Abstract
Direct intratumoral injection of interleukin-2 (IL-2) was evaluated in a murine model. Balb/c mice received 5 × 104 Line 1 alveolar carcinoma cells (L1C2) by subcutaneous injection. On the third day following tumor implantation, mice received injections of IL-2 (5 × 103−5 × 104 units) or diluent twice daily, either by i. p. or intratumoral injection, 5 days/week for 3 weeks. Intratumoral injection of 5 × 104 units IL-2 significantly reduced tumor volume (P <0.05 versus control), increased median survival time (P = 0.0001), and resulted in a 23.5% cure rate (P = 0.008). There were no long-term survivors in the other treatment groups. Both tumor-infiltrating lymphocytes (TIL) and splenic lymphocytes isolated directly from IL-2-treated mice demonstrated enhanced cytolytic activity compared to diluent-treated controls. To determine whether non-T-cell-mediated antitumor responses were active in our model, intratumoral immunotherapy was evaluated in athymic Balb/cnu/nu mice. In order to decrease the recruitment of lymphocyte precursors, nude mice were splenectomized and received cyclophosphamide prior to tumor injection and IL-2 therapy. Intratumoral IL-2 immunotherapy also significantly decreased tumor volume in these immunodeficient mice (P <0.02), but did not lead to long-term survival. We conclude that both TIL and splenic lymphocytes are activated in vivo in response to intratumoral IL-2 immunotherapy, suggesting that intratumoral therapy with IL-2 activates both local and systemic antitumor responses.
Key words: Interleukin-2, Immunotherapy, Tumorinfiltrating lymphocytes
Footnotes
Supported by the Tobacco-Related Disease Research Program of the University of California, the Cancer Research Coordinating Committee, the Jonsson Cancer Center Foundation, and Veterans Administration Medical Research Funds
References
- 1.Anderson TM, Ibayashi Y, Tokuda Y, Colquhoun SD, Holmes EC, Golub SH. Effects of systemic recombinant interleukin-2 on natural killer and lymphokine-activated killer cell activity of human tumor-infiltrating lymphocytes. Cancer Res. 1988;48:1180. [PubMed] [Google Scholar]
- 2.Asher AL, Mule JJ, Kasid A, Restifo NP, Salo JC, Reichert CM, Jaffe G, Fendly B, Kriegler M, Rosenberg SA. Murine tumor cells transduced with the gene for tumor necrosis factor-α: evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol. 1991;146:3227. [PMC free article] [PubMed] [Google Scholar]
- 3.Belldegrun A, Kasid A, Uppenkamp M, Topalian SL, Rosenberg SA. Human tumor-infiltrating lymphocytes: analysis of lymphokine mRNA expression and relevance to cancer immunotherapy. J Immunol. 1989;142:4520. [PubMed] [Google Scholar]
- 4.Cameron RB, Spiess PJ, Rosenberg SA. Synergistic antitumor activity of tumor-infiltrating lymphocytes, interleukin-2, and local tumor irradiation. J Exp Med. 1990;171:249. doi: 10.1084/jem.171.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Chouaib S, Bertoglio J, Blay J, Marchiol-Fournigault C, Fradelizi D. Generation of lymphokine activated killer cells: synergy between tumor necrosis factor and interleukin-2. Proc Natl Acad Sci USA. 1988;85:6875. doi: 10.1073/pnas.85.18.6875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Dubinett SM, Kurnick JT, Kradin RL. Adoptive immunotherapy of murine pulmonary metastases with interleukin-2 and inter-feron-gamma. Am J Respir Cell Mol Biol. 1989;1:361. doi: 10.1165/ajrcmb/1.5.361. [DOI] [PubMed] [Google Scholar]
- 7.Economou JS, McBride WH, Essner R, Rhoades K, Golub S, Holmes EC, Morton DL. Tumor necrosis factor production by interleukin-2-activated macrophages in vitro and in vivo. Immunology. 1989;67:514. [PMC free article] [PubMed] [Google Scholar]
- 8.Esumi N, Hunt B, Itaya T, Frost P. Reduced tumorigenicity of murine tumor cells secreting gamma interferon is due to nonspecific host responses and is unrelated to class I major histocompatibility complex expression. Cancer Res. 1991;51:1185. [PubMed] [Google Scholar]
- 9.Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Vogelstein B, Frost P. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell. 1990;60:397. doi: 10.1016/0092-8674(90)90591-2. [DOI] [PubMed] [Google Scholar]
- 10.Forni G, Giovarelli M, Santoni A. Lymphokine-activated tumor inhibition in vivo: I. The local administration of interleukin-2 triggers nonreactive lymphocytes from tumor-bearing mice to inhibit tumor growth. J Immunol. 1985;134:1305. [PubMed] [Google Scholar]
- 11.Forni G, Cavallo GP, Giovarelli M, Benetton G, Jemma C, Bariologio MG, DeStefani A, Forni GP, Santoni A, Modesti A, Cortisina G. Tumor immunotherapy by local injection of interleukin-2 and non-reactive lymphocytes. Prog Exp Tumor Res. 1988;32:187. doi: 10.1159/000414679. [DOI] [PubMed] [Google Scholar]
- 12.Fraker DL, Langstein HN, Norton JA. Passive immunization against tumor necrosis factor partially abrogates interleukin-2 toxicity. J Exp Med. 1989;170:1015. doi: 10.1084/jem.170.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E. Retroviral vector-mediated γ-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res. 1990;50:7820. [PubMed] [Google Scholar]
- 14.Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E. Interleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990;172:1217. doi: 10.1084/jem.172.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Gaynor ER, Vitek L, Sticklin L, Creekmore SP, Ferrano ME, Thomas JX, Fisher RI. The hemodynamic effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann Int Med. 1988;109:953. doi: 10.7326/0003-4819-109-12-953. [DOI] [PubMed] [Google Scholar]
- 16.Golumbek P, Lazenby A, Levitsky H, Jaffee L, Karasuyama H, Baker M, Pardoll D. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991;254:713. doi: 10.1126/science.1948050. [DOI] [PubMed] [Google Scholar]
- 17.Insner JM, Dietz WA. Cardiovascular consequences of recombinant DNA technology: interleukin-2. Ann Int Med. 1988;109:933. doi: 10.7326/0003-4819-109-12-933. [DOI] [PubMed] [Google Scholar]
- 18.Kradin RL, Boyle SA, Preffer FI, Callahan RJ, Barlai-Kovach M, Strauss HW, Dubinett SM, Kurnick JT. Tumor-derived interleukin-2-dependent lymphocytes in adoptive immunotherapy of lung cancer. Cancer Immunol Immunother. 1987;24:76. doi: 10.1007/BF00199837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kradin RL, Dubinett SM, Mullin J, Boyle LA, Kurnick JT. Treatment of patients with advanced cancer using tumor-infiltrating lymphocytes and interleukin-2. Transplant Proc. 1988;20:336. [PubMed] [Google Scholar]
- 20.Kradin RL, Lazarus DS, Dubinett SM, Gifford J, Grove B, Kurnick JT, Preffer FI, Pinto EC, Davidson E, Callahan RJ, Strauss HW. Tumor-infiltrating lymphocytes and interleukin-2 in the treatment of patients with advanced cancer. Lancet. 1989;1:557. doi: 10.1016/s0140-6736(89)91609-7. [DOI] [PubMed] [Google Scholar]
- 21.McBride WH, Economou JS, Nayersina R, Comora S, Essner R. Influences of interleukin 2 and 4 on tumor necrosis factor production by murine mononuclear phagocytes. Cancer Res. 1990;50:2949. [PubMed] [Google Scholar]
- 22.McBride WH, Thacker JD, Comora S, Economou JS, Kelley D, Dubinett SM, Dougherty GJ. Genetic modification of a murine fibrosarcoma to produce interleukin 7 stimulates host cell infiltration and tumor immunity. Cancer Res. 1992;52:3991. [PubMed] [Google Scholar]
- 23.Misaki T, Watanabe Y, Iida Y, Hidaka A, Kasagi K, Fukushima H, Konishi J. Recruitment of T lymphocytes and induction of tumor necrosis factor in thyroid cancer by a local immunotherapy. Cancer Immunol Immunother. 1992;35:92. doi: 10.1007/BF01741855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Mule JJ, Shu S, Schwarz SL, Rosenberg SA. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science. 1984;225:1487. doi: 10.1126/science.6332379. [DOI] [PubMed] [Google Scholar]
- 25.Ognibene FP, Rosenberg SA, Lotze M, Skibber J, Parker MM, Shelhammer JH, Parrillo JW. Interleukin-2 administration causes reversible hemodynamic changes and left ventricular dysfunctions similar to those seen in septic shock. Chest. 1988;94:750. doi: 10.1378/chest.94.4.750. [DOI] [PubMed] [Google Scholar]
- 26.Pross HF, Baines MG, Rubin P, Shragge P, Patterson MS. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells: IX. The quantitation of natural killer cell activity. J Clin Immunol. 1981;1:51. doi: 10.1007/BF00915477. [DOI] [PubMed] [Google Scholar]
- 27.Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;223:1318. doi: 10.1126/science.3489291. [DOI] [PubMed] [Google Scholar]
- 28.Rosenberg SA, Lotze MA, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Runbin JT, Seipp CA, Simpson CG, White DE. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med. 1987;316:889. doi: 10.1056/NEJM198704093161501. [DOI] [PubMed] [Google Scholar]
- 29.Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topallian SL, Toy ST, Simon P, Lotze MT, Yang JC, Siepp CA, Simpson C, Carter C, Bock S, Schwartzentruber D, Wei JP, White DE. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med. 1988;319:1676. doi: 10.1056/NEJM198812223192527. [DOI] [PubMed] [Google Scholar]
- 30.Roth AD, Kirkwood JM. New clinical trials with interleukin-2: rationale for regional administration. Nat Immun Cell Growth Regul. 1989;8:153. [PubMed] [Google Scholar]
- 31.Sacchi M, Synderman CH, Seog Hie D, Johnson JT, d'Amico F, Herberman RB, Whiteside TL. Local adoptive immunotherapy of human head and neck cancer xenografts in nude mice with lymphokine-activated killer cells and interleukin-2. Cancer Res. 1990;50:3113. [PubMed] [Google Scholar]
- 32.Sitkovsky MV, Paul WE. Global or directed exocytosis. Nature. 1988;333:306. doi: 10.1038/332306a0. [DOI] [PubMed] [Google Scholar]
- 33.Sydora BC, Kronenberg M. Characterization of a CD4-positive T-cell line derived from an athymic (nu/nu) mouse. Cell Immunol. 1991;134:54. doi: 10.1016/0008-8749(91)90330-e. [DOI] [PubMed] [Google Scholar]
- 34.Tepper R, Pattengale P, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell. 1989;57:503. doi: 10.1016/0092-8674(89)90925-2. [DOI] [PubMed] [Google Scholar]
- 35.Vaage J. Local and systemic effects during interleukin-2 therapy of mouse mammary tumors. Cancer Res. 1987;47:4296. [PubMed] [Google Scholar]
- 36.Verstovsek S, Maccubbin D, Ehrke MJ, Mihich E. Tumoricidal activation of murine resident peritoneal macrophages by interleukin 2 and tumor necrosis factor α. Cancer Res. 1992;52:3880. [PubMed] [Google Scholar]
- 37.Wagner H, Hardt C, Heeg K, Rollinghoff M, Pfizenmaier K. T-cell-derived helper factor allows in vivo induction of cytotoxic T cells innu/nu mice. Nature. 1980;284:278. doi: 10.1038/284278a0. [DOI] [PubMed] [Google Scholar]
- 38.Watanabe S, Shimosato Y, Kuroki M, Sato Y, Nakajima T. Transplantability of human lymphoid cell line, lymphoma, and leukemia in splenectomized and/or irradiated nude mice. Cancer Res. 1980;40:2588. [PubMed] [Google Scholar]
- 39.Watanabe Y, Kuribayashi K, Miyatake S, Nishihara K, Nakayama E, Taniyama T, Sakata T. Exogenous expression of mouse interferon gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci USA. 1989;86:9456. doi: 10.1073/pnas.86.23.9456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.West WH, Trauer KW, Yannelli FR, Marshall GD, Orr DW, Thruman GB, Oldham RK. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med. 1987;316:898. doi: 10.1056/NEJM198704093161502. [DOI] [PubMed] [Google Scholar]
- 41.Yuhas JM, Toya RE, Wagner E. Specific and nonspecific stimulation of resistance to the growth and metastasis of the line 1 lung carcinoma. Cancer Res. 1975;35:242. [PubMed] [Google Scholar]