Abstract
Introduction
Insulin is the first-line pharmacologic therapy for women with diabetes in pregnancy. However, conducting well-designed randomized clinical trials (RCTs) and achieving recommended glycemic targets remains a challenge for this unique population. This systematic literature review (SLR) aimed to understand the evidence for insulin use in pregnancy and the outcome metrics most often used to characterize its effect on glycemic, maternal and fetal outcomes in gestational diabetes mellitus (GDM) and in pregnant women with diabetes.
Methods
An SLR was conducted using electronic databases in Medline, EMBASE via Ovid platform, evidence-based medicine reviews (2010–2020) and conference proceedings (2018–2019). Studies were included if they assessed the effect of insulin treatment on glycemic, maternal or fetal outcomes in women with diabetes in pregnancy. Studies on any type of diabetes other than gestational or pre-existing diabetes as well as non-human studies were excluded.
Results
In women diagnosed with GDM or pre-existing diabetes, most studies compared treatment of insulin with metformin (n = 35) followed by diet along with lifestyle intervention (n = 24) and glibenclamide (n = 12). Most studies reporting on glycemic outcomes compared insulin with metformin (n = 22) and glibenclamide (n = 4). Fasting blood glucose was the most reported clinical outcome of interest. Among the studies reporting maternal outcomes, method of delivery and delivery complications were most commonly reported. Large for gestational age, stillbirth and perinatal mortality were the most common fetal outcomes reported.
Conclusion
This SLR included a total of 108 clinical trials and observational studies with diverse populations and treatment arms. Outcomes varied across the studies, and a lack of consistent outcome measures to manage diabetes in pregnant women was observed. This elucidates a need for global consensus on study design and standardized clinical, maternal and fetal outcomes metrics.
Supplementary Information
The online version contains supplementary material available at 10.1007/s13300-024-01541-6.
Keywords: Gestational diabetes mellitus, Insulin use in pregnancy, Pregnancy, Systematic review, Type 1 diabetes mellitus, Type 2 diabetes mellitus
Key Summary Points
Why carry out this study? |
The prevalence of diabetes during pregnancy has increased in recent years, and many women with this complication require insulin during their pregnancy. Despite this, there remains a paucity of well-designed clinical trials targeting insulin use in this unique population |
This systematic literature review aimed to assess and summarize the current body of evidence for insulin use in pregnant women with gestational or pre-existing diabetes and its effects on clinical, maternal and fetal outcomes |
What was learned from the study? |
This SLR included a total of 108 unique studies, both clinical and observational, and the most commonly reported outcomes were fasting blood glucose, method of delivery and large for gestational age |
Overall, the results of this review revealed that the outcomes evaluated in studies investigating the use of insulin as a treatment option for pregnant women with diabetes varied widely across the included studies, illustrating the need for standardization of study design and outcome metrics |
Introduction
Diabetes is the most prevalent antenatal complication of pregnancy and can be subdivided into two types: pregestational and gestational diabetes mellitus (GDM) [1]. The prevalence of diabetes in pregnancy has been increasing in the USA [2]. About 1–2% of pregnant women have pre-existing diabetes, and approximately 1–14% of all pregnancies are affected by GDM [3, 4]. Women diagnosed with diabetes during pregnancy are at an increased risk to develop other maternal complications such as gestational hypertension, preeclampsia and hypoglycemia, which subsequently can lead to the development of type 2 diabetes (T2D) later in life [3]. They are also at a higher risk to undergo cesarean section or have premature delivery. In addition, diabetes in pregnancy is associated with a risk of developing fetal complications such as macrosomia and neonates with large for gestational age (LGA), small for gestational age, premature birth, neonatal respiratory distress, asphyxia, neonatal hypoglycemia and congenital anomalies [5, 6].
The recommendations from current standard of care of diabetes management in pregnant women are beyond regular blood glucose level monitoring, lifestyle behavioral changes, medical nutrition therapy (MNT), physical exercise and pharmacotherapy (metformin, glyburide or insulin) [7]. Insulin is considered the most efficacious pharmacotherapy for all types of diabetes in pregnancy, including GDM and pregestational diabetes [8]. The 2023 update of the the American Diabetes Association (ADA) guidelines, The American College of Obstetricians and Gynecologists-2018 (ACOG-2018) and International Diabetes Federation (IDF) guidelines recommend use of insulin as a first-line pharmacological therapy for management of pre-existing diabetes and GDM over other oral anti-diabetic agents [9–12].
Recent advances in insulin therapy are focused on improving the pharmacokinetics and pharmacodynamics of insulin. These goals enable prolonged profile of action, flexible dosing regimen and reduce the risk of hypoglycemia [13]. However, well-powered randomized clinical trials (RCTs) in pregnant women with diabetes are often conducted well after non-pregnant populations, if it is done at all, which leads to delayed implementation of evidence-based practices for insulin use in pregnancy. In addition, designing studies to demonstrate the achievement of stringent glycemic targets as recommended by the guidelines remains challenging for this unique population [14]. A variety of insulins have been commercially available globally, many of which have limited data on their use in pregnancy. Real-world barriers such as access to insulin or newer insulins, access to glucose monitoring and delayed prenatal care can further make adhering to guidelines difficult, if not impossible. Considering the different insulin options available in the global market and understanding the use and effects of types of insulin and/or insulin regimens on glycemic, maternal and fetal outcomes may support clinical practice. This may as well aid in improving study designs for treatment of diabetes in pregnancy. Therefore, to assess and evaluate the current body of evidence including RCTs and real-world observational data, we performed a systematic literature review (SLR) to better understand and summarize the evidence for insulin use in pregnancy to harmonize future study design in this special population.
Methods
Study Design
Search Strategy
A comprehensive search was conducted to identify relevant studies using electronic databases in Medline, EMBASE via Ovid platform and evidence-based medicine reviews from 1 January 2010 to 25 August 2020. In addition, manual (hand) searches were performed for relevant conference abstracts that were published from 2018 to 2019.
Inclusion and Exclusion Criteria
The eligibility for assessing the relevance of each article for data extraction was based on the population, intervention, comparison, outcomes and study design (PICOS) criteria (Supplementary Table 1). Inclusion criteria for the selection of articles consisted of studies that were RCTs, non-RCTs and observational studies (Supplementary Table 1). Studies were included with perinatal women diagnosed with either gestational, pre-existing diabetes (type 1 diabetes [T1D] or type 2 diabetes [T2D]) or mixed population (pregnant women with GDM, T1D or T2D). Specific glycemic (fasting blood glucose [FBG], post prandial glucose [PPG] and time in range), maternal (prevalence of hypoglycemia, cesarean section, preterm labor, hypertension, induced labor and preterm delivery) and fetal (fetal mortality, fetal morbidity and LGA) outcomes were included in this review (Supplementary Table 1). Studies on any type of diabetes other than gestational diabetes or pre-existing T1D or T2D as well as non-human studies were excluded.
Study Selection and Data Extraction
The DistillerSR tool, a cloud-based literature review software, was used to screen, compile and manage all the identified studies. Two independent reviewers screened the identified studies based on their titles and abstracts against the eligibility criteria. Subsequently, full-text articles were retrieved for full-text screening against eligibility criteria. A third, independent reviewer resolved any uncertainties/conflicts between the two reviewers. The reasons for exclusion are reported in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram (Fig. 1). DistillerSR was used to extract data from the included studies. Details of study characteristics, patient characteristics, interventions and outcomes of interest were extracted in the data extraction form. Studies with multiple publications were identified and linked to the primary study; all relevant data were extracted under the primary study. Identification and screening of the available literature was performed in accordance with PRISMA statement [15], the Centre for Reviews and Dissemination [16] and the Cochrane Collaboration [17].
Fig. 1.
PRISMA flow diagram presenting number of studies included and excluded at each stage of screening
Quality Assessment
The quality of the included RCTs was assessed using the quality assessment checklist, in accordance with the recommendations by the Centre for Reviews and Dissemination’s Guidance for Undertaking Reviews in Health Care (NICE, 2019) [18]. The quality of observational studies was assessed using the Newcastle-Ottawa Scale, 2019 [19]. Three factors were considered to score the quality of included observational studies: selection, comparability and outcomes assessment.
Ethical Approval
This article is based on previously conducted studies and does not contain any studies with human participants or animals.
Results
Study Selection
A total of 2628 citations were retrieved after initial search through electronic databases and conference proceedings (Fig. 1). After removing duplicates, 2614 articles were assessed for title-abstract screening. Subsequently, 835 articles were assessed for full-text screening. Overall, 724 records were excluded, and 111 publications, representing 108 unique studies were included in the SLR (Fig. 1).
Study and Patient Characteristics
Of the total 108 included studies, 30 were clinical trials, 74 were observational studies, and 1 was a quasi-experimental study. In three studies the study designs were not clear. The RCTs and observational studies included in this review covered perinatal women across different continents, like America, Europe, Asia, Oceania, Africa and/or multinational.
Details on patient characteristics including maternal age, gestational weight, gestational age at diagnosis and treatment initiation and relevant obstetrical history are given in Tables 1 and 2. Study characteristics are summarized in Supplementary Table 2 and 3, and treatment interventions along with types of insulin utilized by the women diagnosed with GDM or pre-existing diabetes are summarized in Supplementary Tables 4 and 5.
Table 1.
Patient characteristics of randomized controlled trials in women with gestational diabetes mellitus and pre-existing diabetes
First author_Year | Treatment arms | Sample size | Maternal age (mean ± SD) | Gestational weight (mean ± SD) kg | BMI (mean ± SD kg/m2) | Disease duration (years) | Race/Ethnicity; n (%) | GA (weeks) at diagnosis/baseline (mean ± SD) | Obstetric history | GA (weeks) at treatment initiation (mean ± SD) | Comorbidities |
---|---|---|---|---|---|---|---|---|---|---|---|
GDM | |||||||||||
Galal_2019 [20] | Human insulin | 50 | 32.82 ± 3.02 | NR | 30.52 ± 2.49 | NR | NR | 30.8 ± 2.22 | NR | NR | NR |
Metformin | 56 | 31.98 ± 3.49 | NR | 30.74 ± 2.41 | NR | NR | 30.64 ± 2.06 | NR | NR | NR | |
Wasim_2019 [21] | Insulin-Humulin R and NPH | 141 | 29.7 ± 4.8 | NR | 27.1 ± 5.3 | NR | NR | 28.6 ± 3.1 | NR | NR | NR |
Metformin | 137 | 29.5 ± 4.8 | NR | 26.5 ± 5.1 | NR | NR | 28.9 ± 2.9 | NR | NR | NR | |
