Skip to main content
Diabetes Therapy logoLink to Diabetes Therapy
. 2024 Mar 18;15(5):929–1045. doi: 10.1007/s13300-024-01541-6

Insulin Use During Gestational and Pre-existing Diabetes in Pregnancy: A Systematic Review of Study Design

Kristin Castorino 1,, Beatrice Osumili 2, Theophilus Lakiang 3, Kushal Kumar Banerjee 3, Andrea Goldyn 4, Carolina Piras de Oliveira 4
PMCID: PMC11043323  PMID: 38494573

Abstract

Introduction

Insulin is the first-line pharmacologic therapy for women with diabetes in pregnancy. However, conducting well-designed randomized clinical trials (RCTs) and achieving recommended glycemic targets remains a challenge for this unique population. This systematic literature review (SLR) aimed to understand the evidence for insulin use in pregnancy and the outcome metrics most often used to characterize its effect on glycemic, maternal and fetal outcomes in gestational diabetes mellitus (GDM) and in pregnant women with diabetes.

Methods

An SLR was conducted using electronic databases in Medline, EMBASE via Ovid platform, evidence-based medicine reviews (2010–2020) and conference proceedings (2018–2019). Studies were included if they assessed the effect of insulin treatment on glycemic, maternal or fetal outcomes in women with diabetes in pregnancy. Studies on any type of diabetes other than gestational or pre-existing diabetes as well as non-human studies were excluded.

Results

In women diagnosed with GDM or pre-existing diabetes, most studies compared treatment of insulin with metformin (n = 35) followed by diet along with lifestyle intervention (n = 24) and glibenclamide (n = 12). Most studies reporting on glycemic outcomes compared insulin with metformin (n = 22) and glibenclamide (n = 4). Fasting blood glucose was the most reported clinical outcome of interest. Among the studies reporting maternal outcomes, method of delivery and delivery complications were most commonly reported. Large for gestational age, stillbirth and perinatal mortality were the most common fetal outcomes reported.

Conclusion

This SLR included a total of 108 clinical trials and observational studies with diverse populations and treatment arms. Outcomes varied across the studies, and a lack of consistent outcome measures to manage diabetes in pregnant women was observed. This elucidates a need for global consensus on study design and standardized clinical, maternal and fetal outcomes metrics.

Supplementary Information

The online version contains supplementary material available at 10.1007/s13300-024-01541-6.

Keywords: Gestational diabetes mellitus, Insulin use in pregnancy, Pregnancy, Systematic review, Type 1 diabetes mellitus, Type 2 diabetes mellitus

Key Summary Points

Why carry out this study?
The prevalence of diabetes during pregnancy has increased in recent years, and many women with this complication require insulin during their pregnancy. Despite this, there remains a paucity of well-designed clinical trials targeting insulin use in this unique population
This systematic literature review aimed to assess and summarize the current body of evidence for insulin use in pregnant women with gestational or pre-existing diabetes and its effects on clinical, maternal and fetal outcomes
What was learned from the study?
This SLR included a total of 108 unique studies, both clinical and observational, and the most commonly reported outcomes were fasting blood glucose, method of delivery and large for gestational age
Overall, the results of this review revealed that the outcomes evaluated in studies investigating the use of insulin as a treatment option for pregnant women with diabetes varied widely across the included studies, illustrating the need for standardization of study design and outcome metrics

Introduction

Diabetes is the most prevalent antenatal complication of pregnancy and can be subdivided into two types: pregestational and gestational diabetes mellitus (GDM) [1]. The prevalence of diabetes in pregnancy has been increasing in the USA [2]. About 1–2% of pregnant women have pre-existing diabetes, and approximately 1–14% of all pregnancies are affected by GDM [3, 4]. Women diagnosed with diabetes during pregnancy are at an increased risk to develop other maternal complications such as gestational hypertension, preeclampsia and hypoglycemia, which subsequently can lead to the development of type 2 diabetes (T2D) later in life [3]. They are also at a higher risk to undergo cesarean section or have premature delivery. In addition, diabetes in pregnancy is associated with a risk of developing fetal complications such as macrosomia and neonates with large for gestational age (LGA), small for gestational age, premature birth, neonatal respiratory distress, asphyxia, neonatal hypoglycemia and congenital anomalies [5, 6].

The recommendations from current standard of care of diabetes management in pregnant women are beyond regular blood glucose level monitoring, lifestyle behavioral changes, medical nutrition therapy (MNT), physical exercise and pharmacotherapy (metformin, glyburide or insulin) [7]. Insulin is considered the most efficacious pharmacotherapy for all types of diabetes in pregnancy, including GDM and pregestational diabetes [8]. The 2023 update of the the American Diabetes Association (ADA) guidelines, The American College of Obstetricians and Gynecologists-2018 (ACOG-2018) and International Diabetes Federation (IDF) guidelines recommend use of insulin as a first-line pharmacological therapy for management of pre-existing diabetes and GDM over other oral anti-diabetic agents [912].

Recent advances in insulin therapy are focused on improving the pharmacokinetics and pharmacodynamics of insulin. These goals enable prolonged profile of action, flexible dosing regimen and reduce the risk of hypoglycemia [13]. However, well-powered randomized clinical trials (RCTs) in pregnant women with diabetes are often conducted well after non-pregnant populations, if it is done at all, which leads to delayed implementation of evidence-based practices for insulin use in pregnancy. In addition, designing studies to demonstrate the achievement of stringent glycemic targets as recommended by the guidelines remains challenging for this unique population [14]. A variety of insulins have been commercially available globally, many of which have limited data on their use in pregnancy. Real-world barriers such as access to insulin or newer insulins, access to glucose monitoring and delayed prenatal care can further make adhering to guidelines difficult, if not impossible. Considering the different insulin options available in the global market and understanding the use and effects of types of insulin and/or insulin regimens on glycemic, maternal and fetal outcomes may support clinical practice. This may as well aid in improving study designs for treatment of diabetes in pregnancy. Therefore, to assess and evaluate the current body of evidence including RCTs and real-world observational data, we performed a systematic literature review (SLR) to better understand and summarize the evidence for insulin use in pregnancy to harmonize future study design in this special population.

Methods

Study Design

Search Strategy

A comprehensive search was conducted to identify relevant studies using electronic databases in Medline, EMBASE via Ovid platform and evidence-based medicine reviews from 1 January 2010 to 25 August 2020. In addition, manual (hand) searches were performed for relevant conference abstracts that were published from 2018 to 2019.

Inclusion and Exclusion Criteria

The eligibility for assessing the relevance of each article for data extraction was based on the population, intervention, comparison, outcomes and study design (PICOS) criteria (Supplementary Table 1). Inclusion criteria for the selection of articles consisted of studies that were RCTs, non-RCTs and observational studies (Supplementary Table 1). Studies were included with perinatal women diagnosed with either gestational, pre-existing diabetes (type 1 diabetes [T1D] or type 2 diabetes [T2D]) or mixed population (pregnant women with GDM, T1D or T2D). Specific glycemic (fasting blood glucose [FBG], post prandial glucose [PPG] and time in range), maternal (prevalence of hypoglycemia, cesarean section, preterm labor, hypertension, induced labor and preterm delivery) and fetal (fetal mortality, fetal morbidity and LGA) outcomes were included in this review (Supplementary Table 1). Studies on any type of diabetes other than gestational diabetes or pre-existing T1D or T2D as well as non-human studies were excluded.

Study Selection and Data Extraction

The DistillerSR tool, a cloud-based literature review software, was used to screen, compile and manage all the identified studies. Two independent reviewers screened the identified studies based on their titles and abstracts against the eligibility criteria. Subsequently, full-text articles were retrieved for full-text screening against eligibility criteria. A third, independent reviewer resolved any uncertainties/conflicts between the two reviewers. The reasons for exclusion are reported in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram (Fig. 1). DistillerSR was used to extract data from the included studies. Details of study characteristics, patient characteristics, interventions and outcomes of interest were extracted in the data extraction form. Studies with multiple publications were identified and linked to the primary study; all relevant data were extracted under the primary study. Identification and screening of the available literature was performed in accordance with PRISMA statement [15], the Centre for Reviews and Dissemination [16] and the Cochrane Collaboration [17].

Fig. 1.

Fig. 1

PRISMA flow diagram presenting number of studies included and excluded at each stage of screening

Quality Assessment

The quality of the included RCTs was assessed using the quality assessment checklist, in accordance with the recommendations by the Centre for Reviews and Dissemination’s Guidance for Undertaking Reviews in Health Care (NICE, 2019) [18]. The quality of observational studies was assessed using the Newcastle-Ottawa Scale, 2019 [19]. Three factors were considered to score the quality of included observational studies: selection, comparability and outcomes assessment.

Ethical Approval

This article is based on previously conducted studies and does not contain any studies with human participants or animals.

Results

Study Selection

A total of 2628 citations were retrieved after initial search through electronic databases and conference proceedings (Fig. 1). After removing duplicates, 2614 articles were assessed for title-abstract screening. Subsequently, 835 articles were assessed for full-text screening. Overall, 724 records were excluded, and 111 publications, representing 108 unique studies were included in the SLR (Fig. 1).

Study and Patient Characteristics

Of the total 108 included studies, 30 were clinical trials, 74 were observational studies, and 1 was a quasi-experimental study. In three studies the study designs were not clear. The RCTs and observational studies included in this review covered perinatal women across different continents, like America, Europe, Asia, Oceania, Africa and/or multinational.

Details on patient characteristics including maternal age, gestational weight, gestational age at diagnosis and treatment initiation and relevant obstetrical history are given in Tables 1 and 2. Study characteristics are summarized in Supplementary Table 2 and 3, and treatment interventions along with types of insulin utilized by the women diagnosed with GDM or pre-existing diabetes are summarized in Supplementary Tables 4 and 5.

Table 1.

Patient characteristics of randomized controlled trials in women with gestational diabetes mellitus and pre-existing diabetes

First author_Year Treatment arms Sample size Maternal age (mean ± SD) Gestational weight (mean ± SD) kg BMI (mean ± SD kg/m2) Disease duration (years) Race/Ethnicity; n (%) GA (weeks) at diagnosis/baseline (mean ± SD) Obstetric history GA (weeks) at treatment initiation (mean ± SD) Comorbidities
GDM
Galal_2019 [20] Human insulin 50 32.82 ± 3.02 NR 30.52 ± 2.49 NR NR 30.8 ± 2.22 NR NR NR
Metformin 56 31.98 ± 3.49 NR 30.74 ± 2.41 NR NR 30.64 ± 2.06 NR NR NR
Wasim_2019 [21] Insulin-Humulin R and NPH 141 29.7 ± 4.8 NR 27.1 ± 5.3 NR NR 28.6 ± 3.1 NR NR NR
Metformin 137 29.5 ± 4.8 NR 26.5 ± 5.1 NR NR 28.9 ± 2.9 NR NR NR
Das_2018 [66] Insulin 41 NR NR NR NR NR NR NR NR NR
Metformin 40 NR NR NR NR NR NR NR NR NR
Eid_2018 [34] Insulin 116 30.4 ± 3.5 76.8 ± 11.2 30.5 ± 4.2 NR NR 28.1 ± 3.1 NR NR NR
Metformin 113 31.6 ± 3.6 75.9 ± 8.7 29.44 ± 4.53 NR NR 27.4 ± 3.9 NR NR NR
Ghomian_2018 [33] Levemir (insulin detemir) + aspart 143 28.41 ± 6.36 NR 24.0 ± 2.10 NR NR 25.10 ± 1.05 History of GDM: 29 (20%) NR NR
Metformin 143 28.30 ± 5.25, p = 0.87 NR 23.73 ± 1.87, p = 0.25 NR NR 24.80 ± 1.45, p = 0.39 History of GDM: 34 (24%) NR NR
Huhtala_2018 [43] NPH insulin and/or rapid-acting insulin lispro or insulin aspart 107 32.0 ± 5.47 NR NR NR NR NR NR NR NR
Metformin 109 31.9 ± 5.01; p = 0.89 vs. insulin NR NR NR NR NR NR NR NR
Diet 103 30.6 ± 5.05 NR NR NR NR NR NR NR NR
Senat_2018 [54] Insulin 442 32.6 ± 5.3 NR 31.1 ± 5.4 NR NR Median (IQR): 26 + 3 (25 + 1 to 28 + 0) Previous GDM: 88 (19.9%) Median (IQR): 32 + 3 (30 + 3 to 34 + 1) NR
Glyburide 367 32.5 ± 5.1 NR 30.7 ± 5.1 NR NR Median (IQR): 26 + 5 (25 + 3 to 28 + 0) Previous GDM: 73 (20.0%) Median (IQR): 32 + 6 (30 + 6 to 34 + 3) NR
Hamadani_2017 [35] Insulin NPH 30 29.63 ± 3.81 58.10 ± 5.01 23.43 ± 5.06 NR NR 28.26 ± 2.46 NR NR NR
Metformin 30 30.26 ± 3.97 58.90 ± 5.78 22.94 ± 5.86 NR NR 28.13 ± 2.30 NR NR NR
Khan_2017 [24] Insulin 385 28.01 ± 2.53 NR 23.82 ± 2.81 NR NR 29.92 ± 2.27 NR NR NR
Metformin 385 24.92 ± 2.57 NR 22.08 ± 2.98 NR NR 27.94 ± 2.57 NR NR NR
Zawiejska_2017 [23] Insulin 43 Median (IQR): 35 (30–38) NR 32.0 ± 5.8 NR NR Median (IQR): 30 (28–31) HTN: 4 (9.3%) NR NR
Metformin and metformin + insulin 35 Median (IQR): 33 (29–39) NR 32.2 ± 6.4 NR NR Median (IQR): 30 (28–32) HTN: 7 (20%) NR NR
Ashoush_2016 [22] Insulin (regular + NPH)- Group-1 control 48 32.1 ± 3.2 NR 31.4 ± 1.5 NR NR 27.8 ± 1.4 NR 29.7 ± 1.9 NR
Metformin and metformin + insulin-Group-II research 47 31.6 ± 2.8 NR 31.1 ± 1.3 NR NR 28.2 ± 1.3 NR 29.8 ± 1.4 NR
Behrashi_2016 [67] Regular insulin and NPH 129 29.98 ± 7.033 NR 22.59 ± 3.09 NR NR 24.48 ± 4.51 NR NR NR
Glibenclamide 120 30.69 ± 7.194 NR 21.94 ± 2.8 NR NR 24.89 ± 3.90 NR NR NR
Somani_2016 [26] Regular/NPH/both 33 26.3 ± 3.84 NR NR NR NR 28.33 ± 2.57 Previous GDM: 7 (21.21%) NR NR
Metformin 32 25.61 ± 4.72, p = 0.52 NR NR NR NR 27.77 ± 2.49, p = 0.38 Previous GDM: 4 (12.5%), p = 0.51 NR NR
Ainuddin_2015 [36] Insulin (short + intermediate-acting) 75 31 ± 4 NR NR NR NR 29.2 ± 1.5 NR 28.19 ± 1.5 NR
Metformin 43 30.6 ± 2.9 NR NR NR NR 29.9 ± 1.1 NR NR NR
Insulin added-on to metformin 32 30 ± 3.3 NR NR NR NR 29.7 ± 1.6 NR 31.78 ± 5.9 NR
Mirzamoradi_2015 [42] Insulin 59 31.18 ± 5.01 NR 31.77 ± 5.11 NR NR 193.59 ± 20.01 Previous GDM: 2 (3.38%) 211.89 ± 27.80 days NR
Glyburide 37 29.50 ± 4.06 NR 30.18 ± 5.35 NR NR 194.89 ± 29.54 Previous GDM: 1 (2.07%) 209.24 ± 28.84 NR
Mukhopadhyay_2014 [58] Insulin 30 26 ± 4.3 NR 23 ± 2.9 NR NR 27.4 ± 2.7 NR NR NR
Glibenclamide 30 26.3 ± 4.6 NR 23.7 ± 2.7 NR NR 28.3 ± 2.2 NR NR NR
Ruholamin_2014 [37] Insulin 50 23.4 ± 2.5 NR 25.1 ± 3.4 NR NR 26.7 ± 3.5 NR NR NR
Metformin 50 24.6 ± 6.3 NR 26.4 ± 2.8 NR NR 27.6 ± 3.3 NR NR NR
Spaulonci_2013 [68] Insulin 46 32.76 ± 4.66 NR 31.39 ± 5.71 NR NR 30.63 ± 3.35 NR NR NR
Metformin 46 31.93 ± 6.02 NR 31.96 ± 4.75 NR NR 30.40 ± 3.71 NR NR NR
Balaji_2012 [69] Premixed insulin aspart 30 (BIAsp 30) 163 29.15 ± 3.97 NR 26.01 ± 3.40 NR NR 19.32 ± 6.34 NR 21.67 ± 9.27 NR
Premixed human insulin (BHI 30) 157 29.64 ± 4.52 NR 25.83 ± 3.40 NR NR 19.89 ± 7.12 NR 22.39 ± 10.14 NR
Hassan_2012 [40] Regular and intermediate-acting Human insulin 75 30.88 ± 3.6 NR 28.74 ± 2.69 NR NR 29.20 ± 1.48 NR NR NR
Metformin 75 30.29 ± 3.06 NR 29.17 ± 1.94 NR NR 29.53 ± 1.33 NR NR NR
Mesdaghinia_2012 [56] NPH and regular 100 30.2 ± 5.9 NR 28.46 NR NR 28.9 ± 3.8 NR NR NR
Metformin 100 29.6 ± 5.3 NR 27.6 NR NR 27.9 ± 3.22 NR NR NR
Niromanesh_2012 [39] NPH and regular as needed 80 31.8 ± 5.1 NR 27.1 ± 2.1 NR NR 26.0 ± 3.7 Previous GDM: 11 (13.8%), macrosomia: 5 (6.3%) NR NR
Metformin 80 30.7 ± 5.5 NR 28.1 ± 4.0 NR NR 26.0 ± 3.5 Previous GDM: 6 (7.55), macrosomia: 2 (2.5%) NR NR
Diet 371 NR NR NR NR Other: European: 30%, Maori: 4.6%, Pacific: 7.6%, Indian: 13.5%, Other Asian: 39.4%, other: 5.1% NR NR NR NR
Tertti_2012 [38] Insulin 107 32.1 ± 5.4 NR 28.9 ± 4.7 NR NR 30.4 ± 1.8 NR NR NR
Metformin 110 31.9 ± 5.0 NR 29.4 ± 5.9 NR NR 30.4 ± 1.8 NR NR NR
Ijas_2011 [41] Long- (Protaphane) and rapid-acting (Humalog) insulin 50 31.7 ± 6.1 NR 30.8 ± 5.4 NR NR 30 ± 4.0 NR NR NR
Metformin 47 32.3 ± 5.6 NR 31.5 ± 6.5 NR NR 30 ± 4.9 NR NR NR
Preexisting diabetes
Jing ji_2020 [27] Insulin detemir + Novolin-R 120 31.67 ± 4.16 NR 24.82 ± 3.53 NR NR 27.69 ± 6.05 NR NR NR
Insulin NPH + Novolin-R 120 30.84 ± 5.24, p = 0.178 NR 24.39 ± 3.90, p = 0.581 NR NR 27.70 ± 5.86, p = 0.991 NR NR NR
Ainuddin_2015 [44] Insulin (short- + intermediate-acting) NR 33.73 ± 2.95 NR Early pregnancy: 32.96 ± 4.04, Late pregnancy: 38.01 ± 4.18 NR NR NR NR NR NR
Metformin NR 31.75 ± 2.82, p = 0.07 vs. insulin NR Early pregnancy: 28.25 ± 1.98, p < 0.01 vs. insulin; Late pregnancy: 32.47 ± 2.19, p <  < 0.01 vs. insulin NR NR NR NR NR NR
Insulin added-on to metformin NR 34.09 ± 3.51, p = 0.956 vs. insulin NR Early pregnancy: 33.59 ± 3.97, p = 0.171 vs. insulin; late pregnancy: 38.09 ± 4.26, p = 0.714 vs. insulin NR NR NR NR NR NR
Herrera_2015 [70] Insulin detemir 42 Median (IQR): 35 (31–38) NR NR NR Black: 7 (17%), White: 11 (26%), other: Native American Alaskan: 12 (29%), Hispanic: 12 (29%) Median (IQR): 26.1 (24.8–27.1) Previous GDM: 8 (19%), PCOS: 5 (12%) Median (IQR): 29.6 (27.5–31.4) Chronic HTN: 5 (12%), renal disease: 1 (2%), thyroid disease: 6 (14%)
Insulin NPH 45 Median (IQR): 35 (32–38) NR NR NR Black: 5 (11%), White: 17 (38%), other: Native American Alaskan: 6 (13%), others: 2 (4%), Hispanic: 15 (33%) Median (IQR): 26.6 (25.4–28.2) Previous GDM: 9 (20%), PCOS: 12 (27%) Median (IQR): 30.0 (25.1–31.5) Chronic HTN: 6 (13%), renal disease: 5 (11%), thyroid disease: 8 (18%)
Refuerzo_2015 [71] Insulin 13 32.3 ± 4.3 NR 40.1 ± 8.4 NR Black: 4 (30.8%), White: 6 (46.2%), other: Hispanic: 1 (7.7%), others: 2 (15.4%) Median (range): 16 (6–18) NR NR NR
Metformin 8 30.9 ± 5.5 NR 40.1 ± 8.4 NR Black: 3 (37.5%), White: 4 (50%), other: 1 (12.5%) Median (range): 16 (8–19) NR NR NR
Hod_2014 [57] Insulin detemir 152 29.7 ± 4.6 NR 24.3 ± 4.0 11.7 ± 8.1 NR NR NR NR Retinopathy: 43 (28.3)
Insulin NPH 158 30.4 ± 4.2 NR 25.2 ± 4.2 12.8 ± 7.9 NR NR NR NR Retinopathy: 40 (25.3%)
Hickman_2013 [52] Insulin 14 Median (IQR): 31 (26–33) NR NR NR Black: 2 (14%), White: 2 (14%), Hispanic: 10 (71%) Median (IQR): 14 (13–19) Previous GDM: 8 (67%), prior CS: 2 (17%) NR Chronic HTN: 4 (29%), hypothyroid: 1 (7%), depression: 3 (21%)
Metformin 14 Median (IQR): 36 (35–37) NR NR NR Black: 2 (14%), Hispanic: 12 (86%) Median (IQR): 17 (10–22) Previous GDM: 8 (67%), prior CS: 6 (50%) NR Chronic HTN: 4 (29%), hypothyroid: 1 (7%), depression: 2 (14%), asthma: 2 (14%)

BHI biphasic premixed human insulin, BMI body mass index, GA gestational age, GDM gestational diabetes mellitus, HTN hypertension, IQR interquartile range, n sub-population size, NPH neutral protamine Hagedorn, NR not reported, SD standard deviation

Table 2.

Patient characteristics of observational studies in women with gestational diabetes mellitus and pre-existing diabetes

First author_Year Treatment arms Sample size Maternal age (mean ± SD) Gestational weight (mean ± SD) kg BMI (mean ± SD kg/m2) Disease duration (years) Race/Ethnicity; n (%) GA (weeks) at diagnosis/baseline (mean ± SD) Obstetric history GA (weeks) at treatment initiation (mean ± SD) Comorbidities
GDM
Han_2020 [72] Insulin Lispro + metformin 62 27.63 ± 2.96 NR 25.51 ± 2.67 NR NR NR Fibroid: 14 (22.58%) NR NR
Insulin Lispro 55 27.41 ± 3.21 NR 25.12 ± 2.33 NR NR NR Fibroid: 15 (27.27%) NR NR
Krishnakumar_2020 [73] Insulin 37 26.05 ± 2.45 NR NR NR NR NR NR NR NR
Metformin 44 26.05 ± 2.45 NR NR NR NR NR NR NR NR
Osuagwu_2020 [74] Insulin 103 NR NR NR NR NR NR NR NR NR
Diet 146 NR NR NR NR NR NR NR NR NR
Overall population 255 30.7 ± 5.5 NR 33.2 ± 7.5 NR Other: Itaukei Fijians: 49.4%, FIDs: 42%, Others: 8.6% 25.6 ± 7.8 Previous GDM: 4.3% NR NR
Rodrigues_2020 [50] Insulin 41 NR NR Overall mean BMI NR but data provided in terms of BMI ranges NR Black: 12 (29.3), White: 27 (65.9), Asian: 2 (4.3) 18.6 ± 7.9 Previous GDM: 4 (9.8%); Previous macrosomia: 2 (4.9%); Previous abortions 12 (29.3%) 27.3 ± 7.0 Chronic hypertension: 11 (26.8)
Metformin + insulin 94 NR NR Overall mean BMI NR but data provided in terms of BMI ranges NR Black: 27 (29.3), White: 61 (66.3), Asian: 4 (4.3); p = 0.99 vs. insulin 19.1 ± 8.2 Previous GDM: 14 (14.9%); p = 0.42, Previous macrosomia: 8 (8.5%); p = 0.46, Previous abortions 26 (27.7%); p = 0.85 vs. insulin 27.6 ± 7.1 Chronic hypertension: 10 (10.8); p = 0.17 vs. insulin
Metformin only 77 NR NR Overall mean BMI NR but data provided in terms of BMI ranges NR Black: 20 (26.7%), White: 52 (69.3%), Asian: 3 (4%); p = 0.92 vs. insulin 19.5 ± 8.4 Previous GDM: 12 (15.6%)-p = 0.38 vs. insulin; Previous macrosomia: 6 (7.8%)-p = 0.55; Previous abortions 21 (27.2%)-p = 0.82 28.2 ± 7.3 Chronic hypertension: 6 (7.9); p = 0.006 vs. insulin
Zaharieva_2020 [75] Insulin vs. non-insulins Total-90; insulin: n = 34 31 ± 4 NR NR NR NR 27 ± 1 NR NR NR
Cade_2019 [76] Insulin 619 NR NR NR NR NR NR NR NR NR
Meghelli_2019 [77] Insulin 63 31.6 ± 4.6 NR 44.0 ± 2.9 NR NR NR History of C-section: 18 (28.6%), Hypertension: 11 (17.5%), GDM: 24 (38.1%) NR NR
No insulin 56 29.0 ± 5.2 NR 43.6 ± 2.6 NR NR NR C-section: 13 (23.2%), Hypertension: 4 (7.1%), GDM: 6 (10.7%) NR NR
Munn_2019 [78] Glyburide 195,000 NR NR NR NR NR NR NR NR NR
Insulin 195,000 NR NR NR NR NR NR NR NR NR
Ng_2019 [79] Insulin 576 31.93 ± 5.69 NR 31.20 ± 7.66 NR NR NR NA NR NR
No Insulin 1281 30.59 ± 5.55 NR 29.00 ± 7.42 NR NR NR NA NR NR
Tang_2019 [31] Insulin 180 32.5 ± 4.1 76.8 ± 12.8 NR NR NR 20.1 ± 8.6 PCOS: 2 (1.1%), previous adverse pregnancy outcome: 49 (27.2%) NR NR
MNT 354 30.6 ± 3.9 71.0 ± 11.1 NR NR NR 22.3 ± 7.4 PCOS: 4 (1.1%), previous adverse pregnancy outcome: 72 (20.3%) NR NR
Bogdanet_2018 [46] Insulin detemir and insulin aspart 752 Median (IQR): 34 (31–37) NR Median (IQR): 32 (28–37) NR Other: Caucasian: 624 (84.7%), non-Caucasian: 113 (15.3%) NR NR NR NR
MNT 567 Median (IQR): 33 (30–36) NR Median (IQR): 29.8 (26–34.3) NR Other: Caucasian: 465 (83.8%), non-Caucasian: 90 (16.2%) NR NR NR NR
Normal glucose tolerance 2496 Median (IQR): 32 (28–35) NR Median (IQR): 26 (23–29) NR Other: Caucasian: 2335 (9.3%), non-Caucasian: 156 (6.3%) NR NR NR NR
Christian_2018 [80] Insulin 17 Median (range): 34 (20–46) NR Median (range): 35 (23–53) NR Other: Middle eastern: 7 (41.2%), Rest of Asia: 6 (35.3%), Africa: 4 (23.5%) Median (range): 29 (18–35) NR 30.2 weeks NR
Metformin 58 Median (range): 32 (22–42) NR Median (range): 30 (23–41) NR Other: Middle eastern: 3 (5.2%), Rest of Asia: 45 (77.6%), Africa: 10 (17.2%) Median (range): 31 (14–38) NR 30.6 weeks NR
Metformin + insulin 32 Median (range): 34 (25–45) NR Median (range): 32 (23–52) NR Other: Middle eastern: 6 (18.7%), Rest of Asia: 19 (59.4%), Africa: 7 (21.9%) Median (range): 28 (15–35) NR 27.8 (metformin)/30.7 (insulin) weeks NR
Hedderson_2018 [60] Insulin 401 NR NR NR NR NR NR NR NR NR
Glyburide 4622 NR NR NR NR NR NR NR NR NR
Insulin + glyburide 281 NR NR NR NR NR NR NR NR NR
Landi_2018 [49] Insulin 3450 32.4 NR Median (IQR): 28 (24–33) NR NR 30.1 ± 2.9 Prior GDM: 9.3% 31.6 ± 2.9 NR
Metformin 3818 31.9 NR Median (IQR): 28 (23–33) NR NR 30.5 ± 2.9 Prior GDM: 8.3% 32.0 ± 2.9 NR
Leung_2018 [81] Insulin 223 NR NR 31.89 ± 9.03 NR NR NR NR NR NR
glyburide 171 NR NR 30.17 ± 7.43 NR NR NR NR NR NR
McGrath_2018 [82] Insulin 83 33.5 ± 4.3 NR 25.2 ± 6.3 NR Asian: South Asian: 29 (34.9%), Asian: 20 (24.1%), SEA: 5 (6%), Caucasian: 25 (30.1%), Middle Eastern: 4 (4.8%) 24.0 ± 5.8 Previous GDM: 11 (13.3%) 28.0 ± 5.4 NR
Metformin 83 33.1 ± 4.8 NR 27.8 ± 8.0 NR South Asian: 22 (26.5%), Asian: 18 (21.7%), SEA: 6 (7.2%), Caucasian: 34 (41%), Middle eastern: 2 (2.4%), Pacific Islander: 1 (1.2%) 23.6 ± 5.9 Previous GDM: 11 (13.3%) 27.1 ± 5.7 NR
Diet + lifestyle 83 33.1 ± 4.3 NR 22.7 ± 2.9 NR South Asian: 15 (18.1%), Asian: 27 (32.5%), SEA: 8 (9.6%), Caucasian: 34 (41%), Middle Eastern: 1 (1.2%), African: 1 (1.2%) 24.0 ± 5.7 Previous GDM: 11 (13.3%) NA NR
Meregaglia_2018 [83] Insulin 1616 NR NR NR NR NR NR NR NR NR
Diet 9924 NR NR NR NR NR NR NR NR NR
Patanjali_2018 [84] Insulin 58 (20.1%) NR NR NR NR NR NR NR NR NR
Metformin Only metformin: 23 (8%), Required insulin with metformin: 28 (9.7%) NR NR NR NR NR NR NR NR NR
Diet 179 (62.1%) NR NR NR NR NR NR NR NR NR
Rowan_2018 [85] Insulin (Adelaide cohort) 51 33.9 ± 4.7 NR 34 ± 7.9 NR Other: European/Caucasians: 43 (84.3%), Indian: 4 (7.8%), Chinese and other Southeast Asian: 2 (3.9%), others/mixed: 2 (3.9%) 31.6 ± 2 Chronic HTN: 5 (9.8%) NR NR
Metformin (Adelaide cohort) 58 33.6 ± 5.7 NR 34.2 ± 7.1 NR Other: European/Caucasians: 52 (89.7%), Chinese and other: 4 (6.9%), others/mixed: 2 (3.4%) 31.3 ± 2.8 Chronic HTN: 7 (12.1%) NR NR
Insulin (Auckland cohort) 54 35.21 ± 4.72 NR 32.0 ± 6.3 NR Other: European/Caucasians: 21 (38.9%), Polynesian: 7 (13.0%), Indian: 16 (29.6%), Chinese and other Southeast Asian: 7 (13.0%), others/mixed: 3 (5.6%) 29.5 ± 3.4 Chronic HTN: 5 (9.3%) NR NR
Metformin (Auckland cohort) 45 34.12 ± 5.12 NR 35.4 ± 11.3 NR Other: European/Caucasians: 25 (55.6%), Polynesian: 6 (13.3%), Indian: 7 (15.6%), Chinese and other: 6 (13.3%), Others/mixed: 1 (2.2%) 29.9 ± 3.6 Chronic HTN: 7 (15.6%) NR NR
Simeonova-Krstevska_2018 [28] Levemir (insulin detemir) + aspart 101 32.7 ± 5.7 NR NR NR NR 24 ± 7.8 NR NR NR
Metformin 48 32.2 ± 4.7 NR NR NR NR 28.6 ± 5.6 NR NR NR
Diet 200 31.5 ± 5.2 NR NR NR NR 29.5 ± 5.8 NR NR NR
Vanlalhruaii_2018 [86] Insulin 151 28.9 ± 4.03 NR 30.2 ± 6.6 NR NR 23.67 + 7.65 weeks + days Previous GDM: 34 (22.52%) NR NR
Group A-metformin 1st trimesters 186 29.41 ± 4.64 NR 29.8 ± 5.6 NR NR 10.04 ± 1.8 weeks + days Previous GDM: 53 (28.5%) NR NR
Group B-metformin 2nd trimesters 203 28.8 ± 5.12 NR 28.5 ± 7.1 NR NR 22.45 ± 5.4 Previous GDM: 37 (18.23%) NR NR
Bowker_2017 [87] Human insulin or insulin analogues 5057 (human insulin, n = 3724 or 73.6%) 33.2 ± 5.0 NR NR NR Asian: Chinese: 320 (6.3%), South Asian: 385 (7.6%), other: general population: 4055 (80.2%), status aboriginal: 297 (5.9%) NR NR NR NR
Metformin ± insulin 478 (human insulin or insulin analogues; n = 171 or 82.2%) 32.8 ± 5.0 NR NR NR Chinese: 14 (2.9%), South Asian: 28 (5.9%), other: General population: 406 (84.9%), status aboriginal: 30 (6.3%) NR NR NR NR
No specific intervention 13,226 32.4 ± 5.2 NR NR NR Asian: Chinese: 1052 (8.0%), South Asian: 770 (5.8%), other: General population: 10,575 (80.0%), Status aboriginal: 829 (6.3%) NR NR NR NR
Gibbons_2017 [88] Insulin 315 33.2 ± 5.0 NR Median (IQR): 28.6 (24.8–35.0) NR Asian: 49 (15.6%), other: Caucasian: 148 (47.0%), Indigenous: 13 (4.1%), Indian: 36 (11.4%), others: 69 (21.9%) NR HTN: 37 (11.7%), thyroid disease: 26 (8.3%) NR NR
OHA (glyburide/metformin) 211 32.5 ± 5.1 NR Median (IQR): 26.1 (23.1–30.9) NR Asian: 45 (21.3%), other: Caucasian: 83 (39.3%), Indigenous: 2 (0.9%), Indian: 39 (18.5%), others: 42 (19.9%) NR HTN: 23 (10.9%), thyroid disease: 15 (7.1%) NR NR
Diet 563 32.2 ± 5.3 NR Median (IQR): 24.0 (20.9–28.5) NR Asian: 165 (29.3%), Other: Caucasian: 190 (33.7%), Indigenous: 10 (1.8%), Indian: 73 (13.0%), others: 125 (22.2%) NR HTN: 45 (8.0%), thyroid disease: 54 (9.6%) NR NR
Olmos_2017 [89] BBIT 73 32.9 ± 5.2 NR 27.0 ± 5.0 NR NR 24.6 ± 6.6 NR NR NR
Without BBIT (diet/metformin) 58 32.5 ± 5.0 NR 24.5 ± 3.4 NR NR 28.2 ± 7.7 NR NR NR
Xie_2017 [90] Insulin aspart intensive treatment/insulin pump (research arm) 45 30.8 ± 2.6 (range 23–36) NR NR NR NR NR NR NR NR
Insulin aspart + detemir (reference arm) 45 31.5 ± 2.4 (range 22–35) NR NR NR NR NR NR NR NR
Fazel-Sarjoui_2016 [91] Short-acting insulin 70 30.1 ± 5.1 NR NR NR NR NR NR NR NR
Diet 70 29.1 ± 4.6 NR NR NR NR NR NR NR NR
Ito_2016 [92] Insulin 32 33.3 ± 5.6 NR 24.6 ± 4.3 NR NR 18.6 ± 8.4 Prior fetal macrosomia: 1 (3.1%) 23.1 ± 8.3 NR
Diet 70 34.4 ± 5.6 NR 23.3 ± 3.6 NR NR 20.8 ± 7.5 Prior fetal macrosomia: 0 (0%) NA NR
Koning_2016 [93] Diet + additional insulin (aspart, NPH and aspart + NPH) 360 (43.9%) 32.6 ± 5.2 NR NR NR Asian: 20 (5.6%), Other: Caucasian: 281 (78.1%), African-American: 17 (14.7%), Mediterranean: 35 (9.7%), unknown: 7 (1.9%) Median (IQR): 27.1 (24.4–29.3) History of PCOS: 16 (4.4%), previous GDM: 61 (16.9%), History of IUFD: 11 (3.1%), spontaneous abortion: 110 (30.6%), infant weighing ≥ 4500 g at birth: 55 (15.3%) NR Chronic hypertension: 22 (6.1%)
Diet 460 (56.1%) 31.6 ± 4.9 NR NR NR Asian: 35 (7.6%), Caucasian: 377 (82.0%), African-American: 22 (4.8%), Mediterranean: 35 (9.7%), unknown: 8 (1.7%) Median (IQR): 28.4 (26.7–32.3) History of PCOS: 24 (5.2%), previous GDM: 25 (5.4%), IUFD: 5 (1.1%), spontaneous abortion: 113 (24.6%), infant weighing ≥ 4500 g at birth: 35 (7.6%) NR Chronic hypertension: 15 (3.3%)
Overall population 820 32.0 ± 5.1 NR NR NR Asian: 55 (6.7%), Other: Caucasian: 658 (80.2%), African-American: 35 (4.3%), Mediterranean: 57 (7.0%), unknown: 15 (1.8%) Median (IQR): 27.9 (25.9–30.7) History of PCOS: 40 (4.9%), previous GDM: 86 (10.5%), IUFD: 16 (2.0%), spontaneous abortion: 223 (27.2%), infant weighing ≥ 4500 g at birth: 90 (11.0%) NR Chronic hypertension: 37 (4.5%)
Koren_2016 [55] Insulin detemir 29 33.8 ± 4.7 NR NR NR NR NR Previous GDM: 6 (20.7%), macrosomia: 4 (13.8%) 28.5 ± 8.1 HTN: 3 (10.3%)
Glyburide 62 33.1 ± 4.0 NR NR NR NR NR Previous GDM: 19 (30.5), macrosomia: 8 (12.9%) 29.4 ± 5.2 HTN: 3 (4.8%)
Ozgu-Erdinc_2016 [29] Insulin 144 32.8 ± 5.6 NR < 8th GW: Median: 32 (21–52) NR NR NR History of macrosomia: 22 (15.3%) NR NR
Diet 115 31.9 ± 5.3 NR < 8th GW: Median: 31.5 (21–50) NR NR NR History of macrosomia: 11 (9.6%) NR NR
Saleem_2016 [94] Insulin (BiD) 240 NR NR NR NR NR NR NR NR NR
Insulin-QiD 240 NR NR NR NR NR NR NR NR NR
Watanabe_2016 [95] Insulin 10 33.8 ± 7.0 NR NR NR NR 18.9 ± 2.0 Previous GDM: 1 (10.0%) 26.1 ± 5.9 NR
Diet 27 35.7 ± 3.6 NR NR NR NR 21.6 ± 4.1 Previous GDM: 5 (18.5%) NA NR
Yanagisawa_2016 [30] Insulin 36 34.2 ± 5.1 NR NR NR NR 23.3 ± 6.4 Previous GDM: 3 (8%), macrosomia: 1 (3%) NR NR
MNT 77 34.2 ± 4.2 NR NR NR NR 27.0 ± 5.1 Previous GDM: 1 (1%), macrosomia: 2 (3%) NR NR
Benhalima_2015 [32] Short-acting or long-acting insulin or both 145 32.5 ± 4.7 NR 29.1 ± 20.2 NR NR 25.3 ± 4.9 Previous GDM: 31 (21.5%) NR NR
Diet 456 31.8 ± 4.8 NR 26.8 ± 12.9 NR NR 27.1 ± 3.7 Previous GDM: 47 (10.4%) NR NR
Castillo_2015 [59] Insulin 4191 34 ± 4.7 NR NR NR NR NR NR NR Infertility treatment: 6.8%, hypothyroidism: 8.3%, PCOS: 4.1%, Hyperandrogenism: 1.6%, metabolic syndrome: 0.7%, Antihypertensive use: 7%
Glyburide 4982 34 ± 4.7 NR NR NR NR NR NR NR Infertility treatment: 5.6%, hypothyroidism: 7.1%, PCOS: 3.3%, hyperandrogenism: 2%, metabolic syndrome: 0.4%, antihypertensive use: 6.9%
Cosson_2015 [96] Insulin 260 NR NR NR NR NR NR NR NR NR
Inocencio_2015 [97] Insulin 460 NR NR NR NR NR NR NR NR
Koivunen_2015 [64] Insulin-2006 1128 31.6 ± 5.6 NR NR NR NR NR NR NR NR
Insulin-2010 887 32.1 ± 5.4 NR NR NR NR NR NR NR NR
Diet-2006 4057 30.9 ± 5.7 NR NR NR NR NR NR NR NR
Diet-2010 5796 30.9 ± 5.4 NR NR NR NR NR NR NR NR
Kopec_2015 [98] Insulin 205 30.9 ± 4.5 NR NR NR NR NR Previous GDM: 18 NR NR
OHA 141 29.5 ± 4.1 NR NR NR NR NR NR NR PIH: 18 (12%), Hypothyroidism: 2 (1.4%), p = 0.003 vs. OHA
You_2015 [99] Regular insulin (NPH if required) 55 33.4 ± 3.8 NR NR NR NR NR NR NR NR
Fast-acting insulin analogues (NPH if required)-aspart or lispro 142 33.5 ± 3.9 NR NR NR NR NR NR NR NR
Arshad_2014 [25] Regular and NPH 25 31.60 ± 4.27 77.9 ± 9.03 NR NR NR NR NR NR NR
Diet + exercise 25 30.08 ± 3.16 78.54 ± 6.93 NR NR NR NR NR NR NR
Deepaklal_2014 [100] Insulin Lispro 201 Median (range): 29 (18–41) NR NR NR NR Median (range): 21.75 (4–38) Previous GDM: 26.6%, N = 195 NR NR
Konig_2014 [101] Insulin 40 32.26 ± 4.37 NR 27.71 ± 6.77 NR NR NR NR NR NR
No insulin 83 32.69 ± 4.9 NR 23.75 ± 3.84 NR NR NR NR NR NR
Marques_2014 [102] NPH insulin 33 34.3 ± 5.3 NR 28.8 ± 6.3 NR Other: Caucasian: 29 (87.9%), Africans: 4 (12.1%) NR NR NR NR
Metformin 32 34.1 ± 5.2 NR 32.3 ± 7.7 NR Other: Caucasian: 27 (84.4%), Africans: 4 (12.5%), Asian: 1 (3.1%) NR NR NR NR
Al_Rubeaan_2013 [103] Regular insulin 674 (8.50%) NR NR NR NR NR NR NR NR NR
NPH 653 (8.58%) NR NR NR NR NR NR NR NR NR
Premixed insulin 406 (3.41%) NR NR NR NR NR NR NR NR NR
Glargine insulin analogues 58 (3.11%) NR NR NR NR NR NR NR NR NR
Aspart insulin analog 80 (7.84%) NR NR NR NR NR NR NR NR NR
Lispro insulin analog 3 (3.70%) NR NR NR NR NR NR NR NR NR
Overall 1,878,386 (4.70%) NR NR NR NR NR NR NR NR NR
Hernandez-Rivas_2013 [104] Insulin NR NR NR NR NR NR NR NR NR NR
Latif_2013 [105] Insulin 32 NR NR NR NR NR NR NR NR NR
Metformin 68 NR NR NR NR NR NR NR NR NR
Metformin + insulin 28 NR NR NR NR NR NR NR NR NR
Tempe_2013 [106] Insulin 32 27.5 ± 3.04 NR NR NR NR NR NR 27.3 ± 4.1 NR
Glyburide 32 26.9 ± 3.06 NR NR NR NR NR NR 25.9 ± 5.1 NR
Cheng_2012 [107] Insulin 8609 NR NR NR NR Black: 77.7%, White: 82.7%, Asian: 75.1%, other: 83.2, Hispanic: 81.1% NR NR NR NR
Glyburide 2073 NR NR NR NR Black: 22.3%, White: 18.1%, Asian: 24.9%, other: 16.8%, Hispanic: 18.9% NR NR NR NR
Donovan_2012 [47] Insulin 359 NR NR NR NR NR NR Previous CS: 72 (20%) NR NR
Lifestyle 505 NR NR NR NR NR NR Previous CS: 91 (18%) NR NR
Thomas_2012 [108] Insulin 137 29.2 ± 4.1 NR NR NR NR NR NR NR PIH: 18 (12%), Hypothyroidism: 10 (7%), p = 0.003 vs. OHA
OHA 141 29.5 ± 4.1 NR PIH: 18 (12%), Hypothyroidism: 2 (1.4%), p = 0.003 vs. OHA
Varghese_2012 [45] Regular/NPH/both 186 (83.78%) NR NR NR NR NR NR NR NR NR
Diet 36 (16.21%) NR NR NR NR NR NR NR NR NR
Goh_2011 [109] Intermediate-acting isophane insulin and short-acting insulin analog 399 NR NR NR NR Other: European: 28.9%, Maori: 7%, Pacific: 21.3%, Indian: 19.6%, other Asian: 19.3%, other: 4% NR NR NR NR
Metformin 465 (216 required insulin) NR NR NR NR Other: European: 22%, Maori: 101%, Pacific: 20.9%, Indian: 19.1%, other Asian: 24.3%, other: 3.7%, p < 0.001 across ethnicity overall and treatment groups NR NR NR NR
Diet 371 NR NR NR NR European: 30%, Maori: 4.6%, Pacific: 7.6%, Indian: 13.5%, Other Asian: 39.4%, other: 5.1% NR NR NR NR
Wong_2011 [110] Insulin 323 31.9 ± 5.3 NR 29.9 ± 7.3 NR Asian: SEA: 17.8%, SA: 19.4%, Middle eastern: 21.9%, Anglo-European: 30.8%. Other: 10% NR Previous GDM: 25.9% NR NR
MNT 289 30.9 ± 5.4, p = 0.140 NR 26.5 ± 6.3, p < 0.001 NR Asian: SEA: 28.4%, SA: 19.8%, Middle Eastern: 19.8%, Anglo-European: 23.8%, other: 8.2%; p = 0.006 for SEA NR Previous GDM: 16.7% NR NR
Flores-Le Roux_2010 [111] Insulin 41 34.5 ± 5.9 NR NR NR Caucasian: 17 (41.4%) NR NR NR NR
Diet 70 32.4 ± 6.1 NR NR NR Caucasian: 35 (50%) NR NR NR NR
NEF-GDM 18 32.8 ± 4.7; p = 0.21 across groups NR NR NR Caucasian: 4 (22.2%), p = 0.1 across treatment groups NR NR NR NR
Preexisting diabetes/mixed population
Demasio_2020 [112] Overall population 314 NR NR NR NR Black: 27%, White: 6%, Asian: 6%, Other: 27%, Hispanic: 38% NR NR NR NR
Insulin Levemir-T2DM 96 NR NR NR NR NR NR NR NR NR
Insulin Levemir-GDM 127 NR NR NR NR NR NR NR NR NR
Insulin NPH-T2DM 41 NR NR NR NR NR NR NR NR NR
Insulin NPH-GDM 50 NR NR NR NR NR NR NR NR NR
Kong_2020 [113] Insulin 4000 30.15 ± 5.37 NR NR NR NR NR NR NR NR
Mathiesen_2020 [114] Insulin detemir vs. other basal insulin (mainly insulin glargine) 1457 31 NR 26 NR NR NR NR NR
Sperling_2020 [115] Metformin 2542 NR NR NR NR NR NR NR NR NR
Metformin-GDM 729 NR NR NR NR NR NR NR NR NR
Glyburide-PGDM 9998 NR NR NR NR NR NR NR NR NR
Glyburide-GDM 1181 NR NR NR NR NR NR NR NR NR
Insulin + glyburide-PGDM 1113 NR NR NR NR NR NR NR NR NR
Insulin + glyburide-GDM 371 NR NR NR NR NR NR NR NR NR
Insulin + metformin-PGDM 1029 NR NR NR NR NR NR NR NR NR
Insulin + metformin-GDM 2036 NR NR NR NR NR NR NR NR NR
Insulin-PGDM 6796 NR NR NR NR NR NR NR NR NR
Insulin-GDM 5350 NR NR NR NR NR NR NR NR NR
Metformin + glyburide-PGDM 960 NR NR NR NR NR NR NR NR NR
Metformin + glyburide-GDM 375 NR NR NR NR NR NR NR NR NR
Insulin + metformin + glyburide-PGDM 214 NR NR NR NR NR NR NR NR NR
Insulin + metformin + glyburide-GDM 423 NR NR NR NR NR NR NR NR NR
Alexander_2019 [116] CSII 151 31.0 ± 5.5 NR 26.2 ± 5.8 15.4 ± 8.5 NR NR NR NR NR
Bartal_2019 [48] Basal insulin analogues 114 NR NR NR NR Other: non-Hispanic White: 27 (23.7%), non-Hispanic Black: 34 (29.8%), non-Hispanic other: 2 (1.8%), unknown: 15 (13.2%), Hispanic: 36 (31.6%) NR NR NR Chronic hypertension: 49 (43.0%)
Insulin NPH 119 NR NR NR NR Other: non-Hispanic White: 35 (29.4%), non-Hispanic Black: 52 (43.7%), non-Hispanic other: 1 (0.8%), unknown: 9 (7.6%), Hispanic: 22 (18.5%) NR NR NR Chronic hypertension: 49 (41.2%)
Christman_2019 [117] CSII and MDI 154 31 ± 5.4 NR 42.9% obese at baseline NR White: 113/150 (73.4%) NR NR NR NR
Sleeman_2019 [118] Insulin glargine or detemir 44 31.2 ± 6.5 NR NR NR NR NR NR NR NR
Insulin NPH 19 30.6 ± 6.6 NR NR NR NR NR NR NR NR
Smrz_2019 [119] CSII vs. MDI 117 NR NR NR NR NR NR NR NR
Vasquez_2019 [120] Insulin (Humulin R U-500) 10 NR NR NR NR NR NR Pregnancies complicated by severe insulin resistance Mean (range): 24 weeks (16.2–33.4) Gestational age during conversion to U-500
Gupta_2018 [121] Insulin 120 30.17 ± 4.2 NR NR NR NR NR Previous GDM: 21 (20%) NR Hypothyroidism: 22 (21.57%)
Sunjaya_2018 [122] Insulin 25 31.92 ± 4.3 71.88 ± 11.7 28.46 ± 4.0 NR NR NR History of DM in previous pregnancy: 12% NR NR
Oral antidiabetics 4 33.75 ± 4.5 73.33 ± 11.5 23.53 ± 0.97 NR NR NR History of DM in previous pregnancy: 12% NR NR
MNT 16 28.00 ± 2.8 66.21 ± 11.6 27.76 ± 3.83 NR NR NR History of DM in previous pregnancy: 12% NR NR
Abell_2017 [62] MDI-glargine/detemir/NPH 127 Median (IQR): 29 (26–33) NR Median (IQR): 26.6 (24.4–30.0) Median (IQR): 12 (8–20) NR NR NR NR NR
CSII-aspart 40 Median (IQR): 31 (28–34) NR Median (IQR): 25.1 (23.1–30.1) Median (IQR): 20 (7–22) NR NR NR NR NR
Billionnet_2017 [63] Insulin-treated GDM 16,108 NR NR NR NR NR NR NR NR NR
Noninsulin-treated GDM 41,275 NR NR NR NR NR NR NR NR NR
GDM-overall 57,383 NR NR NR NR NR NR NR NR NR
No diabetes 7,29,105 NR NR NR NA NR NA NR NA NR
Stanirowski_2017 [123] Insulin-treated GDM 6 Median (IQR): 34 (29–37) NR NR NR NR Median (IQR): 39 (38–39) NR NR NR
Diet-treated GDM 16 Median (IQR): 33 (30–37) NR NR NR NR Median (IQR): 39 (38–39) NR NR NR
Insulin-treated PGDM 6 Median (IQR): 35 (33–36) NR NR NR NR Median (IQR): 37 (37–38) NR NR NR
Controls (no diabetes) 25 Median (IQR): 30 (28–32) NR NR NR NR Median (IQR): 39 (39–39) NR NR NR
Dalfra_2016 [124] ILPS-GDM 572 34.6 ± 5.1 NR NR NR NR NR NR NR NR
NPH-GDM 242 34.1 ± 4.5 NR NR NR NR NR NR NR NR
ILPS-PGDM T1DM 58 NR NR NR 13.8 ± 9.0 NR NR NR NR NR
NPH-PGDM T1DM 61 NR NR NR 13.4 ± 10.1 NR NR NR NR NR
Becquet_2015 [125] Insulin 36 Median (IQR): 31.1 (29.4–36.4) NR NR NR NR NR NR NR NR
No insulin 43 Median (IQR): 34.2 (30.8–37.2) NR NR NR NR NR NR NR NR
Neff_2014 [61] CSII-aspart 40 35 ± 4 NR NR 22 (5–33) NR NR NR NR NR
MDI-aspart + NPH 424 31 ± 5 NR NR 13 (1–36) NR NR NR NR NR
Colatrella_2013 [126] Insulin lispro protamine suspension (ILPS)-T2DM 7 36.0 ± 4.3 NR NR 8.0 ± 5.2 NR 15.4 ± 9.6 NR NR NR
Insulin lispro protamine suspension (ILPS)-GDM 46 34.5 ± 6.0 NR NR NR NR 23.3 ± 7.8 NR NR NR
Insulin NPH-T2DM 18 33.4 ± 5.3 NR NR 6.6 ± 4.7 NR 11.1 ± 7.1 NR NR NR
Insulin NPH-GDM 18 34.9 ± 4.3 NR NR NR NR 29.5 ± 4.9 NR NR NR
Fresa_2013 [127] CSII-insulin lispro/aspart 47 30.5 ± 5 NR NR 15 ± 8 White: 65 (100%) NR NR NR NR
CSII (RT-CGM) 18 32 ± 6 NR NR 17 ± 10 White: 18 (100%) NR NR NR NR
Bruttomesso_2011 [128] CSII-rapid-acting insulin analog 100 32.0 ± 4.4 NR 23.52 ± 3.22 16.5 ± 7.3 NR NR Pre-pregnancy hypertension: 8 (8%) NR NR
Glargine-MDI 44 31.4 ± 5.2 NR 23.63 ± 4.71 13.5 ± 7.9 NR NR 3 (6.8%) NR NR
Garcia-Dominguez_2011 [53] NPH and regular insulin 241 32 ± 3.9 NR 24.7 ± 4.2 12.2 ± 7.9 NR 19.7 ± 8.4 NR NR Chronic HTN: 24 (10%), Retinopathy: 50 (20.7%), Nephropathy: 12 (5%)
Insulin analogues (NPH and lispro/aspart) 86 32.5 ± 3.8, p = 0.467 across treatment groups NR 24 ± 3.9, p = 0.127 across treatment groups 11.9 ± 8.2, p = 0.935 across treatment groups NR 20.5 ± 8.9, p = 0.687 across treatment groups NR NR Chronic HTN: 9 (8.2%), Retinopathy: 16 (14.5%), Nephropathy: 4 (3.6%), p = 0.544 across treatment groups
Negrato_2010 [51] Glargine + lispro-PGDM 18 30.4 ± 7.1 NR NR 6.8 ± 6.3 NR NR NR NR NR
NPH + lispro-PGDM 38 28.1 ± 7.2; p > 0.05 vs. glargine-PGDM NR NR 7.5 ± 5.2, p > 0.05 vs. glargine PGDM NR NR NR NR NR
Glargine + lispro-GDM 37 30.9 ± 4.2 NR NR NR NR NR NR NR NR
NPH + lispro-GDM 45 31.7 ± 6.8; p > 0.05 vs. glargine GDM NR NR NR NR NR NR NR NR

BBIT basal-bolus insulin therapy, BHI biphasic premixed human insulin, BiD twice a day, BMI body mass index, CGM continuous glucose monitor, CSII continuous subcutaneous insulin infusion, FID Fijians of Indian descent, GA gestational age, GDM gestational diabetes mellitus, GW gestational week, HTN hypertension, ILPS insulin lispro protamine suspension, IQR interquartile range, IUFD intrauterine fetal demise, MDI multiple daily injection, MNT medical nutrition therapy, n sub-population size, NA not applicable, NEF no endocrinologic follow-up, NPH neutral protamine Hagedorn, NR not reported, OHA oral hypoglycemic agents, PCOS polycystic ovarian syndrome, PGDM pregestational diabetes PIH pregnancy-induced hypertension, RT real-time, SA South-Asian, SEA Sount-east Asian, SD standard deviation, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus, QiD four times a day

Glycemic Outcomes in People with GDM and Pre-existing Diabetes

Of the 108 included studies, 21 clinical trials and 20 observational studies reported the clinical outcomes of interest (FBG, PPG, glycemic range and glycemic variability) in women with GDM (Table 3). Six clinical trials and 12 observational studies reported the clinical outcomes of interest in women with pre-existing diabetes and mixed population (Table 4).

Table 3.

Clinical outcomes in women with gestational diabetes mellitus

First author_Year Treatment arms Sample size Time points FBG (mean ± SD) mg/dl or mmol/l PPG (mean ± SD) mg/dl or mmol/l 1-h PPG (mean ± SD) mg/dl or mmol/l 2-h PPG (mean ± SD) mg/dl or mmol/l
RCT
Wasim_2019 [21] Insulin-Humulin R and NPH 141 Baseline 120 ± 22.4 NR NR NR
Delivery 96.6 ± 6.2 NR NR NR
Metformin 137 Baseline 117 ± 18.1; p = 0.215 vs. insulin NR NR NR
Delivery 92.1 ± 6.0; p = 0.001 vs. insulin NR NR NR
Galal_2019 [20] Human insulin 50 NA 92.42 ± 4.93 129.82 ± 7.88 NR NR
Metformin 56 NA;1 week 86.88 ± 5.02; p = 0.0001 117.30 ± 8.84; p = 0.0001 NR NR
Eid_2018 [34] Insulin (NPH + regular insulin) 116 Before treatment 116.83 ± 24.5 NR NR 171.1 ± 41.8
After treatment 84.1 ± 3.1 NR NR 101.4 ± 4.8
Metformin 113 Before treatment 114.38 ± 19.87; p = 0.64 insulin vs. metformin NR NR 168.9 ± 39.1; p = 0.79 insulin vs. metformin
After treatment 81.7 ± 3.6, p = 0.065 insulin vs. metformin NR NR 95.9 ± 4.7, p = 0.53 insulin vs. metformin
Huhtala_2018 [43] NPH insulin and/or rapid-acting insulin lispro or insulin aspart 107 At enrolment 5.57 ± 0.42 NR 11.2 ± 1.24 7.91 ± 1.75
Metformin 110 At enrolment 5.52 ± 0.55; p = 0.44 vs. insulin NR 11.2 ± 1.49; p = 0.61 vs. insulin 8.33 ± 1.76; p = 0.076 vs. insulin
Diet 103 At enrolment 5.38 ± 0.43 NR 10.9 ± 1.06 7.81 ± 1.91
Ghomian_2018 [33] Levemir (insulin detemir) + aspart 143 At treatment onset 92.21 ± 4.41 NR NR 152.58 ± 4.87
Delivery 88.03 ± 5.00 NR NR 118.99 ± 6.24
Metformin 143 At treatment onset 91.22 ± 4.37; p = 0.57 vs. insulin NR NR 152.25 ± 5.11; p = 0.69 vs. insulin
Delivery 89.16 ± 3.44; p = 0.79 vs. insulin NR NR 119.38 ± 4.03; p = 0.33 vs. insulin
Khan_2017 [24] Insulin (mixed human suspension) 385 Before treatment 122.37 ± 9.94 NR NR 174.46 ± 6.02
After treatment 76.88 ± 7.75 NR NR 112.34 ± 5.02
Metformin 385 Before treatment 130.06 ± 10.34; t = 10.53; p = 0.000 vs. insulin NR NR 175.18 ± 7.89; t = 1.42; p = 0.157 vs. insulin
After treatment 82.28 ± 5.51; t = 11.15; p = 0.000 vs. insulin NR NR 111.94 ± 7.02; t = − 0.909; p = 0.364 vs. insulin
Zawiejska_2016 [23] Basal-bolus insulin (human recombined insulin) 43 At booking 5.5 ± 0.7 NR NR NR
At term 4.7 ± 1; p < 0.0001 change from baseline NR NR NR
Metformin and metformin + insulin 35 At booking 5.8 ± 0.6 NR NR NR
At term 5.2 ± 0.5; p = 0.004 change from baseline; p (booking) = 0.101; p (at term) = 0.008 vs. insulin NR NR NR
Behrashi_2016 [67] Regular insulin and NPH 129 NA 83.75 ± 6.77 NR NR 107.14 ± 7.99
Glibenclamide 120 NA 84.85 ± 5.26; p = 0.38 vs. insulin NR NR 114.38 ± 81.74; p = 0.95 vs. insulin
Ashoush_2016 [22] Insulin-control (regular + NPH) 48 Baseline 106.4 ± 4.4 NR 208.3 ± 13.2 177.6 ± 8.8
1 week 93.5 ± 2.6 NR NR 122.9 ± 7.2
First 2 weeks 103.5 ± 3.5 NR NR 170.5 ± 8.2
Last week 79.9 ± 3.7 NR NR 111.3 ± 4.2
Last 2 weeks 80.8 ± 4.7 NR NR 112.2 ± 6.8
Metformin and metformin + insulin-research 36 + 11 Baseline 105.7 ± 4.7, p = 0.417 vs. insulin NR 203.9 ± 9.9, p = 0.075 vs. insulin 175.7 ± 10.0, p = 0.318 vs. insulin
1 week 92.8 ± 2.8, p = 0.257 vs. insulin NR NR 120.6 ± 7.8, p = 0.142 vs. insulin
First 2 weeks 100.7 ± 3.3; p = 0.014 vs. insulin NR NR 166.9 ± 8.9, p = 0.197 vs. insulin
Last week 78 ± 3.1; p = 0.0008 vs. insulin NR NR 109.9 ± 3.7; p = 0.104 vs. insulin
Last 2 weeks 78.9 ± 3.5; p = 0.029 vs. insulin NR NR 111 ± 5.2; p = 0.342 vs. insulin
Somani_2016 [26] Regular/NPH or both 33 Baseline 102.67 ± 9.61 NR 216.61 ± 22.39 179.0 ± 20.98
Delivery 82.27 ± 5.57 NR NR 113.06 ± 11.71
Metformin 32 Baseline 100.03 ± 10.79; p = 0.30 vs. insulin NR 215.22 ± 15.34; p = 0.77 vs. insulin 182.69 ± 17.33; p = 0.44 vs. insulin
Delivery 85.41 ± 5.96; p = 0.32 vs. insulin NR NR 121.28 ± 11.0; p = 0.005 vs. insulin
Mirzamoradi_2015 [42] Insulin (regular + NPH) 59 At diagnosis 112.15 ± 19.39 NR NR NR
At treatment to delivery 123.42 ± 14.71 120.15 ± 9.56 NR NR
Glyburide 37 At diagnosis 109.83 ± 68.99; p = 0.72 vs. glyburide NR NR NR
At treatment to delivery 114.02 ± 10.65; p = 0.83 vs. glyburide 115.46 ± 8.21; p = 0.83 vs. glyburide NR NR
Ainuddin_2015 [36] Insulin (short- + intermediate-acting)-GDM 75 Treatment initiation 172 ± 21.5 NR NR NR
Throughout pregnancy 97.4 ± 2.5 NR NR NR
Metformin-GDM 43 Treatment initiation 138 ± 16 NR NR NR
Throughout pregnancy 96.4 ± 5.7 NR NR NR
Insulin + metformin-GDM 32 Treatment initiation 144 ± 23 NR NR NR
Throughout pregnancy 95.3 ± 6.3 NR NR NR
Arshad_2014 [25] Regular and NPH 25 1 week of enrolment 117 ± 29.0 NR NR NR
Diet + exercise 25 1 week of enrolment 90.96 ± 16.84; p = 0.00 vs. insulin NR NR NR
Mukhopadhyay_2014 [58] Insulin 30 At enrolment 109.3 ± 19.63 194.3 ± 18.47 NR NR
Before confinement 88.17 ± 8.44 128 ± 12.38 NR NR
Glibenclamide 30 At enrolment 103 ± 14.62; p = 0.199 vs. insulin 184.1 ± 20.46; p = 0.048 vs. insulin NR NR
Before confinement 88.23 ± 6.55; p = 0.97 vs. insulin 122.7 ± 10.3; p = 0.07 vs. insulin NR NR
Mesdaghinia_2012 [56] NPH and regular 100 Baseline NR NR NR NR
Delivery NR NR NR NR
Metformin 100 Baseline NR NR NR NR
Spaulonci_2013 [68] NPH insulin 46 Before treatment 100.87 ± 15.05 Breakfast: 119.81 ± 21.59; lunch: 123.72 ± 19.4; dinner: 132.63 ± 23.82 NR NR
After treatment 88.35 ± 7.45 Breakfast: 106.45 ± 11.75; lunch: 111.43 ± 8.84; dinner: 119.09 ± 16.47 NR NR
Metformin 46 Before treatment 102.15 ± 21.96 Breakfast: 120.67 ± 24.03; lunch: 120.61 ± 22.63; dinner: 131.22 ± 25.43 NR NR
After treatment 90.09 ± 16.29 Breakfast: 107.7 ± 16.69; lunch: 106.87 ± 11.16; dinner: 110.76 ± 11.57; p = 0.020 NR NR
Tertti_2013 [38] Insulin (NPH + lispro + aspart) 107 At randomisation NR NR NR NR
Metformin (23 required additional insulin) 110 At randomisation NR NR NR NR
Delivery NR NR NR NR
Niromanesh_2012 [39] NPH and regular as needed 80 First 2 weeks after randomisation 91.2 ± 7.9 114.6 ± 12.1 NR NR
Second week after randomisation and until delivery 86.2 ± 8.7 107.6 ± 10.0 NR NR
Randomisation-delivery 88.7 ± 6.3 111.1 ± 9.0 NR NR
Metformin 80 First 2 weeks after randomisation 90.3 ± 9.8; p = 0.529 112.2 ± 13.0; p = 0.237 NR NR
Second week after randomisation and until delivery 86.2 ± 8.6; p = 0.985 110.4 ± 11.9; p = 0.106 NR NR
80 Randomisation-delivery 88.3 ± 7.7; p = 0.683 111.3 ± 9.1; p = 0.870 NR NR
Balaji_2012 [69] BIAsp 30 163 At enrolment 103.77 ± 17.94 NR NR 164.66 ± 38.71
Delivery 92.97 ± 14.44 NR NR 127.59 ± 28.99
BHI 30 157 At enrolment 108.24 ± 24.88 NR NR 163.83 ± 48.12
Delivery 95.43 ± 18.96 NR NR 126.98 ± 29.89
Hassan_2012 [40] Regular and intermediate-acting human insulin 75 At enrolment Median (range): 102.11 (89–110) NR NR Median (range): 236.41 (180–309)
Third trimester/delivery NR NR NR NR
Metformin 75 At enrolment Median (range): 100.89 (88–120); p = 0.079 vs. insulin NR NR Median (range): 231.56 (188–280); p = 0.058 vs. insulin
Third trimester/delivery NR NR NR NR
Ijas_2011 [41] Long-(Protaphane) and rapid-(humalog) acting insulin 50 At randomisation 5.4 ± 0.6 mmol NR NR 8.1 ± 1.8
Metformin 47 At randomisation 5.6 ± 0.9 mmol NR NR 8.2 ± 1.9
Observational
Han_2020 [72] Insulin lispro + metformin 62 Before treatment 8 NR NR Breakfast: 13; lunch: 11.8; dinner: 11.8
After treatment 5.2 NR NR Breakfast: 7; lunch: 6; dinner: 6
Insulin lispro 55 Before treatment 7.9 NR NR Breakfast: 12.8; lunch: 11.8; dinner: 11.8
After treatment 7; p < 0.05 vs. insulin + metformin NR NR Breakfast: 9.2, lunch: 8.8, dinner: 9; p < 0.05 vs. insulin + metformin
Krishnakumar_2020 [73] Insulin 37 Baseline 103.81 ± 7.98 128.30 ± 7.26 NR NR
2 months 94.59 ± 5.77; p < 0.0001 vs. baseline 116.05 ± 6.01; p < 0.0001 vs. baseline NR NR
Metformin 44 Baseline 105.16 ± 15.16 130.23 ± 16.83 NR NR
2 months 94.84 ± 6.18; p < 0.0001 vs. baseline 117.86 ± 6.54; p < 0.0001 vs. baseline NR NR
Rodrigues 2020 [50] Insulin 41 3rd trimester NR NR NR NR
Metformin + insulin 94 3rd trimester NR NR NR NR
Metformin only (subgroup of metformin +) 77 3rd trimester NR NR NR NR
Zaharieva_2020 [75] Insulin vs. no insulin Total-90; insulin n = 34 NR 5.2 vs. 4.8; p = 0.0004 NR NR NR
Tang_2019 [31] Insulin 180 NA Median (IQR): 5.8 (5.5, 6.2) NR Median (IQR): 10.2 (9.0, 11.8) Median (IQR): 8.6 (7.5, 9.3)
MNT 354 NA Median (IQR): 5.3 (5.1, 5.5); p < 0.001 NR Median (IQR): 9.5 (8.3, 10.6); p < 0.001 Median (IQR): 8.3 (7.0, 9.4); p < 0.292
McGrath_2018 [82] Insulin (NPH or Levemir and/or NovoRapid) 83 At diagnosis 4.8 NR NR NR
Metformin 83 At diagnosis 4.9 NR NR NR
Diet + lifestyle 83 At diagnosis 4.4; p < 0.001 across treatment arms NR NR NR
Rowan_2018 [85] Insulin (Adelaide cohort) 51 At enrolment 88 ± 13 NR NR NR
Metformin (Adelaide cohort) 51 36 weeks NR NR NR NR
Insulin (Auckland cohort) 58 At enrolment 88 ± 16 NR NR NR
Metformin (Auckland cohort) 58 36 weeks NR NR NR NR
Insulin (Adelaide cohort) 54 At enrolment 90 ± 11 NR NR NR
Metformin (Adelaide cohort) 54 36 weeks NR NR NR NR
Insulin (Auckland cohort) 45 At enrolment 95 ± 16 NR NR NR
36 weeks NR NR NR NR
Simeonova-Krstevska_2018 [28] Levemir (detemir) + aspart 101 NA 5.8 ± 1.4; p < 0.05 vs. metformin 7.9 ± 1.9; p < 0.05 vs. metformin NR NR
Metformin 48 NA 5.3 ± 0.7; p = NS vs. diet 7.0 ± 1.2; p = NS vs. diet NR NR
Diet 200 NA 5.1 ± 0.9; p < 0.01 vs. insulin 6.9 ± 1.6; p < 0.05 vs. insulin NR NR
Olmos_2017 [89] Basal-bolus insulin therapy (BBIT) 73 NA NR NR NR NR
Without BBIT (diet/metformin) 58 NA NR NR NR NR
Xie_2017 [90] Research arm (insulin aspart intensive treatment/insulin pump) 45 NA 5.2 ± 0.6 NR NR 7.3 ± 1.2
Reference arm (insulin aspart + detemir) 45 NA 6.8 ± 0.6; p < 0.05 vs. research arm NR NR 8.8 ± 1.2; p < 0.05 vs. research arm
Ito_2016 [92] RHI or rapid-acting insulin (insulin aspart or lispro) and NPH insulin) 32 At diagnosis 91.5 ± 7.9 NR 179.9 ± 34.9 150.5 ± 28.5
32 Delivery 93.2 ± 9.4 NR 162.2 ± 41.2 124.2 ± 31.4
Diet 70 At diagnosis 89.6 ± 8.7; p = 0.313 vs. insulin NR 155.3 ± 33.6; p = 0.001 vs. insulin 135.3 ± 29.7; p = 0.017 vs. insulin
Delivery 90.8 ± 7.7; p = 0.251 vs. insulin NR 142.9 ± 40.7; p = 0.064 vs. insulin 118.0 ± 29.0; p = 0.410 vs. insulin
Koren_2016 [55] Insulin detemir 29 NA 5.1 ± 0.5 NR 8 ± 1.3 7.78 ± 1.3
Glyburide 62 NA 5.1 ± 1; p = 0.91 NR 7.8 ± 1.3; p = 0.82 7.12 ± 1.8; p = 0.13
Ozgu-Erdinc_2016 [29] Insulin 144 NA Median (range): 87 (56–275) NR Median (max–min): 144 (67–340) Median (max–min): 132 (53–320)
Diet 115 NA Median (range): 80 (58–157); p < 0.001 NR Median (max–min): 137.5 (72–212); p = 0.002 Median (max–min): 118.5 (72–207); p < 0.001
Yanagisawa_2016 [30] Insulin 36 NA OGTT: 88 ± 11 meal TT: 92 ± 16 NR OGTT: 177 ± 29; meal TT: 147 ± 32 OGTT: 161 ± 22; Meal TT: 128 ± 32
MNT 77 NA OGTT: 83 ± 9; p = 0.013 vs. insulin, meal TT: 84 ± 7; p = 0.014 NR OGTT: 173 ± 28; p = NS vs. insulin Meal TT: 121 ± 20 p < 0.001 OGTT: 157 ± 25; p = NS vs. insulin meal TT: 104 ± 18 p < 0.001
You_2016 [99] Regular insulin (NPH if required) 55 Baseline 96.9 ± 15.4 NR 200.7 ± 33.9 195.9 ± 37.2
Fast-acting insulin analogues (NPH if required)-aspart or lispro 142 Baseline 99.4 ± 20.5; p = 0.494 NR 208.0 ± 36.4; p = 0.194 188.8 ± 40.6; p = 0.249
Benhalima_2015 [32] Short-acting or long-acting insulin or both 145 NA 97.6 ± 18.8 NR 194.7 ± 30.1 185.2 ± 28.5
Diet 456 NA 87.7 ± 10.3; p < 0.0001 vs. insulin NR 184.5 ± 25.8; p < 0.0001 vs. insulin 175.0 ± 22.8; p < 0.0001 vs. insulin
Deepaklal_2014 [100] Insulin lispro 201 At enrolment/first trimester 99.01 Post breakfast: 126.9 ± 44.2, post lunch: 125.5 ± 38.3, post dinner: 127.2 ± 38.6 NR NR
Delivery NR Post breakfast: 106.5 ± 18.8, post lunch: 111 ± 18.4, post dinner: 111.8 ± 19.5 NR NR
Marques_2014 [102] NPH insulin 33 NA NR NR NR NR
Metformin 32 NA NR NR NR NR
Goh_2011 [109] Intermediate-acting isophane insulin and short-acting insulin analog 399 NA 5.4 ± 1.1 NR NR 9.9 ± 2.1
Metformin 465 NA 5.3 ± 0.8 NR NR 9.4 ± 1.6
Diet 371 NA 4.5 ± 0.7, p < 0.0001 across treatment arms NR NR 9.5 ± 1.1, p = 0.0008 across treatment arms
Flores-Le Roux_2010 [111] Insulin 41 3rd trimester NR NR NR NR
Diet 70 3rd trimester NR NR NR NR
NEF-GDM 18 3rd trimester NR NR NR NR

BBIT basal-bolus insulin therapy, BHI biphasic premixed human insulin, BIAsp biphasic insulin aspart, FBG fasting blood glucose, GDM gestational diabetes mellitus, NA not applicable, NEF no endocrinologic follow-up, NPH neutral protamine Hagedorn, NR not reported, PPG postprandial glucose, RCT randomized controlled trial, RHI regular human insulin, SD standard deviation

Table 4.

Clinical outcomes in women with pre-existing diabetes and mixed population

First author_Year Treatment arms Sample size Time points FBG (mean ± SD) mg/dl or mmol/l PPG (mean ± SD) mg/dl or mmol/l 2-h PPG (mean ± SD) mg/dl or mmol/l
RCT
Jing ji_2020 [27] IDET + Novolin-R 120 Before treatment 6.84 ± 1.31 NR 9.40 ± 1.62
120 7 days after treatment 5.33 ± 0.72 NR 6.73 ± 0.79
120 3 months after treatment NR NR NR
Insulin NPH + Novolin-R 120 Before treatment 6.86 ± 1; p = 0.918 vs. IDET + Novolin-R NR 9.55 ± 1.54; p = 0.549 vs. IDET + Novolin-R
120 7 days after treatment 5.71 ± 0.87, p < 0.001 vs. IDET + Novolin-R NR 7.38 ± 0.80; p < 0.001 vs. IDET + Novolin-R
120 3 months after treatment NR NR NR
Ainuddin_2015 [44] Insulin (short- + intermediate-acting) T2DM 100 Treatment initiation 139.85 ± 29.43 NR NR
100 Throughout pregnancy 97.55 ± 3.29 NR NR
Metformin-T2DM 16 Treatment initiation 138.06 ± 45.58 NR NR
16 Throughout pregnancy 97.87 ± 3.83 NR NR
Insulin added-on to metformin-T2GDM 90 Treatment initiation 144.14 ± 29.64 NR NR
90 Throughout pregnancy 97.50 ± 3.35 NR NR
Herrera_2015 [70] IDET 42 NA Per protocol: 100.7 ± 10.1; ITT: 101.2 ± 9.2 Per protocol: 115.2 ± 10.2 ITT: 115.2 ± 9.6 NR
Insulin NPH 45 NA Per protocol: 97.3 ± 7.4; p = 0.1093; ITT: 99.3 ± 8.8; p = 0.3347 Per protocol: 112.9 ± 8.9; p = 0.3204. ITT: 113.4 ± 9.0; p = 0.3879 NR
Refuerzo_2015 [71] Regular + NPH 13 At enrolment/1st trimester NR NR NR
Mid-trimester NR NR NR
3rd trimester NR NR NR
Delivery NR NR NR
3rd trimester/delivery NR NR NR
Metformin 8 At enrolment/1st trimester NR NR NR
Mid-trimester NR NR NR
3rd trimester NR NR NR
Delivery NR NR NR
3rd trimester/delivery NR NR NR
Hod_2014 [57] IDET + aspart 152 Before treatment 106.0 ± 59.2 NR NR
152 24 weeks 96.8 mg/dl ± 5.4 mmol/l NR NR
152 36 weeks 85.7 mg/dl ± 4.8 mmol/l NR NR
Insulin NPH + aspart 158 Before Treatment 107.8 ± 58.1 NR NR
158 24 weeks 113.8 mg/dl ± 6.3 mmol/l; p = 0.012 vs. IDET NR NR
158 36 weeks 97.4 mg/dl ± 5.4 mmol/l; p = 0.017 vs. IDET NR NR
Hickman_2013 [52] Regular + NPH 14 At enrolment Median (IQR): 95.04 (86–115) Median (IQR): 128.62 (115–143) NR
14 18–20 weeks Median (IQR): 92.38 (89–116) Median (IQR): 120.46 (113, 142) NR
14 28–30 weeks Median (IQR): 90.64 (84–106) Median (IQR): 126.45 (115–137) NR
14 36–38 weeks Median (IQR): 85.18 (80–107) Median (IQR): 125.25 (112–138) NR
Metformin 14 At enrolment Median (IQR): 97.38 (92–101); p = 0.4 Median (IQR): 120.40 (115–129); p = 0.31 NR
14 18–20 weeks Median (IQR): 97.00 (93–100); p = 0.69 Median (IQR): 118.40 (107–122); p = 0.5 NR
14 28–30 weeks Median (IQR): 92.43 (90–98); p = 0.44 Median (IQR): 119.00 (114–125); p = 0.35 NR
14 36–38 weeks Median (IQR): 89.49 (82–96); p = 0.93 Median (IQR): 122.59 (118–130); p = 0.63 NR
Observational
Christman 2019 [117] IDET 154 Hospital stay duration 109.2 ± 22.6 NR NR
Sleeman_2019 [118] Insulin glargine or IDET 44 Baseline NR NR NR
Delivery NR NR NR
Insulin NPH 19 Baseline NR NR NR
Delivery NR NR NR
Smrz_2019 [119] CSII vs. MDI 117 NR NR NR NR
Sunjaya_2018 [122] Insulin (long-acting, intermediate-acting, short-acting, rapid-acting and human premixed) 25 Before treatment 157.12 ± 40.24 NR 234.88 ± 52.58
After treatment 124.88 ± 34.14 NR NR
Oral antidiabetics (metformin and pioglitazone) 4 Before treatment 153.50 ± 21.64 NR 199.75 ± 14.43
After treatment 175.75 ± 71.94 NR NR
MNT 16 Before treatment 134.33 ± 41.43 NR 207.31 ± 60.66
After treatment 113.81 ± 34.20; p = 0.021 across treatment arms NR NR
Abell_2017 [62] MDI-glargine/detemir/NPH 127 1st trimester NR NR NR
127 2nd trimester NR NR NR
127 3rd trimester/delivery NR NR NR
CSII-Aspart 40 1st trimester NR NR NR
40 2nd trimester NR NR NR
40 3rd trimester/delivery NR NR NR
Stanirowski_2017 [123] Insulin-treated GDM 6 NA Median (IQR): 98 (96–112) NR Median (IQR): 153 (143–158)
Diet-treated GDM 16 NA Median (IQR): 86 (80–97) NR Median (IQR): 156 (138–163)
Insulin-treated PGDM 6 NA NR NR NR
No diabetes 25 NA Median (IQR): 79 (74–83); p < 0.05 NR Median (IQR): 103.5 (85.5–116.5); p < 0.01
Dalfra_2016 [124] ILPS-GDM 572 NA 4.9 ± 0.7 NR NR
NPH-GDM 242 NA 6.3 ± 1.5; p < 0.001 vs. ILPS-GDM NR NR
ILPS-Pregestational T1DM 58 NA 6.0 ± 1.4 NR NR
NPH-Pregestational T1DM 61 NA 7.7 ± 2.2; p = 0.001 vs. ILPS-T1DM NR NR
Neff_2014 [61] CSII-Aspart 40 At booking NR NR NR
Delivery NR NR NR
MDI-aspart + NPH 424 At booking NR NR NR
Delivery NR NR NR
Colatrella_2013 [126] ILPS-T2DM 7 Baseline 110.0 ± 7.8 NR NR
After treatment 89.2 ± 12.7 NR NR
ILPS-GDM 46 Baseline 98.6 ± 15.8 NR NR
After treatment 94.3 ± 13.5 NR NR
Insulin NPH-T2DM 18 Baseline 109.8 ± 15.8 NR NR
After treatment 95.5 ± 8.2 NR NR
Insulin NPH-GDM 18 Baseline 92.2 ± 14.5 NR NR
After treatment 95.8 ± 12.8 NR NR
Bruttomesso_2011 [128] CSII-rapid-acting insulin analog 100 1st trimester NR NR NR
2nd trimester NR NR NR
End of pregnancy NR NR NR
Glargine-MDI 44 1st trimester NR NR NR
2nd trimester NR NR NR
End of pregnancy NR NR NR
Garcia-Dominguez_2011 [53] Human insulin 241 1st trimester NR NR NR
2nd trimester NR NR NR
Delivery NR NR NR
Insulin analog 86 1st trimester NR NR NR
2nd trimester NR NR NR
Delivery NR NR NR
Negrato_2010 [51] Glargine + lispro-PGDM 18 36 weeks 107.9 ± 27.4 NR NR
NPH + lispro-PGDM 38 36 weeks 109.5 ± 37.1; p > 0.05 vs. glargine-PGDM group NR NR
Glargine + lispro-GDM 37 36 weeks 82.8 ± 14.5 NR NR
NPH + lispro-GDM 45 36 weeks 91.6 ± 21.5; p = 0.03 vs. glargine-GDM group NR NR

FBG fasting blood glucose, GDM gestational diabetes mellitus, IDET insulin detemir, ILPS insulin lispro protamine suspension, IQR interquartile range, MDI multiple daily injection, MNT medical nutrition therapy, NPH neutral protamine Hagedorn, NR not reported, OGTT oral glucose tolerance test, OHA oral hypoglycemic agents, PGDM pregestational diabetes mellitus, PPG postprandial glucose, SD standard deviation, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus

Evidence from Clinical Trials

In women diagnosed with GDM, majority of the trials compared an insulin regimen [basal only, basal/bolus, or bolus only] to metformin (n = 13) (Table 3). In addition, few trials compared insulin to glibenclamide/glyburide (n = 3), (Table 3). The difference in the glycemic outcomes in women treated with insulin versus other therapies varied across the trials and provided very low-quality of evidence for the outcomes. The study design varied widely across the trials.

FBG was the most reported clinical outcome (n = 22). Some RCTs (n = 3) reported a significantly better (p ≤ 0.01) FBG in the metformin-treated group compared to those with insulin [2022]. Two RCTs by Zawiejska et al. and Khan et al. compared glycemic control in women diagnosed with GDM in response to insulin and metformin and reported significantly better FBG in the insulin-treated groups compared to other therapies (p ≤ 0.01) [23, 24]. Arshad et al. compared insulin with diet therapy and exercise and reported a significantly better FBG in the diet-treated group compared to those treated with insulin [25].

In an RCT by Somani et al. with no differences in glycemic outcomes between the metformin and insulin groups at baseline, higher PPG levels were reported in group treated with insulin compared to those treated with metformin (p = 0.005) [26]. In an RCT by Ji et al. with mixed population, a significant improvement in PPG and time in range (TIR) was observed with insulin detemir compared to insulin neutral protamine Hagedorn (NPH) (p < 0.001) [27].

Evidence from Observational Studies

In women with GDM, most observational studies that reported clinical outcomes of interest compared insulin to diet/MNT (n = 6), metformin (n = 5), combination of metformin and/or diet and/or lifestyle interventions (n = 4). Additionally, other studies reported a comparison between different types of insulin (n = 3), insulin versus no insulin (n = 1) and insulin versus glyburide (n = 1) (Table 3). Five studies showed significant improvement in FBG and PPG among those managed with other therapies compared to the insulin-treated group [2832] (p < 0.05). These observational studies provide an insight into the real-world use of insulin within this specific population, highlighting that potential barriers of insulin use may be limiting its full benefits in optimizing glycemic control.

Maternal Outcomes in People with GDM and Pre-existing Diabetes

Of the 108 included studies, 18 clinical trials and 44 observational studies reported the maternal outcomes of interest (prevalence of hypoglycemia, cesarean section, preterm labor, hypertension, induced labor and preterm delivery) in women with GDM (Table 5). Maternal outcomes in women with diabetes prior to pregnancy and mixed population were reported in 6 trials and 18 observational studies (Table 6).

Table 5.

Maternal outcomes in women with gestational diabetes mellitus

First Author_Year Treatment arms Sample size Timepoints Proportion of induced labor, n (%) Induced labor, OR (95% CI), p value Preterm labor/delivery n (%) Preterm labor/delivery OR (95% CI), p value Proportion of CS, n (%) CS: OR (95% CI), p value Prevalence/rate of preeclampsia/eclampsia, n (%) Preeclampsia/eclampsia: OR (95% CI), p value Prevalence/rate of maternal hypoglycemia, n (%)
RCT
Galal_2019 [20] Human insulin (intermediate-acting and short-acting) 50 1 week NR NR 4 (7.4%) NR 44 (81.5%) NR NR NR NR
Metformin 56 1 week NR NR 7 (13.5%); p = 0.056 NR 30 (57.7%); p = 0.031 NR NR NR NR
Ghomian_2019 [33] Levemir (IDET) + aspart 143 Delivery NR NR 19 (13.2%) NR 68 (48%) NR NR NR NR
Metformin 143 Delivery NR NR 20 (13.9%); NR 56 (39%) NR NR NR NR
Wasim_2019 [21] Insulin-humulin R and NPH 141 Delivery NR NR 20 (14.5%) NR 93 (65.9%) NR 28 (19.8%) NR 19 (13.4%)
Metformin 137 Delivery NR NR 13 (9.2%); p = 0.226 NR 76 (55.4%); p = 0.073 NR 17 (12.4%); p = 0.092 vs. insulin NR 06 (4.3%)
Eid_2018 [34] Insulin (NPH + regular) 116 After treatment 43 (37.1%) NR 7 (6%) NR 49 (42.2%) NR 6 (5.2%) NR 3 (2.9%)
Metformin 113 After treatment 39 (34.5%); p = 0.29 NR 8 (7.3%); p = 0.93 NR 42 (37.2%); p = 0.81 NR 5 (4.4%); p = 0.71 NR 0
Huhtala_2018 [43] NPH insulin and/or rapid-acting insulin lispro or insulin aspart 107 Delivery 58 (54.2%) NR NR NR 18 (16.8%) NR GHTN: 4 (3.7%) PE: 10 (9.3%) NR NR
Metformin 110 Delivery 41 (37.6%); p = 0.014 vs. insulin NR NR NR 15 (13.8%); p = 0.53 vs. insulin NR GHTN: 2 (1.8%); p = 0.44; PE: 5 (4.6%); p = 0.17 vs. insulin NR NR
Diet 103 Delivery 31 (30.1) NR NR NR 16 (15.5) NR GHTN: 4 (3.9%), PE: 2 (1.9%) NR NR
Senat_2018 [54] Insulin (rapid analogues/basal or intermediate) 442 NA NR NR 18 (4.1%) NR Elective CS: 66 (14.9%), emergency CS: 58 (13.1%) NA NR NR 13 (3.5%)
Glyburide 367 NA NR NR 25 (6.8%) RD: 2.7 (− 1.0 to 6.4); p = 0.09 Elective CS: 36 (9.8%), emergency CS: 63 (17.2%) Elective CS RD: − 5.1 (− 9.6 to − 0.6), emergency CS RD: 4.0 (− 0.9 to 9.0); p = 0.08 NR NR 93 (28.8%) p < 0.001
Hamadani_2017 [35] Insulin NPH 30 NA NR NR NR NR 11 (36.7%) NR NR NR NR
Metformin 30 NA NR NR NR NR 13 (43.3%); p = 0.59 vs. insulin NR NR NR NR
Khan_2017 [24] Insulin (mixed human suspension) 385 After treatment NR NR 48 (12.5%) NR 139 (36.1%) NR 60 (15.6%) NR NR
Metformin 385 After treatment NR NR 10 (2.6%), χ2 = 26.93; p = 0.000 NR 157 (40.8%), χ2 = 1.778; p = 0.182 NR 17 (4.4%), χ2 = 26.68; p = 0.000 vs. insulin NR NR
Somani_2016 [26] Human insulin (regular, NPH or both) 33 Delivery 8 (24.24%) NR NR NR 23 (69.7%) NR NR NR 3 (9.09%)
Metformin 32 Delivery 12 (37.5%); p = 0.29 vs. insulin NR NR NR 24 (75%); p = 0.64 vs. insulin NR NR NR 1 (3.1%); p = 0.57 vs. insulin
Ainuddin_2015 [36] Insulin (short- + intermediate-acting)-GDM 75 Throughout pregnancy 14 (18.7%) NR NR NR 38 (50.7%) NR PIH: 18 (24%); PE: 6 (8%) NR NR
Metformin-GDM 43 Throughout pregnancy 10 (23.3%) NR NR NR 18 (41.9%) NR PIH: 8 (18.6); PE: 0% NR NR
Insulin added on to metformin-GDM 32 Throughout pregnancy 10 (31.3%) NR NR NR 18 (56.3%) NR PIH: 3 (9.4%); PE: 1 (3.1%) NR NR
Mirzamoradi_2015 [42] Insulin (regular + NPH) 59 At treatment to delivery NR NR NR NR 42 (71.20%) NR 13.6% NR NR
Glyburide 37 At treatment to delivery NR NR NR NR 28 (75.7%); p = 0.63 NR 8.1%; p = 0.41 NR NR
Ruholamin_2014 [37] Insulin 50 NA NR NR NR NR 35 (70%) NR NR NR NR
Metformin 50 NA NR NR NR NR 37 (74%) p = 0.66 NR NR NR NR
Tertti_2013 [38] Insulin (NPH + lispro + aspart) 107 Delivery 58 (54.2%) NR NR 18 (16.8%) PIH: 4 (3.7%); PE: 10 (9.4%) NR NR
Metformin 110 Delivery 42 (38.2%) RR: 0.7 (0.5–1.0); p = 0.08 NR NR 15 (13.6%) RR: 0.8 (0.4–1.6); p = 0.55 PIH: 2 (1.8%); PE: 5 (4.6%) RR (95% CI)-PIH: 0.5 (0.1–2.7); p = 0.41; PE: 0.5 (0.2–1.4); p = 0.19 NR
Balaji_2012 [69] BIAsp 30 163 Delivery NR NR 1 (1.63%) NR 144 (88.3%) NR NR
BHI 30 157 Delivery NR NR 2 (3.26%); p > 0.05 NR 141 (89.8%); p > 0.05 NR NR
Hassan_2012 [40] Regular- and intermediate-acting human insulin 75 Delivery 14 (18.7%) NR NR NR 42 (56%) NR NR
Metformin 75 Delivery 20 (26.7%); p = 0.001 vs. insulin NR NR NR 25 (33.3%); p = 0.004 vs. insulin NR NR
Mesdaghinia_2012 [56] NPH and regular 100 NA NR NR 8 (8) NR NR NR NR
Metformin 100 NA NR NR 0 (0) NR NR NR NR
Niromanesh_2012 [39] NPH and regular as needed 80 Randomisation-delivery NR NR 4 (5.0%) Overall CS: 37 (46.3%), emergency CS: 16 (20.0%) NR PE: 7 (8.8%); PIH: 11 (13.8%) NR NR
Metformin 80 Randomisation-delivery NR NR 9 (11.3%) RR: 2.2 (0.7–7.0); p = 0.148 Overall CS: 34 (42.5%), emergency CS: 25 (31.3%) RR-Overall CS: 0.7 (0.2–2.2); p = 0.633; emergency CS: 1.6 (0.9–2.7); p = 0.102 PE: 5 (6.3%); PIH: 4 (5%) RR (95% CI)-PE: 0.7 (0.2–2.2), p = 0.548; PIH: 0.4 (0.1–1.1), p = 0.058 NR
Ijas_2011 [41] Long- (Protaphane) and rapid-(Humalog) acting insulin 50 NA 26 (52.0%) NA NR NR 10 (20.0%) NR NR NR NR
Metformin 47 NA 24 (51.0%) RR: 1.0 (0.67–1.45), p = 0.960 vs. insulin NR NR 18 (38.3%) RR: 1.9 (0.99–3.31), p = 0.047 vs. insulin NR NR NR
Observational
Han_2020 [72] Insulin lispro + metformin 62 After treatment NR NR NR NR 21 (33.87%) NR NR NR NR
Insulin lispro 55 After treatment NR NR NR NR 34 (61.82%); p = 0.003 vs. lispro NR NR NR NR
Meghelli_2020 [77] Insulin 63 NA 25 (39.7%) NR 6 (9.5%) NR 22 (34.9%) NR 1 (1.6%) NR NR
No Insulin 56 NA 18 (32.7%); p = 0.43 vs. insulin NR 7 (12.7%) NR 21 (37.5%) NR 2 (3.6%) NR NR
Rodrigues_2020 [50] Insulin 41 NA 22/40 (55) NR NR NR 17/40 (42.5) NR 1 (2.4) NR NR
Metformin + insulin 94 NA 48/87 (55.2); p = 0.986 vs. insulin NR NR NR 25/93 (26.9) NR 1 (1.1); p = 0.52 vs. insulin NR NR
Metformin only 77 NA 38/73 (52.1); p = 0.076 vs. insulin NR NR NR 19/76 (25) NR 0 NR NR
Landi_2019 [49] Insulin 3450 NA 1884 (54.6%) 311 (9.0%) Elective CS: 808 (23.4%), emergency CS: 650 (17.0%) 116 (3.5%) NR
Metformin 3818 NA 1965 (51.5%) RR (95% CI): 0.94 (0.90–0.98) 269 (7.1%) RR (95% CI): 0.78 (0.67‐0.92) Elective CS: 720 (18.9%), emergency CS: 640 (18.6%) RR (95% CI)-Elective CS: 0.81 (0.74‐0.88), Emergency CS: 0.92 (0.83‐1.01) 139 (3.6%) RR (95% CI): 1.08 (0.85‐1.38) NR
Munn_2019 [78] Glyburide 195,000 NA NR NR NR NR 64,368 (33%) NR NR NR NR
Insulin 195,000 NA NR NR NR NR 63,982 (33%) NR NR NR NR
Ng_2019 [79] Insulin 576 NA NR NR NR NR Emergency CS: 106 (18.40%), elective CS: 162 (28.13%) NR 42 (7.29%) NR NR
No insulin 1281 NA NR NR NR NR Emergency CS: 215 (16.78%), elective CS: 287 (22.40%) NR 52 (4.06%) NR NR
Bogdanet_2018 [46] IDET and insulin aspart 752 NA NR NR NR NR 353/742 (47.6%) PE: 41/718 (5.7%) PIH: 96/719 (13.4%) NR NR
MNT 567 NA NR NR NR NR 172/567 (30.3%) Adjusted: 1.67 (1.25–2.23) PE: 24/567 (4.2%) PIH: 66/567 (11.6%) Adjuster OR; PE: 0.81 (0.40–1.62), p = 0.55. PIH: 0.87 (0.57–1.33); p = 0.53 vs. insulin NR
Normal glucose tolerance 2496 NA NR NR NR NR 608/2468 (24.63%) Adjusted: 1.44 (1.11–1.87); p < 0.01 vs. insulin PE: 94/2496 (3.76%); PIH: 190/2420 (7.85%) Adjusted OR; PE: 0.64 (0.34–1.12); p = 0.17. PIH: 1.11 (0.74–1.66); p = 0.60 vs. insulin NR
Christian_2018 [80] IDET (with/without aspart) 17 NA NR NR NR NR 9 (53%) NR 2 (12%) NR NR
Metformin 58 NA NR NR NR NR 24 (41.3%) NR 2 (3.4%) NR NR
Metformin + insulin 32 NA NR NR NR NR 23 (71.8%) NR 1 (3.1%) NR NR
Leung_2018 [81] Insulin 223 NA NR NR 17 (7.6%) NR 47 (21%) NR 19 (8.5%) NR NR
Glyburide 171 NA NR NR 11 (6.4%); p = 0.871 NR 23 (13.4%); p = 0.950 NR 8 (5.6%) NR NR
McGrath_2018 [82] Insulin (NPH or Levemir and/or NovoRapid) 83 38.4 weeks NR NR NR NR 25 (30.1%) NR NR NR NR
Metformin 83 38.6 weeks NR NR NR NR 35 (42.2%) NR NR NR NR
Diet + lifestyle 82 38.9 weeks NR NR NR NR 27 (32.9%) NR NR NR NR
Patanjali_2018 [84] Insulin 58 (20.1%) NA NR NR 37.9%; p = 0.04 vs. other group NR 0.66 NR NR NR NR
Metformin Only metformin: 23 (8%), required insulin with metformin: 28 (9.7%) NA NR NR NR NR 0.57 NR NR NR NR
Diet 179 NA NR NR NR NR 0.4 NR NR NR NR
Rowan_2018 [85] Insulin (Adelaide cohort) 51 NR NR NR NR NR 18 (35.3%) NR 2 (3.9%) NR NR
Metformin (Adelaide cohort) 58 NR NR NR NR NR 25 (43.1%) NR 3 (5.1%) NR NR
Insulin (Auckland cohort) 54 NR NR NR NR NR 20 (37.0%) NR 0 NR NR
Metformin (Auckland cohort) 45 NR NR NR NR NR 15 (33.3%) NR 2 (4.4%) NR NR
Simeonova-Krstevska_2018 [28] Levemir (IDET) + aspart 101 NA NR NR 20 (19.8%) NR 66/100 (66%) NR 6 (6%); p = NS vs. metformin NR NR
Metformin 48 NA NR NR 2 (4.2%); p = NS vs. diet; p < 0.01 vs. insulin NR 24/46 (52.2%); p = NS vs. insulin; p < 0.05 vs. diet NR 4 (8.3%); p < 0.01 vs. diet NR NR
Diet 200 NA NR NR 13 (6.5%); p < 0.01 vs. insulin NR 41/130 (31.5%); p < 0.05 vs. insulin NR 1 (0.5%); p < 0.01 vs. insulin NR NR
Vanlalhruaii_2018 [86] Insulin 151 NA NR NR Insulin throughout: 9 (6.27%), insulin 1st trimester: 5 (8.77%) NR NR NR PE: 3%; GHTN: 10.5% NR 6.30%
Metformin-1st trimesters 186 NA NR NR 23 (12.37%) NR NR NR PE: 5%; p = 0.44 vs. insulin; GHTN: 15.1% NR 3.70%; p = 0.06 vs. insulin
Metformin-2nd trimesters 203 NA NR NR 20 (9.85%) NR NR NR PE: 4%; p = 0.35 vs. metformin 1st trimesters; GHTN: 10.5% NR 3.10%; p = 0.40 vs. metformin 1st trimesters
Bowker_2017 [87] Insulin 5057 (27.0%) NA NR NR 583 (11.5%) NR NR NR NR NR NR
Metformin ± insulin 478 (2.5%) NA NR NR 91 (19.0%) NR NR NR NR NR NR
No specific intervention 13,226 (70.5%) NA NR NR 1553 (11.7%), p < 0.001 across treatment arms NR NR NR NR NR NR
Gibbons_2017 [88] Insulin 315 NA NR NR 116 (36.8%) 1.82 (1.37–2.41); p < 0.001 vs. OHA and diet 151 (47.9%); p < 0.001 vs. OHA and diet NR NR NR NR
OHA (glyburide/metformin) 211 NA NR NR 46 (21.8%) 89 (42.2%) NR NR NR NR
Diet 563 NA NR NR 142 (25.2%) 187 (33.2%) NR NR NR NR
Ito_2016 [92] Insulin 32 Delivery NR NR NR NR 11 (34.4%) NR NR NR
Diet 70 Delivery NR NR NR NR 19 (27.1%) Adjusted: 1.24 (0.47–3.16), p = 0.656 vs. insulin NR NR NR
Koning_2016 [93] Diet + additional insulin (aspart, NPH and aspart + NPH) 360 (43.9%) NA 262 (72.8%) NR 24 (6.7%) NR CS: 39 (10.8%), planned CS: 56 (15.6%) NR PE: 12 (3.3%) GHTN: 32 (8.9%) NR NR
Diet 460 (56.1%) NA 271 (58.9%) NR 28 (6%) NR CS: 60 (13.0%), p = NS vs. insulin; planned CS: 37 (8.0%), p = 0.0001 vs. insulin NR PE: 16 (3.5%); p = NS vs. insulin GHTN: 43 (9.3%); p = NS vs. insulin NR NR
Koren_2016 [55] IDET 29 NA NR NR 3 (10.3%) NR 10 (34.5%) NR NR NR NR
Glyburide 62 NA NR NR 6 (9.7%); p = 1 vs. insulin NR 26 (41.9%); p = 0.64 vs. insulin NR NR NR Hypoglycaemia (< 3.3 mmol/L): 12 (19.4%); p = 0.01 Severe hypoglycaemia: 1 (1.6%); p = 1
Ozgu-Erdinc_2016 [29] Insulin 144 NA NR NR 24 (16.7%) NR 99 (68.8%) NR 15 (10.4%) NR NR
Diet 115 NA NR NR 14 (12.2%); p = 0.952 vs. insulin NR 74 (64.3%); p = 0.507 vs. insulin NR 10 (8.7%); p = 0.678 vs. insulin NR NR
Saleem_2016 [94] Insulin BiD 240 NA NR NR NR NR 120 (50%) NR NR NR 80 (33.3%)
Insulin QiD 240 NA NR NR NR NR 72 (30%); p = 0.001 vs. BiD NR NR NR NR
Watanabe_2016 [95] Insulin 10 NA NR NR 3 (30.0%) NR 7 (70.0%) NR PIH: 3 (30.0%) NR NR
Diet 27 NA NR NR 5 (18.5%); p = 0.451 vs. insulin NR 10 (37.0%); p = 0.074 vs. insulin NR PIH: 2 (7.4%); p = 0.074 vs. insulin NR NR
Yanagisawa_2016 [30] Insulin 36 NA NR NR 2 (6%) NR 17 (47%) NR PIH: 3 (8%) NR NR
MNT 77 NA NR NR 2 (3%); p = NS vs. insulin NR 23 (30%); p = NS vs. insulin NR PIH: 6 (8%); p = NS vs. insulin NR NR
You_2016 [99] Regular insulin (NPH, if required) 55 Delivery NR NR 9 (16.4%) NR Elective: 25 (45.5%), Emergency: 5/30 (16.7%) NR PE: 6 (10.9%) NR NR
Fast-acting insulin analogues (NPH if required)-aspart or lispro 142 Delivery NR NR 29 (20.4%); p = 0.554 NR Elective: 57 (40.1%), p = 0.522, Emergency: 21/85 (24.7%), p = 0.452 vs. regular insulin NR PE: 11 (7.7%); p = 0.572 NR NR
Benhalima_2015 [32] Short-acting or long-acting insulin or both 145 NA NR NR 20 (13.9%) NR 64 (44.1%) NR GHTN: 6 (4.2%); PE: 11 (7.6%) NR NR
Diet 456 NA NR NR 58 (12.8%); p = 0.743 NR 122 (27.0%); p < 0.0001 NR GHTN: 35 (7.7%); p = 0.140; PE: 18 (4.0%); p = 0.076 NR NR
Castillo_2015 [59] Insulin 4191 NA NR NR 371 (8.9%) 2201 (52.5%) NR NR NR NR
Glyburide 4982 NA NR NR 472 (9.5%) ARR: 1.06 (0.93–1.21) 2522 (50.6%) ARR: 0.97 (0.93–1.00) NR NR NR
Inocencio_2015 [97] Insulin 167 NA NR NR NR NR 39.5% (n = 87) NR NR NR NR
Koivunen_2015 [64] Insulin-cohort 2006 1128 NA 373 (33.1%) NR NR NR 229 (20.4%) NR 79 (7.0%) NR NR
Insulin-cohort 2010 887 NA 398 (44.9%) NR NR NR 245 (27.8%) NR 105 (11.8%); p < 0.0001 vs. insulin-cohort 2006 NR NR
Diet-cohort 2006 4057 NA 961 (23.7%) NR NR NR 847 (21.0%) NR 343 (8.5%) NR NR
Diet-cohort 2010 5796 NA 1495 (25.8%); p < 0.0001 vs. insulin across the cohort NR NR NR 1224 (21.2%); p = 0.012 vs. insulin across the cohort NR 503 (8.7%); p = 0.696 vs. diet-cohort 2006 NR NR
Arshad_2014 [25] Regular and NPH 25 NA NR NR NR NR 17 (68%) NR NR NR NR
Diet + exercise 25 NA NR NR NR NR 10 (40%) NR NR NR NR
Deepaklal_2014 [100] Insulin lispro 201 Delivery NR NR NR NR 50.6%, n = 174 NR NR NR NR
Konig_2014 [101] Insulin 40 Delivery NR NR NR NR 18/39 (46.15%) NR NR NR
No insulin 83 Delivery NR NR NR NR 26/81 (32.1%) 1.81 (0.83–3.97); NR NR NR
p = 0.14 NR NR NR
Marques_2014 [102] NPH insulin 33 NA NR NR 5 (15.2%) 10 (30.3%) PE: 2 (6.1%) NR NR
Metformin 32 NA NR NR 3 (9.4%) 0.58 (0.13–2.66); p = 0.48 12 (37.5%) 1.38 (0.49–3.87); p = 0.54 PE: 2 (6.3%) 1.03 (0.14–7.81); p = 0.98 NR
Tempe_2013 [106] Insulin 32 NA NR NR 2 (5.9%) NR NR NR PE: 4 (11.7%) NR NR
Glyburide 32 NA NR NR 1 (3.3%); p = 1 NR NR NR PE: 6 (20%); p = NS NR NR
Cheng_2012 [107] Insulin 8609 NA NR NR  < 37 weeks: 11.5%, < 34 weeks: 1.95% NR Overall CS: 44.9%, primary CS: 22.7% NR NR NR NR
Glyburide 2073 NA NR NR  < 37 weeks: 12.2%, < 34 weeks: 2.56% Adjusted < 37 weeks: 0.97 (0.75–1.24), < 34 weeks: 1.26 0.72–2.22 Overall CS: 38.8%, primary CS: 22.6% Adjusted overall CS: 0.77 (0.65–0.91), primary CS: 0.84 (0.67–1.03) NR NR NR
Donovan_2012 [47] Insulin 359 NA 172 (47.9%) NR 36 (10%) NR 150 (41.8%) PIH: 27 (7.5%) NR NR
Lifestyle 505 NA 164 (32.5%) NR 44 (9.1%) NR 169 (33.5%) PIH: 41 (8.1%) NR NR
No diabetes 18,520 NA 5415 (29.2%); p < 0.001 across treatment arms NR 1325 (7.1%); p = 0.028 NR 4567 (24.7%); p < 0.0001 Adjusted: 1.94 (1.54–2.44); p < 0.001 PIH: 1029 (5.6%); p = 0.015 across treatment arms NR NR
Thomas_2012 [108] Insulin 137 Delivery NR NR 26 (18.7%) NR 52 (38.8%) NR NR NR NR
OHA 141 Delivery NR NR 18 (12.9%); p = 0.24 vs. insulin NR 67 (46.7%); p = 0.22 vs. insulin NR NR NR NR
Varghese_2012 [45] Insulin 186 NR NR 93 (50%) NR 176 (94.6%) NR PIH: 26 (13.9%) NR NR
Diet 36 NA NR NR 14 (38.8%); p = 0.114 vs. insulin NR 30 (83.3%); p = 0.013 vs. insulin NR PIH: 6 (16.6%); p = 0.675 vs. insulin NR NR
Goh_2011 [109] Bedtime intermediate-acting isophane insulin and premeal short-acting insulin 399 NA NR NR 19.2% (< 37 weeks), 3% (< 32 weeks) NR 0.456 NR Chronic HTN: 6.5%, GHTN: 5.3%, PE: 4% NR NR
Metformin 465 NA NR NR 12.5% (< 37 weeks), 0.4% (< 32 weeks) NR 0.37 NR Chronic HTN: 5.4%, GHTN: 8%, PE: 3.4% NR NR
Diet 371 NA NR NR 12.1% (< 37 weeks); p = 0.005 across treatment arms, 2.9% (< 32 weeks); p = 0.009 across treatment arms NR 0.34 NR Chronic HTN: 3.5%, GHTN: 5.7%, PE: 3.8%; p = 0.3 across treatment arms NR NR
Wong_2011 [110] Insulin 323 NA NR NR NR NR CS: 31%, emergency CS: 15.2% NR NR NR NR
MNT 289 NA NR NR NR NR CS: 24.8%; p = 0.082 vs. insulin emergency CS: 10.7%; p = 0.092 vs. insulin NR NR NR NR
Flores-Le Roux_2010 [111] Insulin 41 NA 19 (46.3%) NR 2 (4.9%) NR 16 (39%) NR NR NR NR
Diet 70 NA 23 (32.9%) NR 3 (4.3%) NR 21 (30%) NR NR NR NR
NEF-GDM 18 NA 5 (27.8%); p = 0.37 across treatment arms NR 2 (11.1%); p = 0.47 across treatment arms NR 6 (35.3%); p = 0.86 across treatment arms NR NR NR NR

ARR adjusted relative risk, BiD twice a day, CI confidence interval, CS cesarean section, GDM gestational diabetes mellitus, GHTN gestational hypertension, IDET insulin detemir, MNT medical nutritional therapy, NA not applicable, NEF no endocrinologic follow-up, NPH neutral protamine Hagedorn, NR not reported, NS not significant, OHA oral hypoglycemic agents, OR odds ratio, PE preeclampsia, PIH pregnancy-induced hypertension, RCT randomized controlled trial, RR relative risk, QiD four times a day

Table 6.

Maternal outcomes in women with pre-existing diabetes and mixed population

First Author_Year Treatment arms Sample size Timepoints Proportion of induced labor, n (%) Induced labor: OR (95% CI), p value Preterm labor/delivery, n (%) Preterm labor/delivery OR (95% CI), p value Proportion of CS, n (%) CS: OR (95% CI), p value Prevalence/rate of preeclampsia/eclampsia, n (%) Preeclampsia/ECLAMPSIA: OR (95% CI), p-value Prevalence/rate of maternal hypoglycaemia, n (%) Maternal hypoglycemia: OR (95% CI), p value
RCT
Jing ji_2020 [27] IDET + Novolin-R 120 Delivery NR NR 15 (12.50%) NR 78 (65%) NR HTN: 14 (11.67%) NR 14 (11.67%) NR
Insulin NPH + Novolin-R 120 Delivery NR NR 18 (15%); p = 0.574 vs. IDET NR 74 (61.67%); p = 0.592 vs. IDET NR HTN: 23 (19.17%); p = 0.107 vs. IDET NR 28 (23.33%); p = 0.017 vs. IDET NR
Ainuddin_2015 [44] Insulin (short- + intermediate-acting)-T2DM 100 Delivery NR NR NR NR 82 (82.0%) NR PIH: 36 (36.0%); PE: 17 (17%) NR NR NR
Metformin-T2DM 16 Delivery NR NR NR NR 13 (81.2%) NR PIH: 1 (6.2%); PE: 4 (25%) NR NR NR
Insulin added-on to metformin-T2GDM 90 Delivery NR NR NR NR 47 (52.2%); p < 0.01 NR PIH: 21 (23.3%); p = 0.020; PE: 9 (10%); p = 0.184 NR NR NR
Refuerzo_2015 [71] Regular + NPH 13 Delivery 5 (38.5%) NR 3 (23.1%) NR 6 (46.2%) NR 4 (30.8%) NR NR NR
Metformin 8 Delivery 5 (62.5); p = 0.387 NR 1 (12.5%); p = 0.549 NR 4 (50%); p = 0.864 NR 0; p = 0.131 NR NR NR
Hod_2014 [57] IDET + aspart 152 Delivery NR NR 26 (20.3%) NA NR NR NR NR 144 (95%)
Insulin NPH + aspart 158 Delivery NR NR 36 (26.5%) 0.71 (0.40–1.26); p = 0.238 vs. IDET NR NR NR NR 146 (92%) RR: 1.11 (0.89–1.38); p = 0.365 vs. IDET
Herrera_2015 [70] IDET 42 NA NR NR NR NR NR NR NR NR 11 (26%) NR
Insulin NPH 45 NA NR NR NR NR NR NR NR NR 16 (36%); p = 0.3454 NR
Hickman_2012 [52] Regular + NPH 14 36–38 weeks NR NR NR NR NR NR NR NR 7 (50%) NR
Metformin 14 36–38 weeks NR NR NR NR NR NR NR NR 1 (7%); p = 0.03 NR
Observational
Demasio_2020 [112] Insulin Levemir-T2DM 96 NA NR NR 23 (23.96%) NR Unscheduled: 43.75%; scheduled: 23.96% NR 6 (6.3%) NR NR NR
Insulin Levemir-GDM 127 NA NR NR 16 (12.6%) NR Unscheduled: 24.41%, scheduled: 27.56% NR 9 (7.1%) NR NR NR
Insulin NPH-T2DM 41 NA NR NR 10 (24.4%) NR Unscheduled: 46.34%; scheduled: 21.95% NR PE: 4 (9.8%), eclampsia: 1 (2.4%) NR NR NR
Insulin NPH-GDM 50 NA NR NR 5 (10%) NR Unscheduled: 30%; scheduled: 26% NR 3 (6.0%) NR NR NR
Kong_2020 [113] Insulin 4000 NA NR NR 1483 (37.1%) NR NR NR NR NR NR NR
Sperling_2020 [115] Metformin-GDM 2542 NA NR NR 0.088 NR 0.5 NR NR NR NR NR
Metformin-PGDM 729 NA NR NR 0.104 NR 0.583 NR NR NR NR NR
Glyburide-GDM 9998 NA NR NR 0.072 NR 0.491 NR NR NR NR NR
Glyburide-PGDM 1181 NA NR NR 0.11 NR 0.558 NR NR NR NR NR
Insulin + glyburide-GDM 1113 NA NR NR 0.097 NR 0.56 NR NR NR NR NR
Insulin + glyburide-PGDM 371 NA NR NR 0.162 NR 0.72 NR NR NR NR NR
Insulin + metformin-GDM 1029 NA NR NR 0.088 NR 0.595 NR NR NR NR NR
Insulin + metformin-PGDM 2036 NA NR NR 0.143 NR 0.713 NR NR NR NR NR
Insulin-GDM 6796 NA NR NR 0.074 NR NR 0.501 NR NR NR NR
Insulin-PGDM 5350 NA NR NR 0.164 NR 0.692 NR NR NR NR NR
Metformin + glyburide-GDM 960 NA NR NR 0.09 NR 0.563 NR NR NR NR NR
Metformin + glyburide-PGDM 375 NA NR NR 0.128 NR 0.68 NR NR NR NR NR
Insulin + metformin + glyburide-GDM 214 NA NR NR 0.075 NR 0.636 NR NR NR NR NR
Insulin + metformin + glyburide-PGDM 423 NA NR NR 0.123 NR 0.723 NR NR NR NR NR
Bartal_2019 [48] Basal insulin analogues 114 NA 44 (38.6%) NA 63 (55.3%) NA CS: 76 (66.7%), primary CS: 24 (21.1%) NA GHTN: 2 (1.8%), PE: 6 (5.3%), PE with severe features: 31 (27.2%) NR 15 (13.2%) NR
Insulin NPH 119 NA 42 (35.3%) ARR: 0.89 (0.57–1.37); p = 0.60 vs. BIA 59 (49.6%) ARR: 0.93 (0.68–1.26); p = 0.39 CS: 86 (72.9%), primary CS: 43 (36.4%) ARR-CS: 0.93 (0.75–1.15); p = 0.30 vs. BIA, ARR-Primary CS: 0.44 (0.25–0.78); p = 0.01 GHTN: 5 (4.2%), PE: 5 (4.2%), PE with severe features: 34 (28.6%) NR 24 (20.2%) ARR: 0.72 (0.35–1.45); p = 0.15
Christman_2019 [117] IDET 154 NR NR NR NR NR 79 (51.3%) NR NR NR NR NR
Sleeman_2019 [118] Insulin glargine or IDET 38 Delivery NR NR 18 (47.4%) NR 26 (68.4%) NR 3 (7.9%) NR NR NR
Insulin NPH 14 Delivery NR NR 7 (50%); p = 0.866 vs. glargine/detemir NR 10 (71.4%); p = 0.835 vs. glargine/detemir NR 3 (21.4%); p = 0.324 NR NR NR
Sunjaya_2018 [122] Insulin (long-acting, intermediate-acting, short-acting, rapid-acting and human premixed) 25 After treatment NR NR NR NR 0.76 NR NR NR NR NR
Oral antidiabetics (metformin and pioglitazone) 4 After treatment NR NR NR NR 0.5 NR NR NR NR NR
MNT 16 After treatment NR NR NR NR 0.75 NR NR NR NR NR
Abell_2017 [62] MDI-glargine/detemir/NPH 127 Delivery 37 (35.9%) NR 45 (35.4%) NR 80 (63.0%) NR 8 (6.3%) NR NR NR
CSII-aspart 40 Delivery 17 (54.8%); p = 0.060 NR 19 (47.5%); p = 0.171 NR 25 (62.5%); p = 0.955 NR 3 (7.5%); p = 0.726 NR NR NR
Billionnet_2017 [63] Insulin-treated GDM 16,108 Delivery after 28 weeks NR NR 9.20% (< 37 weeks) 1.5 (1.4; 1.6) 0.34 1.7 (1.7; 1.8) 0.024 1.6 (1.4; 1.7) NR NR
14,633 Delivery after 37 weeks NR NR NR NR 0.327 1.8 (1.7; 1.9) 0.016 1.6 (1.4; 1.8) NR NR
Noninsulin-treated GDM 41,275 Delivery after 28 weeks NR NR 0.076 1.2 (1.2; 1.3) 0.253 1.3 (1.2; 1.3) 0.026 1.7 (1.6; 1.8) NR NR
38,147 Delivery after 37 weeks NR NR NR NR 0.238 1.3 (1.2; 1.3) 0.017 1.7 (1.6; 1.9) NR NR
GDM-overall 57,383 Delivery after 28 weeks NR NR 0.08 1.3 (1.3; 1.4) 0.278 1.4 (1.4; 1.4) 0.025 1.7 (1.6; 1.7) NR NR
52,780 Delivery after 37 weeks NR NR NR NR 0.262 1.4 (1.4; 1.4) 0.017 1.7 (1.6; 1.8) NR NR
No diabetes 729,105 Delivery after 28 weeks NR NR 0.061 NR 0.195 NR 0.015 NR NR NR
684,398 Delivery after 37 weeks NR NR NR NR 0.183 NR 0.01 NR NR NR
Stanirowski_2017 [123] Insulin-treated GDM 6 NA NR NR NR NR 6 (100%) NR NR NR NR NR
Diet-treated GDM 16 NA NR NR NR NR 10 (62.5%) NR NR NR NR NR
Insulin-treated PGDM 6 NA NR NR NR NR 6 (100%) NR NR NR NR NR
No diabetes 25 NA NR NR NR NR 16 (64.0%) NR NR NR NR NR
Dalfra_2016 [124] ILPS-GDM 572 NA NR NR 0.086 NR 0.312 NR NR NR 0.003 NR
NPH-GDM 242 NA NR NR 14.9%; p = 0.01 NR 46.2%; p = 0.01 NR NR NR 2.1%; p = NS vs. ILPS-GDM NR
ILPS-pregestational T1DM 58 NA NR NR 0.155 NR 0.482 NR NR NR 0.052 NR
NPH-pregestational T1DM 61 NA NR NR 32.8%; p = 0.05 NR 63.9%; p = 0.001 NR NR NR 13.1%; p = NS vs. ILPS-T1DM NR
Becquet_2015 [125] Insulin 36 NA NR NR NR NR CS: 8 (22%), elective CS: 16 (45%) NR GHTN: 2 (6%), PE: 2 (6%) NR NR NR
No insulin 43 NA NR NR NR NR CS: 12 (28%), elective CS: 4 (9%) NR GHTN: 1 (2%); p = 0.33; PE: 1 (2%); p = 0.74 vs. insulin NR NR NR
Neff_2014 [61] CSII-aspart 40 Delivery NR NR 0.1 NR 0.8 NR NR NR NR NR
MDI-aspart + NPH 424 Delivery NR NR 16%; p = 0.17 NR 54%; p = 0.001 NR NR NR NR NR
Colatrella_2013 [126] ILPS-T2DM 7 After treatment NR NR 0 NR 1 NR GHTN: 42.8% NR NR NR
ILPS-GDM 46 After treatment NR NR 0.087 NR 0.652 NR GHTN: 17.4% NR NR NR
Insulin NPH-T2DM 18 After treatment NR NR 0 NR 1 NR GHTN: 44.4% NR NR NR
Insulin NPH-GDM 18 After treatment NR NR 0.055 NR 0.611 NR GHTN: 33.3% NR NR NR
Fresa_2013 [127] Insulin lispro/aspart-CSII 47 NA NR NR 13 (27.6%) NR 41 (87%) NR NR NR NR NR
Insulin lispro/aspart-CSII (RT-CGM) 18 NA NR NR 3 (16.6%) NR 15 (83%) NR NR NR NR NR
Garcia-Dominguez_2011 [53] Human insulin 241 Delivery NR NR NR NR 154 (64.7%) NR GHTN: 66 (27.4%), PE: 18 (7.5%) NR 24 (10%) NR
Insulin analog 86 Delivery NR NR NR NR 47 (54.7%); p = 0.1 vs. human insulin NR GHTN: 17 (19.8%); p = 0.163, PE: 12 (14%); p = 0.074 vs. human insulin NR 2 (2.3%); p = 0.025 vs. human insulin NR
Negrato_2010 [51] Glargine + lispro-PGDM 18 NA NR NR NR NR 0.945 NR 0 NR NR NR
NPH + lispro-PGDM 38 NA NR NR NR NR 94%, p > 0.05 vs. glargine-PGDM NR PE: 7 (19%); p < 0.0001 vs. glargine-PGDM group NR NR NR
Glargine + lispro-GDM 37 NA NR NR NR NR 0.95 NR 1 (2.5%) NR NR NR
NPH + lispro-GDM 45 NA NR NR NR NR 96%, p > 0.05 vs. glargine-GDM NR PE: 4 (9%) RR: 0.35 (0.09–1.2), p > 0.05 vs. glargine-GDM NR NR
Bruttomesso_2011 [128] CSII-rapid-acting insulin analog 100 Delivery NR NR NR NR NR NR PIH: 14 (15.1%), PE: 9 (9.7%) NR NR
Glargine-MDI 44 Delivery NR NR NR NR NR NR PIH: 3 (7%), PE: 1 (2.3%); p = NS for both NR NR
Gupta_2018 [121] Insulin 102 NA NR NR NR NR NR NR PIH: 14 (13.73%) NR NR NR

ARR adjusted relative risk, CGM continuous glucose monitor, CS cesarean section, CSII continuous subcutaneous insulin infusion, GDM gestational diabetes mellitus, GHTN gestational hypertension, IDET insulin detemir, ILPS insulin lispro protamine suspension, MDI multiple daily injection, MNT medical nutritional therapy, NA not applicable, NPH neutral protamine Hagedorn, NR not reported, OR odds ratio, PE preeclampsia, PGDM pregestational diabetes mellitus, PIH pregnancy-induced hypertension, RCT randomized controlled trial, RR relative risk, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus

Evidence from Clinical Trials

Most trials included in this study had small numbers of participants and no prolonged follow-up after the treatment. Some of the included trials had unclear risk of bias due to lack of blinding, unclear methods of randomization and selective reporting of outcomes. The primary outcomes of interest were different across the included studies.

Most included trials reported no difference in the proportion of cesarean sections among women treated with metformin versus insulin [21, 24, 26, 3339]. However, two RCTs by Galal et al. and Hassan et al. reported a significantly higher rate (p ≤ 0.05) of cesarean sections in the insulin-treated group [20, 40], while an RCT by Ijas et al. reported a lower rate of cesarean section in the insulin-treated group versus metformin (p = 0.047) [41]. In three RCTs by Khan et al., Mirzamoradi et al. and Huhtala et al., numerically higher rates of preterm delivery, preeclampsia and induced labor were observed in the insulin-treated group relative to comparator group using oral anti-diabetic agents [24, 42, 43]. Other RCTs by Galal et al., Niromanesh et al. and Hassan et al. reported a numerically higher incidence of preterm delivery and induced labor in the group treated with metformin versus insulin [20, 39, 40]. In women with pre-existing diabetes, an open-label, randomized study by Ainuddin et al. reported a significantly high rate of incidence of pregnancy-induced hypertension in the insulin-treated group compared to only metformin group and metformin and insulin-treated group [44], while an RCT by Ji et al. demonstrated a numerically higher incidence of gestational hypertension in the insulin NPH-treated group compared to the insulin detemir-treated-group [27].

Evidence from Observational Studies

Among women diagnosed with GDM, across different interventions, retrospective analyses revealed that cases of cesarean section and preterm delivery were higher in women managed with insulin than in those managed with other interventions such as diet/MNT, metformin and metformin + insulin [28, 32, 45, 46]. Compared with other interventions, insulin did not show a significant difference in the rate of gestational hypertension and induced labor in women treated with insulin and those managed with lifestyle modification [47, 48] or metformin [49, 50]. In the mixed population, a prospective cohort study by Negrato et al. compared insulin glargine with NPH and reported a significantly higher rate of preeclampsia in the NPH-treated group compared to the glargine-treated group (p < 0.0001) in women diagnosed with diabetes prior to pregnancy [51].

Maternal Hypoglycemia in Clinical Trials and Observational Studies

The overall rate of hypoglycemia in women with GDM and a mixed population was significantly higher in the insulin-treated group compared to metformin and metformin with additional insulin therapy [27, 52, 53]. Contrarily, a significantly lower incidence of hypoglycemia was reported with insulin (p < 0.001) compared to glyburide [54, 55].

Fetal Outcomes in Women with GDM and Pre-existing Diabetes or Mixed Population

Of the 108 included studies, 7 RCTs and 24 observational studies reported fetal outcomes of interest in women with GDM, and 2 trials and 14 observational studies reported fetal outcomes of interest in women diagnosed with diabetes prior to pregnancy and a mixed population (Tables 7, 8). Most of the included studies scored low to moderate on the Newcastle-Ottawa Scale and quality assessment checklist; they had limited power, relatively small sample size, long individual study period and a high drop-out rate.

Table 7.

Fetal outcomes in women with gestational diabetes mellitus

First author_Year Treatment arms Sample size Time points Proportion of LGA neonates, n (%) LGA: OR (95% CI), p value Proportion of stillborn, n (%) Stillborn: OR (95% CI), p value Perinatal mortality rate, n (%) Perinatal mortality: OR (95% CI), p value
RCT
Wasim_2019 [21] Insulin-Humulin R and NPH 141 Delivery NR NR NR NR 3 (2.1%) NR
Metformin 137 Delivery NR NR NR NR 1 (0.7%) NR
Eid_2018 [34] Insulin (NPH regular) 116 After treatment 18 (15.5%) NR NR NR NR NR
Metformin 113 After treatment 13 (11.5%); p = 0.001 NR NR NR NR NR
Somani_2016 [26] Regular/NPH or both 33 Delivery NR NR 1 (3.03%) NR NR NR
Metformin 32 Delivery NR NR 0%; p = 0.32 vs. insulin NR NR NR
Ainuddin_2015 [36] Insulin (short- + intermediate-acting)-GDM 75 Throughout pregnancy 28 (37.3%) NR NR NR NR NR
Metformin-GDM 43 Throughout pregnancy 10 (23.3%) NR NR NR NR NR
Insulin added on to metformin-GDM 32 Throughout pregnancy 9 (28.1%) NR NR NR NR NR
Mukhopadhyay_2014 [58] Insulin 30 Before confinement 2 (6.7%) NR NR NR NR NR
Glibenclamide 30 Before confinement 4 (13.3%) NR NR NR NR NR
Mesdaghinia_2012 [56] NPH and regular 100 NA 24 (24%) NR NR NR 0 (0) NR
Metformin 100 NA 16 (16%); p = NS NR NR NR 0 (0) NR
Ijas_2011 [41] Long- (Protaphane) and rapid-acting (Humalog) insulin 50 NA 5 (10.0%) NA NR NR NR NR
Metformin 47 NA 4 (8.5%) RR: 0.9 (0.24–2.98); p = 0.801 vs. insulin NR NR NR NR
Observational
Meghelli_2020 [77] Insulin 63 NA LGA > 90th Percentile: 18 (29.5%); LGA > 97th Percentile: 18 (29.5%) NR 0 NR NR NR
No insulin 56 NA LGA > 90th Percentile: 19 (35.2%), p = 0.52; LGA > 97th Percentile: 12 (22.2%), p = 0.37 NR 0 NR NR NR
Rodrigues_2020 [50] Insulin 39 NA NR NR NR NR 0 NR
Metformin + insulin 93 NA NR NR NR NR 0 NR
Metformin only 76 NA NR NR NR NR 0 NR
Landi_2019 [49] Insulin 3450 NA 653 (19.1%) NA NR NR NR NR
Metformin 3818 NA 549 (14.5%) RR (95% CI): 0.77 (0.69‐0.85) NR NR NR NR
Bogdanet_2018 [46] IDET and insulin aspart 752 NA 143/727 (19.7%) NA NR NR NR NR
MNT 567 NA 71/566 (12.5%) Adjusted: 1.67 (1.15–2.41); p < 0.01 vs. insulin NR NR NR NR
NGT 2496 NA 388/2476 (15.67%) Adjusted: 1.07 (0.77–1.47); p = 0.67 vs. insulin NR NR NR NR
Hedderson_2018 [60] Insulin 401 NA 20.50% NA NR NR NR NR
Glyburide 4622 NA 17.90% RR (95% CI): 1.12 (0.90–1.39) vs. insulin NR NR NR NR
Insulin + glyburide 281 NA NR RR (95% CI): 1.49 (1.21‐1.83) vs. glyburide only NR NR NR NR
McGrath_2018 [82] Insulin (NPH or Levemir and/or NovoRapid) 83 38.6 ± 1.2 12 (14.5%) NR NR NR 0 NR
Metformin 83 38.6 ± 1.2 18 (21.7%) NR NR NR 0 NR
Diet + lifestyle 82 38.6 ± 1.2 7 (8.5%), p = 0.059 across treatment arms NR NR NR 1 (1.2%) NR
Rowan_2018 [85] Insulin (Adelaide cohort) 51 36 weeks 3 (5.9%) NR NR NR NR NR
Metformin (Adelaide cohort) 58 36 weeks 12 (20.7%); p = 0.029 vs. insulin Adelaide NR NR NR NR NR
Insulin (Auckland cohort) 54 36 weeks 6 (11.1%) NR NR NR NR NR
Metformin (Auckland cohort) 45 36 weeks 5 (11.1%); p = 1 vs. insulin Auckland NR NR NR NR NR
Simeonova-Krstevska_2018 [28] Levemir (IDET) + aspart 101 NA 22 (21.7%) NR NR NR NR NR
Metformin 48 NA 6 (12.5%); p < 0.05 vs. insulin and diet NR NR NR NR NR
Diet 200 NA 59 (29.5%); p = NS vs. insulin NR NR NR NR NR
Bowker_2017 [87] Insulin 5057 (27.0%) NA 862 (17.0%) 1.40 (1.28; 1.54); p < 0.001 vs. no pharmacologic intervention NR NR NR NR
Metformin ± insulin 478 (2.5%) NA 79 (16.5%) 1.27 (0.99; 1.62); p < 0.056 vs. no intervention NR NR NR NR
No pharmacologic intervention 13,226 (70.5%) NA 1694 (12.8%) NR NR NR NR NR
Gibbons_2017 [88] Insulin 315 NA 41 (13.0%) NA NR NR 2 (0.6%) 1.64 (0.27–9.87), p = 0.54 across treatment arms
OHA (glyburide/metformin) 211 NA 14 (6.6%) NA NR NR 0 NA
Diet 563 NA 54 (9.6%); p = 0.051 vs. OHA and diet 1.55 (1.03–2.34); p = 0.036 vs. OHA and diet NR NR 3 (0.5%) NA
Olmos_2017 [89] BBIT 73 NA 8 (10.9%) NR NR NR NR NR
Without BBIT (diet/metformin) 58 NA 5 (8.6%); p = 0.772 NR NR NR NR NR
Fazel-Sarjoui_2016 [91] Short-acting Insulin 70 NA NR NR NR NR 1 (1.4%) NR
Diet 70 NA NR NR NR NR 0%; p < 0.05 vs. insulin NR
Ito_2016 [92] Insulin 32 Delivery 1 (3.1%) NA NR NR NR NR
Diet 70 Delivery 9 (12.8%) Adjusted: 0.22 (0.01–1.26); p = 0.096 vs. insulin NR NR NR NR
Koning_2016 [93] Diet + additional insulin (aspart, NPH and aspart + NPH) 360 NA 65 (18.1%) NR 2 (0.6%) NR NR NR
Diet 460 NA 98 (21.3%); p = NS vs. insulin NR 0%; p = NS vs. insulin NR NR NR
Overall Population 820 NA 163 (19.9%) NR 2 (0.2%) NR NR NR
Koren_2016 [55] IDET 29 NA 4 (13.8%) NR NR NR NR NR
Glyburide 62 NA 16 (25.8%); p = 0.28 NR NR NR NR NR
Benhalima_2015 [32] Short-acting or long-acting insulin or both 145 NA 41 (28.5%) NR NR NR NR NR
Diet 456 NA 59 (13.1%); p < 0.0001 NR NR NR NR NR
Castillo_2015 [59] Insulin 4191 NA 134 (3.2%) NA NR NR NR NR
Glyburide 4982 NA 234 (4.7%) ARR: 1.43 (1.16–1.76) NR NR NR NR
Cosson_2015 [96] Insulin 260 - 50 (19.2%) NR NR NR NR NR
Marques_2014 [102] NPH insulin 33 NA 3 (9.1%) NA NR NR NR NR
Metformin 32 NA 1 (3.1%) 0.32 (0.03–3.28); p = 0.34 NR NR NR NR
Hernandez-Rivas_2013 [104] Insulin 161 NA NR Adjusted: 2.29 (1.09–4.82) NR NR NR NR
Tempe_2013 [106] Insulin 32 NA NR NR 0% NR NR NR
Glyburide 32 NA NR NR 1 (3.3%); p = 0.47 NR NR NR
Thomas_2013 [108] Insulin 137 Delivery 51 (36.7%) NR NR NR NR NR
OHA 141 Delivery 46 (33%); p = 0.61 NR NR NR NR NR
Donovan_2012 [47] Insulin 359 NA NR NR 1 (0.3%) NR NR NR
Lifestyle 505 NA NR NR 1 (0.2%) NR NR NR
No diabetes 18,520 NA NR NR 64 (0.3%) NR NR NR
Varghese_2012 [45] Insulin 186 15 (10.6%) NR NR NR NR NR
Diet 36 NA 4 (11.11%); p = 0.5498 vs. insulin NR NR NR NR NR
Goh_2011 [109] Intermediate-acting isophane insulin and short-acting insulin analog 399 NA 18.50% NR NR NR NR NR
Metformin 465 NA 12.50% NR NR NR NR NR
Diet 371 NA 12.4%; p = 0.02 across treatment arms NR NR NR NR NR

ARR adjusted relative risk, BBIT basal-bolus insulin therapy, CI confidence interval, GDM gestational diabetes mellitus, IDET insulin detemir, LGA large for gestational age, MNT medical nutritional therapy, NA not applicable, NPH neutral protamine Hagedorn, NR not reported, OHA oral hypoglycemic agents, OR odds ratio, RCT randomized clinical trial, RR relative risk

Table 8.

Fetal outcomes in women with pre-existing diabetes and mixed population

First author_Year Treatment arms Sample size Time points Proportion of LGA neonates, n (%) LGA: OR (95% CI), p value Proportion of stillborn, n (%) Stillborn: OR (95% CI), p value Perinatal mortality rate, n (%) Perinatal mortality: OR (95% CI), p value
RCT
Ainuddin_2015 [44] Insulin (short- + intermediate-acting)-T2DM 100 Throughout pregnancy 27 (27.0%) NR NR NR NR 0
Metformin –T2DM 16 Throughout pregnancy 2 (12.5%) NR NR NR NR 0
Insulin added on to metformin-T2GDM 90 Throughout pregnancy 30 (33.3%), p = 0.208 NR NR NR NR 0
Hod_2014 [57] IDET + aspart 152 Delivery 59 (46.1%) NR NR 2 (1.4%) NR
Insulin NPH + aspart 158 Delivery 73 (53.7%) 74 (0.46–1.21); p = 0.228 vs. IDET NR NR 1 (0.7%) NR
Observational
Kong_2020 [113] Insulin 4000 NA 1585 (39.6%) NR NR NR NR NR
Mathiesen 2020 [114] IDET vs. other basal insulins IDET-727, Other basal-730 NR NR NR NR NR IDET-6/741 (0.8%); Other basal-13/740 (1.8%) Adjusted risk diff (95% CI): 0.002 (− 0.015, 0.02)
Alexander_2019 [116] CSII 151 NA 38/73 (52%) Association LGA and CSII: 2.08 (0.94–4.61); p = 0.07 NR NR NR NR
Bartal_2020 [48] Basal insulin analogues 114 NA 30 (26.5%) NA NR NR 5 (4.4%) NA
Insulin NPH 119 NA 29 (24.4%) ARR: 1.56 (0.89–2.73); p = 0.70 NR NR 2 (1.7%) ARR: 1.89 (0.27–13.32); p = 0.37
Smrz_2019 [119] CSII vs. MDI 117 NR CSII vs. MDI-57% vs. 49%; p = 0.370 vs. MDI NR NR NR NR NR
Abell_2017 [62] MDI-glargine/detemir/NPH 127 Delivery 52 (40.9%) NR NR NR 6 (6.9%) NR
CSII-aspart 40 Delivery 21 (52.5%); p = 0.199 NR NR NR 1 (5.0%); p = 1.000 NR
Billionnet_2017 [63] Insulin-treated GDM 16,108 Delivery after 28 weeks NR NR NR NR 0.35% 1.0 (0.8; 1.4)
14,633 Delivery after 37 weeks NR NR NR NR 0.21% 1.3 (0.9; 1.9)
Noninsulin-treated GDM 41,275 Delivery after 28 weeks NR NR NR NR 0.36% 1.1 (0.9; 1.3)
38,147 Delivery after 37 weeks NR NR NR NR 0.21% 1.3 (1.1; 1.7)
GDM-overall 57,383 Delivery after 28 weeks NR NR NR NR 0.36% 1.1 (0.9; 1.3)
52,780 Delivery after 37 weeks NR NR NR NR 0.21% 1.3 (1.1; 1.6)
No diabetes 7,29,105 Delivery after 28 weeks NR NR NR NR 0.32% NR
6,84,398 Delivery after 37 weeks NR NR NR NR 0.15% NR
Dalfra_2016 [124] ILPS-GDM 572 NA 16.60% NR 0.50% NR NR NR
NPH-GDM 242 NA 19.4%; p = ns vs. ILPS-GDM NR 0.4%; p = ns vs. ILPS-GDM NR NR NR
ILPS-pregestational T1DM 58 NA 43.10% NR 3.40% NR NR NR
NPH-pregestational T1DM 61 NA 37.7%; p = ns vs. pregestational T1DM NR 1.6%; p = ns vs. pregestational T1DM NR NR NR
Neff_2014 [61] CSII-aspart 40 Delivery 36% NR NR NR NR NR
MDI-aspart + NPH 424 Delivery 20%; p = 0.03 NR NR NR NR NR
Colatrella_2013 [126] ILPS-T2DM 7 After treatment 14.30% NR NR NR NR NR
ILPS-GDM 46 After treatment 15.20% NR NR NR NR NR
Insulin NPH- 18 After treatment 22.20% NR NR NR NR NR
Insulin NPH-GDM 18 After treatment 22.20% NR NR NR NR NR
Fresa_2013 [127] Insulin lispro/aspart-CSII 47 NA 20 (42.5%) NR NR NR NR NR
Insulin lispro/aspart-CSII (RT-CGM) 18 NA 8 (44%) NR NR NR NR NR
Bruttomesso_2011 [128] CSII-rapid-acting insulin analog 100 Delivery 46 (46%) NR NR NR NR NR
Glargine-MDI 44 Delivery 20 (45.5%) NR NR NR NR NR
Garcia-Dominguez_2011 [53] Human insulin 241 Delivery 91 (38.4%) NR 4 (1.7%) NR NR NR
Insulin analog 86 Delivery 43 (50.0%); p = 0.061 vs. human insulin NR 1 (1.2%); p = 0.747 vs. human insulin NR NR NR
Negrato_2010 [51] Glargine + lispro-PGDM 18 NA 9 (50%) NA NR NR 0 NR
NPH + lispro-PGDM 38 NA 14 (37%) RR: 1.35 (1.02–1.77); p > 0.05 vs. glargine-PGDM NR NR 2 (6%); p = 0.028 vs. glargine-PGDM NR
Glargine + lispro-GDM 37 NA 13 (34%) NA NR NR 0 NR
NPH + lispro-GDM 45 NA 18 (40%) RR: 0.87 (0.65–1.18); p > 0.05 vs. glargine-GDM NR NR 0 NR

ARR adjusted relative risk, CGM continuous glucose monitor, CI confidence interval, CSII continuous subcutaneous insulin infusion, IDET insulin detemir, ILPS insulin lispro protamine suspension, LGA large for gestational age, MDI multiple daily injection, NA not applicable, NPH neutral protamine Hagedorn, NR not reported, OR odds ratio, PGDM pregestational diabetes mellitus, RCT randomized clinical trial, RR relative risk, RT real time, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus

Evidence from Clinical Trials

A number of studies on women with GDM and pre-existing diabetes reported a numerically higher proportion of LGA in women treated with insulin compared to women treated with metformin [34, 36, 41, 56], with a significant difference (p = 0.001) reported by Eid et al. [34]. In an RCT, Hod et al. compared insulin detemir with NPH in pregnant women diagnosed with diabetes and reported a significantly higher rate of LGA in the group treated with insulin NPH compared to the group treated with insulin detemir [57]. Other RCTs by Ainuddin et al. and Mukopadhyay et al. reported a lower proportion of LGA in women treated with basal/bolus insulin compared to metformin + insulin and glibenclamide, respectively [44, 58]. In another RCT, Somani et al. compared stillbirth in women treated with insulin (regular or NPH or both) versus metformin. This trial reported one case of stillbirth in the insulin-treated group compared to no stillbirth in the metformin group (p = 0.32) [26].

Evidence from Observational Studies

In women diagnosed with GDM, three retrospective cohort studies by Koren et al., Castillo et al. and Hedderson et al. compared insulin versus glyburide and reported no substantial differences in the proportion of LGA in between the treatment groups [55, 59, 60]. However, other retrospective analyses by Simeonova-Krstevska et al., Benhalima et al. and Bogdanet et al. reported a significantly higher proportion of LGA in the insulin-treated group compared to diet/MNT and metformin (p < 0.0001–p < 0.05) [28, 32, 46]. In women diagnosed with diabetes prior to pregnancy, one retrospective database review by Neff et al. reported a significantly higher rate of delivery of LGA in mothers treated with CSII-aspart and NPH compared to those treated using MDI-aspart and NPH (p = 0.03) [61]. Most of the studies did not report stillbirth, with only five studies reporting this outcome. Perinatal mortality among women with pre-existing diabetes was reported in retrospective studies by Bartal et al., Abell et al. and Billionnet et al., and no differences across the treatment arms were observed [48, 62, 63]. However, in a prospective cohort study by Negrato et al., a significantly higher rate of perinatal mortality (p = 0.028) in pregnant women diagnosed with diabetes prior to pregnancy was reported among NPH-treated women compared to those treated with glargine [51].

Discussion

We conducted an SLR that assessed the paradigm of reported insulin use in pregnant women with diabetes, as well as the outcomes, including recommended clinical parameters related to glycemic control as part of their treatment goals and maternal and fetal outcomes. The wide variety in outcomes of interest when comparing insulin use with other anti-diabetic agents across the included studies makes it extremely difficult and potentially misleading to summarize findings and make management recommendations, illustrating the need for standardization of study design with consistent glycemic and maternal/fetal efficacy outcomes to evaluate the use of glucose-lowering medications in pregnancy.

Glycemic outcomes of interest were reported in 27 clinical trials and 32 observational studies. Notably, while 1-h and 2-h PPGs are the recommended treatment goals in patients with GDM, many of the studies captured in this review focused on HbA1c as a primary outcome measure. Furthermore, compared to the non-pregnant population, there are very few well-powered RCTs evaluating insulin use in pregnancy. Ji et al. published a well-designed RCT in 2020 showing that in pregnant women diagnosed with diabetes prior to pregnancy, a significant improvement in PPG and TIR was observed among those treated with detemir compared with insulin NPH as basal insulin. Both groups received the short-acting human insulin three times a day before the meals [27]. These results increase the options for women requiring basal insulin therapy for diabetes management in pregnancy [27]. Use of continuous glucose monitoring (CGM) was also observed to be effective in improving glycemic range metrics in women treated with insulin. However, at the time of this SLR there was limited evidence to draw a conclusive statement on the impact of CGM role in improving glycemic outcomes for diabetes in pregnancy. Overall, there was no clear consensus between the study outcomes and use of various intervention types and regimens. The quality of the included studies was assessed, and they were found to be low on evidence with high risk of bias. Therefore, we could not conclude which intervention type or regimen was best for pregnant women with diabetes.

Maternal outcomes such as hypoglycemia, preeclampsia, cesarean delivery, preterm delivery and induced labor were reported in 18 RCTs, which may be due to the difficulty in collecting these outcome measures. They were reported more frequently in studies designed to compare an insulin regimen to another regimen such as in women treated with insulin versus those treated with metformin, diet/MNT and other anti-diabetic agents [20, 28, 32, 40, 45, 46, 64]. Most of the studies included in this review used insulin therapy as the last option of treatment, after the failure of nutritional therapy or in association with other drug interventions such as metformin and/or sulfonylureas. This suggests that these patients could have had more severe insulin resistance and/or deficiency than the other patients, and this would likely confound glycemic, maternal and fetal outcomes. Heterogeneity was observed across maternal outcomes among the studies, including rates of cesarean delivery, gestational age at delivery and induction of labor. The plausible reason for heterogeneity could be due to various ethnic groups, study designs, treatment requirements and selection criteria.

The most common fetal complication reported across the included studies for any type of diabetes during pregnancy was LGA, confirming that these patients were mostly in hyperglycemic state, a common cause of LGA. Other common neonatal outcomes observed, commonly associated with LGA and the mother’s hyperglycemia, included the rate of complications such as preterm birth and neonatal hypoglycemia. Across studies covered in this review, insulin was associated with fewer cases of LGA only compared with glibenclamide, as observed in a study by Mukopadhyay et al. that compared insulin and glibenclamide for treatment of GDM [58]. In accordance with another meta-analysis, women treated with glibenclamide reported the highest incidence of LGA, preeclampsia, neonatal hypoglycemia and preterm birth; metformin (plus insulin when required) had the lowest risk of macrosomia, pregnancy hypertension, LGA, preterm birth and low birth weight [65]. Overall, there was no clear evidence of the risk of delivery of LGA in those born of mothers with diabetes treated with insulin versus other oral anti-diabetic agents. Based on the current results, it is difficult to make a conclusive affirmation of the most effective form of treatment to reduce incidence of neonatal complications in pregnant women with diabetes.

Across the included studies, treatments with metformin and diet/MNT were associated with better clinical, maternal and fetal outcomes than those treated with insulin therapy. However, the studies did not provide enough evidence on whether insulin can help achieve improved outcomes compared with other therapies. Overall, the quality of the evidence of RCTs ranged from low to moderate, whereas for observational studies the quality ranged from low to good. A variety of methods was used to diagnose GDM in the included studies. Furthermore, it is difficult to draw conclusions about the optimal approach to treatment of diabetes in pregnancy because of inconsistencies in the criteria for management of glucose targets, patient adherence to treatment, clinical outcome measures across studies and lack of long-term safety data.

The current SLR included clinical trials and observational studies with diverse populations and treatment arms. Some studies lacked appropriate sample size, and many studies utilized a variety of methods for diagnosis of GDM. Data on pregnant women diagnosed with diabetes prior to pregnancy were very limited. Furthermore, high-quality studies are needed to identify the optimal treatment regimens for women with diabetes in pregnancy who are treated with insulin.

There were clear limitations to the current SLR. With limited evidence and meta-analyses, the included studies did not provide sufficient evidence to identify clear differences between the various insulin types and regimens. Most of the included studies did not adjust for other potential confounding factors such as maternal age, educational status, income, ethnicity and other factors that might influence the results; therefore, findings should be interpreted with caution. This SLR included clinical trials and observational studies with varied populations and treatment arms. For some studies, sample size was small, and many studies did not report statistical tests for significance. In the included studies, there was no consensus on the types of outcome measures reported in pregnant women with diabetes. Most of the studies reported that there was no evidence of clear-cut benefit of one intervention type or regimen over the other. Hence, no firm conclusions or management recommendations could be made about different insulin types and regimens in pregnant women with diabetes. Future trials are required that are multi-centered, randomized, well-powered and of improved methodological quality with standardization of glycemic and maternal/fetal efficacy outcome measures. Furthermore, more research is warranted with larger groups of pregnant women, with transparent reporting of how the trials were conducted, and that reports clinical, maternal and fetal outcomes.

Conclusion

In summary, the findings of this review were comparable to the existing reviews evaluating treatment of diabetes in pregnancy. There is a tremendous paucity of well-designed RCTs and no consensus for the study design and definition of diabetes in pregnancy in the existing literature. We identified a variety of definitions being used that did not always overlap. We observed that the lack of standard diagnosis also results in a diversity of outcomes that are used in clinical practice to evaluate optimal medical management in pregnant women with diabetes. It would be helpful for the practitioners and patient populations if the outcomes were consistently defined and reported globally. According to the ADA Management of Diabetes in Pregnancy guidelines, the standard treatment goals for pregnant women with diabetes are aimed at maintaining target blood glucose levels (fasting glucose 70–95 mg/dl [3.9–5.3 mmol/l], 1-h postprandial glucose 110–140 mg/dl [6.1–7.8 mmol/l] and/or 2-h postprandial glucose 100–120 mg/dl [5.6–6.7 mmol/l]) to prevent maternal and fetal complications, achieved through stringent glucose monitoring and insulin therapy [11]. However, the universal adoption of these recommendations in the real-world is limited, as we identified in the observational studies analyzed, and some misalignment still exists in randomized clinical trials as well. This makes identifying any real-world association of the effectiveness of insulin in maternal and fetal outcomes difficult. With the increased access to CGM, the collection of glycemic values will increase, and more glycemic outcome data will be generated. However, this will require a more standardized approach, especially without a clear consensus on clinically relevant CGM metrics for GDM and T2D.

Conducting well-designed RCTs to evaluate the efficacy of various insulins or insulin regimens in this unique population remains an area that requires specialized attention. There is a need to be better aligned on clinical endpoints to study pregnant populations to delineate what treatment or therapies unequivocally demonstrate improvement in maternal and neonatal outcomes, especially with introduction of innovative insulin formulations and improved technologies that evaluate glucose management.

Supplementary Information

Below is the link to the electronic supplementary material.

Acknowledgments

Medical Writing and Editorial Assistance

Medical writing and editorial assistance was provided by Mythili Ananth and Era Seth, employees of Eli Lilly Services India Private Limited.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Author Contributions

Beatrice Osumili, Theophilus Lakiang, Carolina Piras De Oliveira, and Kristin Castorino contributed to the conception and design of the study. Beatrice Osumili, Theophilus Lakiang, Carolina Piras De Oliveira, and Kushal Kumar Banerjee were involved in data collection. All authors Goldyn contributed to the interpretation of study results, provided critical revisions, and have read and approved the final version of the manuscript.

Funding

This research and the journal’s Rapid Service Fee was funded by Eli Lilly and Company, Indianapolis, IN.

Declarations

Conflict of Interest

Beatrice Osumili, Kushal Kumar Banerjee, Andrea Goldyn, and Carolina Piras De Oliveira are full-time employees and shareholders of Eli Lilly and Company. Theophilus Lakiang was an employee of Eli Lilly and Company at the time this research was conducted and is currently an employee of GE Healthcare. Kristin Castorino receives research support provided to her institution from Dexcom, Abbott, Medtronic, Novonordisk, Ely Lilly, and Insulet and consulting fees from Dexcom. Theophilus Lakiang: Author affiliation has changed since the time this research was conducted. Assigned affiliation is the institution of employment at the time this research was conducted.

Ethical Approval

This article is based on previously conducted studies and does not contain any studies with human participants or animals.

