J Infect Dis. 1976;133:113–125. doi: 10.1093/infdis/133.2.113. [DOI] [PubMed] [Google Scholar]
  • 34.Richart RM, Townsend DE, Crisp W, et al. An analysis of “long term” follow up results in patients with cervical intraepithelial neoplasia treated by cryotherapy. Am J Obstet Gynecol. 1980;137:823. doi: 10.1016/0002-9378(80)90892-3. [DOI] [PubMed] [Google Scholar]
  • 35.Roncalli M, Sideri M, Paolo G, Servida E. Immunophenotypic analysis of the transformation zone of human cervix. Lab Invest. 1988;58:141–149. [PubMed] [Google Scholar]
  • 36.Schumacher GFB, Kim MH, Hosseinian AH, Dupon C. Immunoglobulins, proteinase inhibitors, albumin, and lysozyme in human cervical mucus. Am J Obstet Gynecol. 1977;129:624–635. doi: 10.1016/0002-9378(77)90644-5. [DOI] [PubMed] [Google Scholar]
  • 37.Smotkin D, Gerek JS, Fu YS, Hacker NF, Major FJ, Wettstein FO. Human papillomavirus deoxyribonucleic acid in adenocarcinoma and adenosquamous carcinoma of the uterine cervix. Obstet Gynecol. 1986;68:241–244. [PubMed] [Google Scholar]
  • 38.Barber S, Snyder R, Crum C, Roche J. Binding by immunoglobulin in cervical secretions to purified macromolecules E4, E1 and L1 coded by the human papillomavirus 16 genome. FASEB. 1990;4:2906. [Google Scholar]
  • 39.Stoler MH, Walker AN, Mills SE (1989) Small cell neuroendocrine carcinoma of the cervix: a human papillomavirus type 18 associated cervical cancer. Lab Invest 60: 92A [DOI] [PubMed]
  • 40.Wira CR, Sandoe CP. In: Origin of IgA and IgG antibodies in the female reproductive tract: regulation of the genital response by estradiol. Recent advances in mucosal immunology: part I. Cellular interactions. Mestercky J, editor. New York: Plenum Press; 1986. p. 403. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES