Skip to main content
Cancer Immunology, Immunotherapy : CII logoLink to Cancer Immunology, Immunotherapy : CII
. 1994 Mar;39(2):84–92. doi: 10.1007/BF01525313

Clinical and immunological effects of human recombinant interleukin-2 given by repetitive weekly infusion to normal dogs

Stuart C Helfand 1,2,, Steve A Soergel 1,2, Peter S MacWilliams 3,2, Jacquelyn A Hank 4,5, Paul M Sondel 4,6,7,5
PMCID: PMC11038981  PMID: 8044833

Abstract

Four normal adult dogs received two consecutive weekly cycles of human recombinant interleukin-2 (IL-2) by continuous infusion for 4 days/week. The dose of IL-2 given to each dog was 3×106 units m−2 day−1. Toxicities consisted of mild vomiting, diarrhea, and lethargy to varying degrees in all the dogs. These side-effects were reversed when the treatment was discontinued. Fever, tachypnea, and weight gain were not seen. A marked lymphocytosis and eosinophilia developed in all dogs after completion of each course of IL-2 (resulting in a more than sevenfold increase in each cell type) and persisted for more than 1 month in some. Fresh peripheral blood lymphocytes (PBL) obtained during this lymphocytosis mediated enhanced in vitro lysis of a natural-killer-cell-sensitive canine tumor cell line (CTAC). The in vitro proliferative responses of these same PBL to IL-2 could be detected earlier, progressed faster, and involved more cells than PBL tested prior to IL-2 infusion. Thus, a relatively well-tolerated regime of IL-2 in dogs can induce dramatic increases in lymphocyte numbers and activation, which is associated with augmentation of their in vitro antitumor reactivity. The clinical effectiveness of this immunotherapeutic approach remains to be tested in tumor-bearing dogs where it could serve as a relevant large-animal model for immunotherapy of cancer with IL-2.

Key words: Canine, Cytotoxicity, Interleukin-2, Invivo, Infusion, Lymphocyte

Footnotes

This work was supported by grants from the University of Wisconsin Graduate School. University of Wisconsin School of Veterinary Medicine Companion Animal Fund, NIH CA-32685, CM-87290, and American Cancer Society CH-237

References

  • 1.Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest. 1968;21:77. [PubMed] [Google Scholar]
  • 2.Cain GR, Kawakami T, Taylor N, Champlin R. Effects of administration of recombinant human interleukin-2 in dogs. Comp Haematol Int. 1992;2:201. [Google Scholar]
  • 3.Da Pozzo LF, Hough KL, Holder WD., Jr Toxicity and immunologic effects of continuous infusion of recombinant human interleukin-2 administered by selective hepatic perfusion in dogs. Surgery. 1992;111:326. [PubMed] [Google Scholar]
  • 4.Davis L, Vida R, Lipsky PE. Regulation of human T lymphocyte mitogenesis by antibodies to CD3. J Immunol. 1986;137:3758. [PubMed] [Google Scholar]
  • 5.Del Prete GF, De Carli M, Mastromauro C, Biagiotti R, Macchia D, Falagiani P, Ricci M, Romagnani S. Purified protein derivative ofMycobacterium tuberculosis and excretory-secretory antigen(s) ofToxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest. 1991;88:346. doi: 10.1172/JCI115300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Enokihara H, Furusawa S, Nakakubo H, Kajitani H, Nagashima S, Saito K, Shishido H, Hitoshi Y, Takatsu K, Noma T, Shimizu A, Honjo T. T cells from eosinophilic patients produce interleukin-5 with interleukin-2 stimulation. Blood. 1989;73:1809. [PubMed] [Google Scholar]
  • 7.Ettinghausen SE, Lipford EHI, Mule JJ, Rosenberg SA. Systemic administration of recombinant interleukin-2 stimulates in vivo lymphoid cell proliferation in tissues. J Immunol. 1985;135:1488. [PubMed] [Google Scholar]
  • 8.Ettinghausen SE, Moore JG, White DE, Plantanias L, Young NS, Rosenberg SA. Hematologic effects of immunotherapy with lymphokine-activated-killer cells and recombinant interleukin-2 in cancer patients. Blood. 1987;69:1654. [PubMed] [Google Scholar]
  • 9.Fisher RI, Coltman CA, Doroshow JH, Rayner AA, Hawkins MJ, Mier JW, Wiernik P, McMannis JD, Weiss RG, Margolin KA, Gemlo BT, Hoth DF, Parkinson DR, Paietta E. Metastatic renal cancer treated with interleukin-2 and lymphokine-activated killer cells. Ann Int Med. 1988;108:518. doi: 10.7326/0003-4819-108-4-518. [DOI] [PubMed] [Google Scholar]
  • 10.Gebhard DH, Carter DB. Identification of canine T-lymphocyte subsets with monoclonal antibodies. Vet Immunol Immunopathol. 1992;33:187. doi: 10.1016/0165-2427(92)90181-o. [DOI] [PubMed] [Google Scholar]
  • 11.Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. The lymphokine activated killer cell phenomenon: lysis of NK resistant fresh solid tumor cells by IL-2 activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155:1823. doi: 10.1084/jem.155.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hank JA, Kohler PC, Weil-Hillman G, Rosenthal N, Moore KH, Storer B, Minkoff D, Bradshaw J, Bechhofer R, Sondel PM. In vivo induction of the lymphokine-activated killer phenomenon: interleukin-2-dependent human non-major histocompatibility complex-restricted cytotoxicity generated in vivo during administration of human recombinant interleukin-2. Cancer Res. 1988;48:1965. [PubMed] [Google Scholar]
  • 13.Hank JA, Robinson RR, Surfus J, Mueller BM, Reisfeld RA, Cheung NK, Sondel PM. Augmentation of antibody-dependent cell mediated cytotoxicity following in vivo therapy with recombinant interleukin 2. Cancer Res. 1990;50:5234. [PubMed] [Google Scholar]
  • 14.Hank JA, Weil-Hillman G, Surfus JE, Sosman JA, Sondel PM. Addition of interleukin-2 in vitro augments detection of lymphokine-activated killer activity generated in vivo. Cancer Immunol Immunother. 1990;31:53. doi: 10.1007/BF01742496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Harris C, Pierce K, King G, Yates KM, Hall J, Tizard I. Efficacy of acemannan in treatment of canine and feline spontaneous neoplasms. Mol Biother. 1991;3:207. [PubMed] [Google Scholar]
  • 16.Helfand SC, Modiano JF, Nowell PC. Immunophysiological studies of interleukin-2 and canine lymphocytes. Vet Immunol Immunopathol. 1992;33:1. doi: 10.1016/0165-2427(92)90030-t. [DOI] [PubMed] [Google Scholar]
  • 17.Helfand SC, Soergel SA, Hank JA, Sondel PM (1994) Induction of lymphokine-activated killer (LAK) activity in canine lymphocytes with low dose human recombinant interleukin-2 in vitro. Cancer Biother, in press [DOI] [PubMed]
  • 18.Jardine JH, Jackson IIJ, Lotzova E, Savary CA, Small SM. Tumoricidal effect of interleukin-2-activated killer cells in canines. Vet Immunol Immunopathol. 1989;21:153. doi: 10.1016/0165-2427(89)90063-9. [DOI] [PubMed] [Google Scholar]
  • 19.Kawase I, Brooks CG, Kuribayashi K, Olabuenaga S, Newman W, Gillis S, Henney CS. Interleukin-2 induces γ-interferon production: participation of macrophages and NK-like cells. J Immunol. 1983;131:288. [PubMed] [Google Scholar]
  • 20.Kohler PC, Hank JA, Moore KH, Storer B, Bechhofer R, Sondel PM. Phase I clinical evaluation of recombinant interleukin-2. In: Truitt RL, Gale RP, Bortin MM, editors. Cellular immunotherapy of cancer. New York: Liss; 1987. p. 161. [PubMed] [Google Scholar]
  • 21.Kohler PC, Hank JA, Moore KH, Storer B, Bechhofer R, Hong R, Sondel PM. Phase I clinical trial of recombinant interleukin-2: a comparison of bolus and continuous intravenous infusion. Cancer Invest. 1989;7:213. doi: 10.3109/07357908909039840. [DOI] [PubMed] [Google Scholar]
  • 22.Kovach JS, Gleich GJ. Eosinophilia and fluid retention in systemic administration of interleukin-2. J Clin Oncol. 1986;4:86. doi: 10.1200/JCO.1986.4.5.815. [DOI] [PubMed] [Google Scholar]
  • 23.Krakowka S. Natural killer cell activity in adult gnotobiotic dogs. Am J Vet Res. 1983;44:635. [PubMed] [Google Scholar]
  • 24.Laterniere R, Rosenberg SA. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin-2. Cancer Res. 1985;45:3735. [PubMed] [Google Scholar]
  • 25.Leo O, Foo M, Sachs DH, Samelson LE, Bluestone JA. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci USA. 1987;84:1374. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Leonard WJ, Depper JM, Crabtree JR, Rudikoff S, Pumphrey J, Robb RJ, Kronke M, Svetlik PB, Peffer NJ, Waldmann TA, Greene WC. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature. 1984;311:626. doi: 10.1038/311626a0. [DOI] [PubMed] [Google Scholar]
  • 27.Lewis DE, Rickman WJ. Methodology and quality control for flow cytometry. In: Rose NR, De Macario EC, Fahey J, Friedman H, Penn GM, editors. Manual of clinical laboratory immunology. Washington, DC: American Society for Microbiology; 1992. p. 157. [Google Scholar]
  • 28.Lotzova E, Savary CA, Schachner JR, Huh JO, McCredie K. Generation of cytotoxic NK cells in peripheral blood and bone marrow of patients with acute myelogenous leukemia after continuous infusion with recombinant interleukin-2. Am J Hematol. 1991;37:88. doi: 10.1002/ajh.2830370206. [DOI] [PubMed] [Google Scholar]
  • 29.Loughran TP, Jr, Deeg HJ, Storb R. Morphologic and phenotypic analysis of canine natural killer cells: evidence for T-cell lineage. Cell Immunol. 1985;95:207. doi: 10.1016/0008-8749(85)90309-0. [DOI] [PubMed] [Google Scholar]
  • 30.MacEwen EG, Kurzman ID, Rosenthal RC, Smith BW, Manley PA, Roush JK, Howard PE. Therapy for osteosarcoma in dogs with intravenous injection of liposome-encapsulated muramyl tripeptide. J Natl Cancer Inst. 1989;81:935. doi: 10.1093/jnci/81.12.935. [DOI] [PubMed] [Google Scholar]
  • 31.MacEwen EG, Patnaik AK, Harvey HJ, Hayes AA, Matus R. Canine oral melanoma: comparison of surgery versus surgery plusCorynebacterium paryum . Cancer Invest. 1986;4:397. doi: 10.3109/07357908609017520. [DOI] [PubMed] [Google Scholar]
  • 32.Malkovsky M, Loveland B, North M, Asherson GL, Liquan G, Ward P, Fiers W. Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature. 1987;325:262. doi: 10.1038/325262a0. [DOI] [PubMed] [Google Scholar]
  • 33.Mazumder A, Rosenberg SA. Successful immunotherapy of natural killer-resistant established pulmonary metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin-2. J Exp Med. 1984;159:495. doi: 10.1084/jem.159.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Meuer SC, Hodgdon JC, Hussey RE, Protentis JP, Schlossman SF, Reinherz EL. Antigen-like effects of monoclonal antibodies directed at receptors on human T cell clones. J Exp Med. 1983;158:988. doi: 10.1084/jem.158.3.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Moore AS, Theilen GH, Newell AD, Madewell BR, Rudolf AR. Preclinical study of sequential tumor necrosis factor and interleukin 2 in the treatment of spontaneous canine neoplasms. Cancer Res. 1991;51:233. [PubMed] [Google Scholar]
  • 36.Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrow. Science. 1976;193:1007. doi: 10.1126/science.181845. [DOI] [PubMed] [Google Scholar]
  • 37.Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  • 38.Mule JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science. 1984;225:1487. doi: 10.1126/science.6332379. [DOI] [PubMed] [Google Scholar]
  • 39.Munn DH, Cheung NK. Interluekin-2 enhancement of monoclonal antibody mediated cellular cytotoxicity against human melanoma. Cancer Res. 1987;47:6600. [PubMed] [Google Scholar]
  • 40.Perez EA, Scudder SA, Meyers FA, Tanaka MS, Paradise C, Gandara DR. Weekly 24-hour continuous infusion interleukin-2 for metastatic melanoma and renal cell carcinoma: a phase 1 study. J Immunother. 1991;10:57. doi: 10.1097/00002371-199102000-00008. [DOI] [PubMed] [Google Scholar]
  • 41.Phillips JH, Lanier LL. Dissection of the lymphokine-activated killer phenomenon: relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med. 1986;164:814. doi: 10.1084/jem.164.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Reem GH, Yeh N-H. Interleukin-2 regulates expression of its receptor and synthesis of gamma interferon by human T lymphocytes. Science. 1985;225:429. doi: 10.1126/science.6429853. [DOI] [PubMed] [Google Scholar]
  • 43.Rosenberg SA. Immunotherapy of patients with advanced cancer using interleukin-2 alone or in combination with lymphokine activated killer cells. In: DeVita VT, Hellman S, Rosenberg SA, editors. Important advances in oncology 1988. Philadelphia: Lippincott; 1988. p. 217. [PubMed] [Google Scholar]
  • 44.Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Vetto JT, Seipp CA, Simpson C. A new approach to the therapy of cancer based on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2. Surgery. 1986;100:262. [PubMed] [Google Scholar]
  • 45.Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA, White DE. Experience with the use of high-dose interleukin-2 in the treatment of 652 human cancer patients. Ann Surg. 1989;210:474. doi: 10.1097/00000658-198910000-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Sedgwick JB, Frick WE, Sondel PM, Hank JA, Borden E, Busse WW. The appearance of hypodense eosinophils during interleukin-2 treatment. J Allergy Clin Immunol. 1990;85:557. doi: 10.1016/0091-6749(90)90093-j. [DOI] [PubMed] [Google Scholar]
  • 47.Shi F, MacEwen EG, Kurzman ID. In vitro and in vivo effects of doxorubicin combined with liposome-encapsulated muramyl tripeptide on canine monocyte activation. Cancer Res. 1993;53:3986. [PubMed] [Google Scholar]
  • 48.Shiloni E, Eisenthal A, Sachs D, Rosenberg SA. Antibody-dependent cellular cytotoxicity mediated by murine lymphocytes activated with recombinant interleukin-2. J Immunol. 1987;138:1991. [PubMed] [Google Scholar]
  • 49.Siegel JP, Sharon M, Smith PL, Leonard WJ. The IL-2 receptor β chain (p70): role in mediating signals for LAK, NK, and proliferative activities. Science. 1987;238:75. doi: 10.1126/science.3116668. [DOI] [PubMed] [Google Scholar]
  • 50.Smith KA. Interleukin-2: inception, impact, and implications. Science. 1988;240:1169. doi: 10.1126/science.3131876. [DOI] [PubMed] [Google Scholar]
  • 51.Smith KA, Cantrell DA. Interleukin 2 regulates its own receptors. Proc Natl Acad Sci USA. 1985;82:864. doi: 10.1073/pnas.82.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Sondel PM, Kohler PC, Hank JA, Moore KH, Rosenthal NS, Sosman JA, Bechhofer R, Storer B. Clinical and immunological effects of recombinant interleukin-2 given by repetitive weekly cycles to patients with cancer. Cancer Res. 1988;48:2561. [PubMed] [Google Scholar]
  • 53.Sosman JA, Kohler PC, Hank J, Moore KA, Bechhofer R, Storer B, Sondel PM. Repetitive weekly cycles of recombinant human interleukin-2: responses of renal cell carcinoma with acceptable toxicity. J Natl Cancer Inst. 1988;80:60. doi: 10.1093/jnci/80.1.60. [DOI] [PubMed] [Google Scholar]
  • 54.Transy C, Moingeon PE, Marshall B, Stebbins C, Reinherz EL. Most murine anti human CD3 mAb recognize the human CD3ɛ subunit. In: Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, von dem Borne AEGK, editors. Leukocyte typing IV. White cell differentiation antigens. Oxford: Oxford University Press; 1989. p. 293. [Google Scholar]
  • 55.Tunnacliffe A, Olsson C, Traunecker A, Krissansen GW, Karjalainen K, De La Hera A. The majority of CD3 epitopes are conferred by the epsilon chain. In: Knapp W, Dorken B, Gilks WR, Rieber EP, Schmidt RE, Stein H, von dem Borne AEGK, editors. Leukocyte typing IV: White cell differentiation antigens. Oxford: Oxford University Press; 1989. p. 295. [Google Scholar]
  • 56.Weller PF. The immunobiology of eosinophils. N Engl J Med. 1991;324:1110. doi: 10.1056/NEJM199104183241607. [DOI] [PubMed] [Google Scholar]
  • 57.Yachie A, Miyawaki T, Uwadana N, Ohzeki S, Taniguchi N. Sequential expression of T cell activation (Tac) antigen and Ia determinants on circulating human T cells after immunization with tetanus toxoid. J Immunol. 1983;131:731. [PubMed] [Google Scholar]

Articles from Cancer Immunology, Immunotherapy : CII are provided here courtesy of Springer

RESOURCES