References

  • 1.Metzger BE. Proceedings of the fourth international workshop conference on gestational diabetes mellitus. Diabetes Care. 1998;21(2):B1–B167. [PubMed] [Google Scholar]
  • 2.Hunt KJ, Schuller KL. The increasing prevalence of diabetes in pregnancy. Obstet Gynecol Clin North Am. 2007;34(2):173–199. doi: 10.1016/j.ogc.2007.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.CDC. Diabetes During Pregnancy. Centers for Disease Control and Prevention. 2018. https://www.cdc.gov/diabetes/basics/gestational.html#:~:text=Gestational%20diabetes%20is%20a%20type,pregnancy%20and%20a%20healthy%20baby
  • 4.Association AD. Gestational diabetes mellitus. Diabetes Care. 2004;27(suppl 1):s88–s90. doi: 10.2337/diacare.27.2007.S88. [DOI] [PubMed] [Google Scholar]
  • 5.Tyrala EE. The infant of the diabetic mother. Obstet Gynecol Clin. 1996;23(1):221–241. doi: 10.1016/S0889-8545(05)70253-9. [DOI] [PubMed] [Google Scholar]
  • 6.Pollex E, Moretti ME, Koren G, Feig DS. Safety of insulin glargine use in pregnancy: a systematic review and meta-analysis. Ann Pharmacother. 2011;45(1):9–16. doi: 10.1345/aph.1P327. [DOI] [PubMed] [Google Scholar]
  • 7.Serlin DC, Lash RW. Diagnosis and management of gestational diabetes mellitus. (0002-838X (Print)). [PubMed]
  • 8.Pantea-Stoian A, Stoica RA, Stefan SD. Insulin therapy in gestational diabetes. Gestational diabetes mellitus—an overview with some recent advances. London: IntechOpen; 2019. [Google Scholar]
  • 9.Bulletins-Obstetrics C. ACOG practice bulletin no. 190: gestational diabetes mellitus. Obstet Gynecol. 2018;131(2):e49–e64. doi: 10.1097/AOG.0000000000002501. [DOI] [PubMed] [Google Scholar]
  • 10.Cho N, Shaw J, Karuranga S, Huang YD, da Rocha Fernandes J, Ohlrogge A, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023. [DOI] [PubMed] [Google Scholar]
  • 11.ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 15. Management of diabetes in pregnancy: standards of care in diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S254–S266. doi: 10.2337/dc23-S015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Wilson LM, Castle JR. Recent advances in insulin therapy. Diabetes Technol Ther. 2020;22(12):929–936. doi: 10.1089/dia.2020.0065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Oude Rengerink K, Logtenberg S, Hooft L, Bossuyt PM, Mol BW. Pregnant womens’ concerns when invited to a randomized trial: a qualitative case control study. BMC Pregnancy Childbirth. 2015;15(1):1–11. doi: 10.1186/s12884-015-0641-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–784. doi: 10.7326/M14-2385. [DOI] [PubMed] [Google Scholar]
  • 16.Dissemination C. Systematic reviews: CRD's guidance for undertaking reviews in healthcare. York: University of York NHS Centre for Reviews & Dissemination; 2009. [Google Scholar]
  • 17.Higgins J. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. http://www.cochrane-handbook.org. 2011.
  • 18.NICE. Appendix C: methodology checklist: randomised controlled trials. 2019. https://www.nice.org.uk/process/pmg6/resources/the-guidelines-manual-appendices-bi-2549703709/chapter/appendix-c-methodology-checklist-randomised-controlled-trials. Accessed on Sept 2020.
  • 19.The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2019. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed on Sept 2020.
  • 20.Galal M, El Bassiou WM, Sherif L. Metformin versus insulin in treatment of gestational diabetes mellitus: a randomized controlled trial. Res J Obstet Gynecol. 2019;12(1):23–27. doi: 10.3923/rjog.2019.23.27. [DOI] [Google Scholar]
  • 21.Wasim T, Shaukat S, Javaid L, Mukhtar S, Amer WJ. Comparison of metformin and insulin for management of gestational diabetes mellitus: a randomized control trial. Pak J Med Sci. 2019;13:823–827. [Google Scholar]
  • 22.Ashoush S, El-Said M, Fathi H, Abdelnaby M. Identification of metformin poor responders, requiring supplemental insulin, during randomization of metformin versus insulin for the control of gestational diabetes mellitus. J Obstet Gynaecol Res. 2016;42(6):640–647. doi: 10.1111/jog.12950. [DOI] [PubMed] [Google Scholar]
  • 23.Zawiejska A, Wender-Ozegowska E, Grewling-Szmit K, Brazert M, Brazert Short-term antidiabetic treatment with insulin or metformin has a similar impact on the components of metabolic syndrome in women with gestational diabetes mellitus requiring antidiabetic agents: Results of a prospective, randomised study. J Physiol Pharmacol. 2016;67(2):227–233. [PubMed] [Google Scholar]
  • 24.Khan R, Mukhtar A, Khawar A. Comparison of metformin with insulin in the management of gestational diabetes. Med Forum Mon. 2017;28(11):105–109. [Google Scholar]
  • 25.Arshad R, Karim N, Ara HJ. Effects of insulin on placental, fetal and maternal outcomes in gestational diabetes mellitus. Pak J Med Sci. 2014;30(2):240–244. doi: 10.12669/pjms.302.4396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Subhash Somani P, Kumar Sahana P, Chaudhuri P, Sengupta N. Treatment of gestational diabetes mellitus: insulin or metformin? J Evol Med Dent Sci. 2016;5(63):4423–4429. doi: 10.14260/jemds/2016/1011. [DOI] [Google Scholar]
  • 27.Ji J, He Z, Yang Z, Mi Y, Guo N, Zhao H, et al. Comparing the efficacy and safety of insulin detemir versus neutral protamine Hagedorn insulin in treatment of diabetes during pregnancy: a randomized, controlled study. BMJ Open Diabetes Res Care. 2020;8(1). [DOI] [PMC free article] [PubMed]
  • 28.Simeonova-Krstevska S, Bogoev M, Bogoeva K, Zisovska E, Samardziski I, Velkoska-Nakova V, et al. Maternal and neonatal outcomes in pregnant women with gestational diabetes mellitus treated with diet, metformin or insulin. Open Access Maced J Med Sci. 2018;6(5):803–807. doi: 10.3889/oamjms.2018.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Ozgu-Erdinc AS, Iskender C, Uygur D, Oksuzoglu A, Seckin KD, Yeral MI, et al. One-hour versus two-hour postprandial blood glucose measurement in women with gestational diabetes mellitus: which is more predictive? Endocrine. 2016;52(3):561–570. doi: 10.1007/s12020-015-0813-5. [DOI] [PubMed] [Google Scholar]
  • 30.Yanagisawa K, Muraoka M, Takagi K, Ichimura Y, Kambara M, Sato A, et al. Assessment of predictors of insulin therapy in patients with gestational diabetes diagnosed according to the IADPSG criteria. Diabetol Int. 2016;7(4):440–446. doi: 10.1007/s13340-016-0272-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Tang L, Xu S, Li P, Li L. Predictors of insulin treatment during pregnancy and abnormal postpartum glucose metabolism in patients with gestational diabetes mellitus. Diabetes Metab Syndr Obes. 2019;12:2655–2665. doi: 10.2147/DMSO.S233554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Benhalima K, Robyns K, Van Crombrugge P, Deprez N, Seynhave B, Devlieger R, et al. Differences in pregnancy outcomes and characteristics between insulin- and diet-treated women with gestational diabetes. BMC Pregnancy Childbirth. 2015;15:271. doi: 10.1186/s12884-015-0706-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Ghomian N, Vahed SHM, Firouz S, Yaghoubi MA, Mohebbi M, Sahebkar A. The efficacy of metformin compared with insulin in regulating blood glucose levels during gestational diabetes mellitus: a randomized clinical trial. J Cell Physiol. 2019;234(4):4695–4701. doi: 10.1002/jcp.27238. [DOI] [PubMed] [Google Scholar]
  • 34.Eid SR, Moustafa RSI, Salah MM, Hanafy SK, Aly RH, Mostafa WFG, et al. Is metformin a viable alternative to insulin in the treatment of gestational diabetes mellitus (GDM)? Comparison of maternal and neonatal outcomes. Egypt Pediatr Assoc Gazette. 2018;66(1):15–21. doi: 10.1016/j.epag.2018.01.002. [DOI] [Google Scholar]
  • 35.Hamadani A, Zahid S, Butt ZB. Metformin versus insulin treatment in gestational diabetes in pregnancy and their effects on neonatal birthweight. Pak J Med Sci. 2017;11:914–916. [Google Scholar]
  • 36.Ainuddin J, Karim N, Hasan AA, Naqvi SA. Metformin versus insulin treatment in gestational diabetes in pregnancy in a developing country: a randomized control trial. Diabetes Res Clin Pract. 2015;107(2):290–299. doi: 10.1016/j.diabres.2014.10.001. [DOI] [PubMed] [Google Scholar]
  • 37.Ruholamin S, Eshaghian S, Allame Z. Neonatal outcomes in women with gestational diabetes mellitus treated with metformin in compare with insulin: a randomized clinical trial. J Res Med Sci. 2014;19(10):970. [PMC free article] [PubMed] [Google Scholar]
  • 38.Tertti K, Ekblad U, Koskinen P, Vahlberg T, Ronnemaa T. Metformin vs. insulin in gestational diabetes. A randomized study characterizing metformin patients needing additional insulin. Diabetes Obes Metab. 2013;15(3):246–251. doi: 10.1111/dom.12017. [DOI] [PubMed] [Google Scholar]
  • 39.Niromanesh S, Alavi A, Sharbaf FR, Amjadi N, Moosavi S, Akbari S. Metformin compared with insulin in the management of gestational diabetes mellitus: a randomized clinical trial. Diabetes Res Clin Pract. 2012;98(3):422–429. doi: 10.1016/j.diabres.2012.09.031. [DOI] [PubMed] [Google Scholar]
  • 40.Hassan JA, Karim N, Sheikh Z. Metformin prevents macrosomia and neonatal morbidity in gestational diabetes. J Pak J Med Sci. 2012;28(3):384–389. [Google Scholar]
  • 41.Ijas H, Vaarasmaki M, Morin-Papunen L, Keravuo R, Ebeling T, Saarela T, et al. Metformin should be considered in the treatment of gestational diabetes: a prospective randomised study. BJOG. 2011;118(7):880–885. doi: 10.1111/j.1471-0528.2010.02763.x. [DOI] [PubMed] [Google Scholar]
  • 42.Mirzamoradi M, Heidar Z, Faalpoor Z, Naeiji Z, Jamali R. Comparison of glyburide and insulin in women with gestational diabetes mellitus and associated perinatal outcome: a randomized clinical trial. Acta Med Iran. 2015;53:97–103. [PubMed] [Google Scholar]
  • 43.Huhtala MS, Tertti K, Pellonpera O, Ronnemaa T. Amino acid profile in women with gestational diabetes mellitus treated with metformin or insulin. Diabetes Res Clin Pract. 2018;146:8–17. doi: 10.1016/j.diabres.2018.09.014. [DOI] [PubMed] [Google Scholar]
  • 44.Ainuddin JA, Karim N, Zaheer S, Ali SS, Hasan AA. Metformin treatment in type 2 diabetes in pregnancy: an active controlled, parallel-group, randomized, open label study in patients with type 2 diabetes in pregnancy. J Diabetes Res. 2015;2015:325851. doi: 10.1155/2015/325851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Varghese R, Thomas B, Hail MA, Rauf A, Sadi MA, Sualiti AA, et al. The prevalence, risk factors, maternal and fetal outcomes in gestational diabetes mellitus. J Int J Drug Dev Res. 2012;4(3):356–368. [Google Scholar]
  • 46.Bogdanet D, Egan A, Reddin C, Kirwan B, Carmody L, Dunne F. ATLANTIC DIP: despite insulin therapy in women with IADPSG diagnosed GDM, desired pregnancy outcomes are still not achieved. What are we missing? Diabetes Res Clin Pract. 2018;136:116–123. doi: 10.1016/j.diabres.2017.12.003. [DOI] [PubMed] [Google Scholar]
  • 47.Donovan LE, Boyle SL, McNeil DA, Pedersen SD, Dean SR, Wood S, et al. Label of gestational diabetes mellitus affects caesarean section and neonatal intensive care unit admission without conventional indications. Can J Diabetes. 2012;36(2):58–63. doi: 10.1016/j.jcjd.2012.01.003. [DOI] [Google Scholar]
  • 48.Fishel Bartal M, Ward C, Refuerzo JS, Ashimi SS, Joycelyn CA, Chen HY, et al. Basal insulin analogs versus neutral protamine Hagedorn for type 2 diabetics. Am J Perinatol. 2020;37(1):30–36. doi: 10.1055/s-0039-1694733. [DOI] [PubMed] [Google Scholar]
  • 49.Landi SN, Radke S, Boggess K, Engel SM, Sturmer T, Howe AS, et al. Comparative effectiveness of metformin versus insulin for gestational diabetes in New Zealand. Pharmacoepidemiol Drug Saf. 2019;28(12):1609–1619. doi: 10.1002/pds.4907. [DOI] [PubMed] [Google Scholar]
  • 50.Morais Rodrigues I, Figueiredo A, Pereira N, Amaral N, Pratas S, Valadas C, et al. Metformin as a safe option to insulin in gestational diabetes mellitus: a retrospective study. SN Compr Clin Med. 2020;2(3):272–277. doi: 10.1007/s42399-020-00229-9. [DOI] [Google Scholar]
  • 51.Negrato CA, Rafacho A, Negrato G, Teixeira MF, Araujo CA, Vieira L, et al. Glargine vs. NPH insulin therapy in pregnancies complicated by diabetes: an observational cohort study. Diabetes Res Clin Pract. 2010;89(1):46–51. doi: 10.1016/j.diabres.2010.03.015. [DOI] [PubMed] [Google Scholar]
  • 52.Hickman MA, McBride R, Boggess KA, Strauss R. Metformin compared with insulin in the treatment of pregnant women with overt diabetes: a randomized controlled trial. Am J Perinatol. 2013;30(6):483–490. doi: 10.1055/s-0032-1326994. [DOI] [PubMed] [Google Scholar]
  • 53.Garcia-Dominguez M, Herranz L, Hillman N, Martin-Vaquero P, Janez M, Moya-Chimenti E, et al. Use of insulin lispro during pregnancy in women with pregestational diabetes mellitus. Med Clin (Barc) 2011;137(13):581–586. doi: 10.1016/j.medcli.2010.11.021. [DOI] [PubMed] [Google Scholar]
  • 54.Senat MV, Affres H, Letourneau A, Coustols-Valat M, Cazaubiel M, Legardeur H, et al. Effect of glyburide vs subcutaneous insulin on perinatal complications among women with gestational diabetes: a randomized clinical trial. JAMA. 2018;319(17):1773–1780. doi: 10.1001/jama.2018.4072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Koren R, Ashwal E, Hod M, Toledano Y. Insulin detemir versus glyburide in women with gestational diabetes mellitus. Gynecol Endocrinol. 2016;32(11):916–919. doi: 10.1080/09513590.2016.1209479. [DOI] [PubMed] [Google Scholar]
  • 56.Mesdaghinia E, Samimi M, Homaei Z, Saberi F, Moosavi SGA, Yaribakht M. Comparison of newborn outcomes in women with gestational diabetes mellitus treated with metformin or insulin: a randomised blinded trial. Int J Prev Med. 2013;4(3):327. [PMC free article] [PubMed] [Google Scholar]
  • 57.Hod M, Mathiesen ER, Jovanovic L, McCance DR, Ivanisevic M, Duran-Garcia S, et al. A randomized trial comparing perinatal outcomes using insulin detemir or neutral protamine Hagedorn in type 1 diabetes. J Matern Fetal Neonatal Med. 2014;27(1):7–13. doi: 10.3109/14767058.2013.799650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Mukhopadhyay P, Bag TS, Kyal A, Saha DP, Khalid N. Oral hypoglycemic glibenclamide: can it be a substitute to insulin in the management of gestational diabetes mellitus? A comparative study. J South Asian Fed Obstet Gynaecol. 2012;4(1):28–31. doi: 10.5005/jp-journals-10006-1167. [DOI] [Google Scholar]
  • 59.Camelo Castillo W, Boggess K, Sturmer T, Brookhart MA, Benjamin DK, Jr, Jonsson FM. Association of adverse pregnancy outcomes with glyburide vs insulin in women with gestational diabetes. JAMA Pediatr. 2015;169(5):452–458. doi: 10.1001/jamapediatrics.2015.74. [DOI] [PubMed] [Google Scholar]
  • 60.Hedderson MM, Xu F, Neugebauer R, Ferrara A. Pharmacoepodemiology and drug safety. Hoboken: Wiley; 2018. editors. Glyburide versus insulin for the treatment of women with gestational diabetes in Kaiser Permanente Northern California. [Google Scholar]
  • 61.Neff KJ, Forde R, Gavin C, Byrne MM, Firth RG, Daly S, et al. Pre-pregnancy care and pregnancy outcomes in type 1 diabetes mellitus: a comparison of continuous subcutaneous insulin infusion and multiple daily injection therapy. Ir J Med Sci. 2014;183(3):397–403. doi: 10.1007/s11845-013-1027-6. [DOI] [PubMed] [Google Scholar]
  • 62.Abell SK, Suen M, Pease A, Boyle JA, Soldatos G, Regan J, et al. Pregnancy outcomes and insulin requirements in women with type 1 diabetes treated with continuous subcutaneous insulin infusion and multiple daily injections: cohort study. Diabetes Technol Ther. 2017;19(5):280–287. doi: 10.1089/dia.2016.0412. [DOI] [PubMed] [Google Scholar]
  • 63.Billionnet C, Mitanchez D, Weill A, Nizard J, Alla F, Hartemann A, et al. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia. 2017;60(4):636–644. doi: 10.1007/s00125-017-4206-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Koivunen S, Kajantie E, Torkki A, Bloigu A, Gissler M, Pouta A, et al. The changing face of gestational diabetes: the effect of the shift from risk factor-based to comprehensive screening. Eur J Endocrinol. 2015;173(5):623–632. doi: 10.1530/EJE-15-0294. [DOI] [PubMed] [Google Scholar]
  • 65.Liang H-L, Ma S-J, Xiao Y-N, Tan H-Z. Comparative efficacy and safety of oral antidiabetic drugs and insulin in treating gestational diabetes mellitus: an updated PRISMA-compliant network meta-analysis. Medicine. 2017;96(38):e7939. doi: 10.1097/MD.0000000000007939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Das V, Priyanka Y, Smriti A, Anjoo A, Namrata K. Oral/free communication session abstracts. 2018;143(S3):158–542.
  • 67.Behrashi M, Samimi M, Ghasemi T, Saberi F, Atoof F. Comparison of glibenclamide and insulin on neonatal outcomes in pregnant women with gestational diabetes. Int J Prev Med. 2016;7:88–88. doi: 10.4103/2008-7802.184502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Spaulonci CP, Bernardes LS, Trindade TC, Zugaib M, Francisco RP. Randomized trial of metformin vs insulin in the management of gestational diabetes. Am J Obstet Gynecol. 2013;209(1):34. doi: 10.1016/j.ajog.2013.03.022. [DOI] [PubMed] [Google Scholar]
  • 69.Balaji V, Balaji MS, Alexander C, et al. Premixed insulin aspart 30 (BIAsp 30) versus premixed human insulin 30 (BHI 30) in gestational diabetes mellitus: a randomized open-label controlled study. Gynecol Endocrinol. 2012;28(7):529–532. doi: 10.3109/09513590.2011.650661. [DOI] [PubMed] [Google Scholar]
  • 70.Herrera KM, Rosenn BM, Foroutan J, et al. Randomized controlled trial of insulin detemir versus NPH for the treatment of pregnant women with diabetes. Am J Obstet Gynecol. 2015;213(3):426. doi: 10.1016/j.ajog.2015.06.010. [DOI] [PubMed] [Google Scholar]
  • 71.Refuerzo JS, Gowen R, Pedroza C, Hutchinson M, Blackwell SC, Ramin S. A pilot randomized, controlled trial of metformin versus insulin in women with type 2 diabetes mellitus during pregnancy. Am J Perinatol. 2015;30(2):163–170. doi: 10.1055/s-0034-1378144. [DOI] [PubMed] [Google Scholar]
  • 72.Han D, Lu B, Pang Z. Efficacy of metformin combined with insulin lispro on gestational diabetes and effects on serum miR-16. Int J Clin Exp Med. 2020;13(3):1728–1735. [Google Scholar]
  • 73.Krishnakumar S, Govindarajulu Y, Vishwanath U, Nagasubramanian VR, Palani T. Impact of patient education on KAP, medication adherence and therapeutic outcomes of metformin versus insulin therapy in patients with gestational diabetes: a hospital based pilot study in South India. Diabetes Metab Syndr. 2020;14(5):1379–1383. doi: 10.1016/j.dsx.2020.07.026. [DOI] [PubMed] [Google Scholar]
  • 74.Osuagwu UL, Fuka F, Agho K, Khan A, Simmons D. Adverse maternal outcomes of Fijian women with gestational diabetes mellitus and the associated risk factors. Reprod Sci. 2020;27(11):2029–2037. doi: 10.1007/s43032-020-00222-6. [DOI] [PubMed] [Google Scholar]
  • 75.Zaharieva D, Krishnamurthy B, Teng J, et al. Assessment of glycaemia by fingerstick blood glucose monitoring may underestimate the requirement for insulin to address elevated nocturnal glucose levels in women with GDM. Paper presented at: Diabetes Technology and Therapeutics, 2020.
  • 76.Cade TJ, Polyakov A, Brennecke SP. Implications of the introduction of new criteria for the diagnosis of gestational diabetes: a health outcome and cost of care analysis. BMJ Open. 2019;9(1):e023293. doi: 10.1136/bmjopen-2018-023293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Meghelli L, Vambergue A, Drumez E, Deruelle P. Complications of pregnancy in morbidly obese patients: what is the impact of gestational diabetes mellitus? J Gynecol Obstet Hum Reprod. 2020;49(1):101628. doi: 10.1016/j.jogoh.2019.101628. [DOI] [PubMed] [Google Scholar]
  • 78.Munn AJ, Hersh AR, Vinson AR, Brennan TD, Valent AM, Caughey AB. 492: Neonatal outcomes in gestational diabetes managed with insulin vs. glyburide therapy: a cost-effectiveness analysis. Am J Obstet Gynecol. 2019;220(1):S330. doi: 10.1016/j.ajog.2018.11.514. [DOI] [Google Scholar]
  • 79.Ng A, Liu A, Nanan R. Association between insulin and post-caesarean resuscitation rates in infants of women with GDM: a retrospective study. J Diabetes. 2019;12(2):151–157. doi: 10.1111/1753-0407.12974. [DOI] [PubMed] [Google Scholar]
  • 80.Christian SJ, Boama V, Satti H, et al. Metformin or insulin: logical treatment in women with gestational diabetes in the Middle East, our experience. BMC Res Notes. 2018;11(1):426. doi: 10.1186/s13104-018-3540-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Leung A, Yu G, Smith L. 993: Adverse pregnancy outcomes with glyburide vs insulin among patients with gestational diabetes established by the International Association of Diabetes and Pregnancy Study Group (IADPSG) Am J Obstet Gynecol. 2018;218(1):S586. doi: 10.1016/j.ajog.2017.11.530. [DOI] [Google Scholar]
  • 82.McGrath RT, Glastras SJ, Scott ES, Hocking SL, Fulcher GR. Outcomes for women with gestational diabetes treated with metformin: a retrospective, case–control study. J Clin Med. 2018;7(3):50. doi: 10.3390/jcm7030050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Meregaglia M, Dainelli L, Banks H, Benedetto C, Detzel P, Fattore G. The short-term economic burden of gestational diabetes mellitus in Italy. BMC Pregnancy Childbirth. 2018;18(1):58. doi: 10.1186/s12884-018-1689-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Patanjali CP, Ayyar V, Bantwal G, George B, Perumal N. Maternal and neonatal outcomes in gestational diabetes treated with metformin. Indian J Endocrinol Metab. 2018;22:S44. [Google Scholar]
  • 85.Rowan JA, Rush EC, Plank LD, et al. Metformin in gestational diabetes: the offspring follow-up (MiG TOFU): body composition and metabolic outcomes at 7–9 years of age. BMJ Open Diabetes Res Care. 2018;6(1):e000456. doi: 10.1136/bmjdrc-2017-000456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Vanlalhruaii, Dasgupta R, Ramachandran R, et al. How safe is metformin when initiated in early pregnancy? A retrospective 5-year study of pregnant women with gestational diabetes mellitus from India. Diabetes Res Clin Pract. 2018;137:47–55. doi: 10.1016/j.diabres.2018.01.002. [DOI] [PubMed] [Google Scholar]
  • 87.Bowker SL, Savu A, Yeung RO, Johnson JA, Ryan EA, Kaul P. Patterns of glucose-lowering therapies and neonatal outcomes in the treatment of gestational diabetes in Canada, 2009–2014. Diabet Med. 2017;34(9):1296–1302. doi: 10.1111/dme.13394. [DOI] [PubMed] [Google Scholar]
  • 88.Gibbons A, Flatley C, Kumar S. Cerebroplacental ratio in pregnancies complicated by gestational diabetes mellitus. Ultrasound Obstet Gynecol. 2017;50(2):200–206. doi: 10.1002/uog.17242. [DOI] [PubMed] [Google Scholar]
  • 89.Olmos PR, Borzone GR. Basal-bolus insulin therapy reduces maternal triglycerides in gestational diabetes without modifying cholesteryl ester transfer protein activity. J Obstet Gynaecol Res. 2017;43(9):1397–1404. doi: 10.1111/jog.13403. [DOI] [PubMed] [Google Scholar]
  • 90.Xie J, Dai L, Tang X. The comparison of the safety and effectiveness of multiple insulin injections and insulin pump therapy in treating gestational diabetes. Biomed Res. 2017;28(18):7830–7833. [Google Scholar]
  • 91.Fazel-Sarjoui Z, Namin AK, Kamali M, Namin NK, Tajik A. Complications in neonates of mothers with gestational diabetes mellitus receiving insulin therapy versus dietary regime. Int J Reprod BioMed. 2016;14(4):275. [PMC free article] [PubMed] [Google Scholar]
  • 92.Ito Y, Shibuya M, Hosokawa S, et al. Indicators of the need for insulin treatment and the effect of treatment for gestational diabetes on pregnancy outcomes in Japan. Endocr J. 2016;63(3):231–237. doi: 10.1507/endocrj.EJ15-0427. [DOI] [PubMed] [Google Scholar]
  • 93.Koning SH, Hoogenberg K, Scheuneman KA, et al. Neonatal and obstetric outcomes in diet- and insulin-treated women with gestational diabetes mellitus: a retrospective study. BMC Endocr Disord. 2016;16(1):52. doi: 10.1186/s12902-016-0136-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Saleem N, Godman B, Hussain S. Comparing twice-versus four-times daily insulin in mothers with gestational diabetes in Pakistan and its implications. J Comp Effect Res. 2016;5(5):453–459. doi: 10.2217/cer-2016-0022. [DOI] [PubMed] [Google Scholar]
  • 95.Watanabe M, Katayama A, Kagawa H, Ogawa D, Wada J. Risk factors for the requirement of antenatal insulin treatment in gestational diabetes mellitus. J Diabetes Res. 2016;2016:9648798. doi: 10.1155/2016/9648798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Cosson E, Bihan H, Reach G, Vittaz L, Carbillon L, Valensi P. Psychosocial deprivation in women with gestational diabetes mellitus is associated with poor fetomaternal prognoses: an observational study. BMJ Open. 2015;5(3):e007120. doi: 10.1136/bmjopen-2014-007120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Inocêncio G, Braga A, Lima T, et al. Which factors influence the type of delivery and cesarean section rate in women with gestational diabetes? J Reprod Med. 2015;60(11–12):529–534. [PubMed] [Google Scholar]
  • 98.Kopec JA, Ogonowski J, Rahman MM, Miazgowski T. Patient-reported outcomes in women with gestational diabetes: a longitudinal study. Int J Behav Med. 2015;22(2):206–213. doi: 10.1007/s12529-014-9428-0. [DOI] [PubMed] [Google Scholar]
  • 99.You JY, Choi SJ, Roh CR, Kim JH, Oh SY. Pregnancy and neonatal outcomes in gestational diabetes treated with regular insulin or fast-acting insulin analogues. Gynecol Obstet Invest. 2016;81(3):232–237. doi: 10.1159/000440616. [DOI] [PubMed] [Google Scholar]
  • 100.Deepaklal M, Joseph K, Kurian R, Thakkar NA. Efficacy of insulin lispro in improving glycemic control in gestational diabetes. Indian J Endocrinol Metab. 2014;18(4):491. doi: 10.4103/2230-8210.137492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Konig AB, Junginger S, Reusch J, Louwen F, Badenhoop K. Gestational diabetes outcome in a single center study: higher BMI in children after six months. Horm Metab Res. 2014;46(11):804–809. doi: 10.1055/s-0034-1375652. [DOI] [PubMed] [Google Scholar]
  • 102.Marques P, Carvalho MR, Pinto L, Guerra S. Metformin safety in the management of gestational diabetes. Endocr Pract. 2014;20(10):1022–1031. doi: 10.4158/EP14018.OR. [DOI] [PubMed] [Google Scholar]
  • 103.Al-Rubeaan KA, Youssef AM, Subhani SN, Ahmad NA, Al-Sharqawi AH, Ibrahim HM. A web-based interactive diabetes registry for health care management and planning in Saudi Arabia. J Med Internet Res. 2013;15(9):e202 [DOI] [PMC free article] [PubMed]
  • 104.Hernandez-Rivas E, Flores-Le Roux JA, Benaiges D, et al. Gestational diabetes in a multiethnic population of Spain: clinical characteristics and perinatal outcomes. Diabetes Res Clin Pract. 2013;100(2):215–221. doi: 10.1016/j.diabres.2013.01.030. [DOI] [PubMed] [Google Scholar]
  • 105.Latif L, Hyer S, Shehata H. Metformin effects on treatment satisfaction and quality of life in gestational diabetes. Br J Diabetes Vasc Dis. 2013;13(4):178–182. doi: 10.1177/1474651413493933. [DOI] [Google Scholar]
  • 106.Tempe A, Mayanglambam RD. Glyburide as treatment option for gestational diabetes mellitus. J Obstet Gynaecol Res. 2013;39(6):1147–1152. doi: 10.1111/jog.12042. [DOI] [PubMed] [Google Scholar]
  • 107.Cheng YW, Chung JH, Block-Kurbisch I, Inturrisi M, Caughey AB. Treatment of gestational diabetes mellitus: glyburide compared to subcutaneous insulin therapy and associated perinatal outcomes. J Matern Fetal Neonatal Med. 2012;25(4):379–384. doi: 10.3109/14767058.2011.580402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Thomas N, Chinta AJ, Sridhar S, Kumar M, Kuruvilla KA, Jana AK. Perinatal outcome of infants born to diabetic mothers in a developing country-comparison of insulin and oral hypoglycemic agents. Indian Pediatr. 2013;50(3):289–293. doi: 10.1007/s13312-013-0096-y. [DOI] [PubMed] [Google Scholar]
  • 109.Goh JE, Sadler L, Rowan J. Metformin for gestational diabetes in routine clinical practice. Diabet Med. 2011;28(9):1082–1087. doi: 10.1111/j.1464-5491.2011.03361.x. [DOI] [PubMed] [Google Scholar]
  • 110.Wong VW, Jalaludin B. Gestational diabetes mellitus: who requires insulin therapy? Aust NZ J Obstet Gynaecol. 2011;51(5):432–436. doi: 10.1111/j.1479-828X.2011.01329.x. [DOI] [PubMed] [Google Scholar]
  • 111.Flores-Le Roux JA, Chillaron JJ, Goday A, et al. Peripartum metabolic control in gestational diabetes. Am J Obstet Gynecol. 2010;202(6):568. doi: 10.1016/j.ajog.2010.01.064. [DOI] [PubMed] [Google Scholar]
  • 112.Demasio KA, Richley M. 434: Neonatal hypoglycemia; does basal insulin choice matter? Am J Obstet Gynecol. 2020;222(1):S285. doi: 10.1016/j.ajog.2019.11.450. [DOI] [Google Scholar]
  • 113.Kong L, Nilsson IAK, Gissler M, Lavebratt C. Associations of Maternal Diabetes and Body Mass Index With Offspring Birth Weight and Prematurity. JAMA Pediatr. 2019;173(4):371–78. [DOI] [PMC free article] [PubMed]
  • 114.Mathiesen E, Alibegovic A, Husemoen L, et al. Risk of major congenital malformations, perinatal or neonatal death with insulin detemir vs other basal insulins in pregnant women with pre-existing diabetes: EVOLVE study. Paper presented at: Diabetologia 2020. [DOI] [PMC free article] [PubMed]
  • 115.Sperling M, Bentley J, Girsen A, et al. 759: Comparing insulin, metformin, and glyburide in treating diabetes in pregnancy and analyzing obstetric outcomes. Am J Obstet Gynecol. 2020;222(1):S481. doi: 10.1016/j.ajog.2019.11.773. [DOI] [Google Scholar]
  • 116.Alexander LD, Tomlinson G, Feig DS. Predictors of large-for-gestational-age birthweight among pregnant women with type 1 and type 2 diabetes: a retrospective cohort study. Can J Diabetes. 2019;43(8):560–566. doi: 10.1016/j.jcjd.2019.08.015. [DOI] [PubMed] [Google Scholar]
  • 117.Christman L, Piszczek J, Magee M, Ferris L, Duong J, Farley D. Patients with diabetes mellitus managed with insulin detemir: hospital outcomes [18E] Obstet Gynecol. 2019;133:56S. doi: 10.1097/01.AOG.0000559010.65661.b3. [DOI] [Google Scholar]
  • 118.Sleeman A, Odom J, Schellinger M. Comparison of hypoglycemia and safety outcomes with long-acting insulins versus insulin NPH in pregestational and gestational diabetes. Ann Pharmacother. 2020;54(7):669–675. doi: 10.1177/1060028019897897. [DOI] [PubMed] [Google Scholar]
  • 119.Smrz S, Finneran MM, Landon MB, Gabbe SG. Difference in glycemic profile with the pump vs multiple daily injections in treating type 1 diabetes in pregnancy [32F] Obstet Gynecol. 2019;133:70S–71S. doi: 10.1097/01.AOG.0000559063.18134.dc. [DOI] [Google Scholar]
  • 120.Vasquez BA, Sarumi M, Shultz L, Bedell J, Gherman R, Johnson MJ. Glycemic efficacy with U-500 insulin in pregnancy: a retrospective cross-over study [21K] Obstet Gynecol. 2019;133:123S. doi: 10.1097/01.AOG/01.AOG.0000559215.25911.7b. [DOI] [Google Scholar]
  • 121.Gupta S, Gupta K, Gathe S, Bamhra P, Gupta S. Insulin therapy in women with pregestational type 2 diabetes and its relevance to maternal and neonatal complications. Int J Diabetes Dev Ctries. 2018;38(1):47–54. doi: 10.1007/s13410-016-0541-2. [DOI] [Google Scholar]
  • 122.Sunjaya AF, Sunjaya AP. Comparing outcomes of nutrition therapy, insulin and oral anti-diabetics in managing diabetes mellitus in pregnancy: retrospective study and review of current guidelines. Diabetes Metab Syndr. 2019;13(1):104–109. doi: 10.1016/j.dsx.2018.08.024. [DOI] [PubMed] [Google Scholar]
  • 123.Stanirowski PJ, Szukiewicz D, Pyzlak M, Abdalla N, Sawicki W, Cendrowski K. Impact of pre-gestational and gestational diabetes mellitus on the expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 in human term placenta. Endocrine. 2017;55(3):799–808. doi: 10.1007/s12020-016-1202-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Dalfra MG, Soldato A, Moghetti P, et al. Diabetic pregnancy outcomes in mothers treated with basal insulin lispro protamine suspension or NPH insulin: a multicenter retrospective Italian study. J Matern Fetal Neonatal Med. 2016;29(7):1061–1065. doi: 10.3109/14767058.2015.1033619. [DOI] [PubMed] [Google Scholar]
  • 125.Becquet O, El Khabbaz F, Alberti C, et al. Insulin treatment of maternal diabetes mellitus and respiratory outcome in late-preterm and term singletons. BMJ Open. 2015;5(6):e008192. doi: 10.1136/bmjopen-2015-008192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Colatrella A, Visalli N, Abbruzzese S, Leotta S, Bongiovanni M, Napoli A. Comparison of insulin lispro protamine suspension with NPH insulin in pregnant women with type 2 and gestational diabetes mellitus: maternal and perinatal outcomes. Int J Endocrinol. 2013;2013:151975. doi: 10.1155/2013/151975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Fresa R, Visalli N, Di Blasi V, et al. Experiences of continuous subcutaneous insulin infusion in pregnant women with type 1 diabetes during delivery from four Italian centers: a retrospective observational study. Diabetes Technol Ther. 2013;15(4):328–334. doi: 10.1089/dia.2012.0260. [DOI] [PubMed] [Google Scholar]
  • 128.Bruttomesso D, Bonomo M, Costa S, et al. Type 1 diabetes control and pregnancy outcomes in women treated with continuous subcutaneous insulin infusion (CSII) or with insulin glargine and multiple daily injections of rapid-acting insulin analogues (glargine-MDI) Diabetes Metab. 2011;37(5):426–431. doi: 10.1016/j.diabet.2011.02.002. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials


Articles from Diabetes Therapy are provided here courtesy of Springer

RESOURCES