Das_2018 [66] | Insulin | 41 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Metformin | 40 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Eid_2018 [34] | Insulin | 116 | 30.4 ± 3.5 | 76.8 ± 11.2 | 30.5 ± 4.2 | NR | NR | 28.1 ± 3.1 | NR | NR | NR |
Metformin | 113 | 31.6 ± 3.6 | 75.9 ± 8.7 | 29.44 ± 4.53 | NR | NR | 27.4 ± 3.9 | NR | NR | NR | |
Ghomian_2018 [33] | Levemir (insulin detemir) + aspart | 143 | 28.41 ± 6.36 | NR | 24.0 ± 2.10 | NR | NR | 25.10 ± 1.05 | History of GDM: 29 (20%) | NR | NR |
Metformin | 143 | 28.30 ± 5.25, p = 0.87 | NR | 23.73 ± 1.87, p = 0.25 | NR | NR | 24.80 ± 1.45, p = 0.39 | History of GDM: 34 (24%) | NR | NR | |
Huhtala_2018 [43] | NPH insulin and/or rapid-acting insulin lispro or insulin aspart | 107 | 32.0 ± 5.47 | NR | NR | NR | NR | NR | NR | NR | NR |
Metformin | 109 | 31.9 ± 5.01; p = 0.89 vs. insulin | NR | NR | NR | NR | NR | NR | NR | NR | |
Diet | 103 | 30.6 ± 5.05 | NR | NR | NR | NR | NR | NR | NR | NR | |
Senat_2018 [54] | Insulin | 442 | 32.6 ± 5.3 | NR | 31.1 ± 5.4 | NR | NR | Median (IQR): 26 + 3 (25 + 1 to 28 + 0) | Previous GDM: 88 (19.9%) | Median (IQR): 32 + 3 (30 + 3 to 34 + 1) | NR |
Glyburide | 367 | 32.5 ± 5.1 | NR | 30.7 ± 5.1 | NR | NR | Median (IQR): 26 + 5 (25 + 3 to 28 + 0) | Previous GDM: 73 (20.0%) | Median (IQR): 32 + 6 (30 + 6 to 34 + 3) | NR | |
Hamadani_2017 [35] | Insulin NPH | 30 | 29.63 ± 3.81 | 58.10 ± 5.01 | 23.43 ± 5.06 | NR | NR | 28.26 ± 2.46 | NR | NR | NR |
Metformin | 30 | 30.26 ± 3.97 | 58.90 ± 5.78 | 22.94 ± 5.86 | NR | NR | 28.13 ± 2.30 | NR | NR | NR | |
Khan_2017 [24] | Insulin | 385 | 28.01 ± 2.53 | NR | 23.82 ± 2.81 | NR | NR | 29.92 ± 2.27 | NR | NR | NR |
Metformin | 385 | 24.92 ± 2.57 | NR | 22.08 ± 2.98 | NR | NR | 27.94 ± 2.57 | NR | NR | NR | |
Zawiejska_2017 [23] | Insulin | 43 | Median (IQR): 35 (30–38) | NR | 32.0 ± 5.8 | NR | NR | Median (IQR): 30 (28–31) | HTN: 4 (9.3%) | NR | NR |
Metformin and metformin + insulin | 35 | Median (IQR): 33 (29–39) | NR | 32.2 ± 6.4 | NR | NR | Median (IQR): 30 (28–32) | HTN: 7 (20%) | NR | NR | |
Ashoush_2016 [22] | Insulin (regular + NPH)- Group-1 control | 48 | 32.1 ± 3.2 | NR | 31.4 ± 1.5 | NR | NR | 27.8 ± 1.4 | NR | 29.7 ± 1.9 | NR |
Metformin and metformin + insulin-Group-II research | 47 | 31.6 ± 2.8 | NR | 31.1 ± 1.3 | NR | NR | 28.2 ± 1.3 | NR | 29.8 ± 1.4 | NR | |
Behrashi_2016 [67] | Regular insulin and NPH | 129 | 29.98 ± 7.033 | NR | 22.59 ± 3.09 | NR | NR | 24.48 ± 4.51 | NR | NR | NR |
Glibenclamide | 120 | 30.69 ± 7.194 | NR | 21.94 ± 2.8 | NR | NR | 24.89 ± 3.90 | NR | NR | NR | |
Somani_2016 [26] | Regular/NPH/both | 33 | 26.3 ± 3.84 | NR | NR | NR | NR | 28.33 ± 2.57 | Previous GDM: 7 (21.21%) | NR | NR |
Metformin | 32 | 25.61 ± 4.72, p = 0.52 | NR | NR | NR | NR | 27.77 ± 2.49, p = 0.38 | Previous GDM: 4 (12.5%), p = 0.51 | NR | NR | |
Ainuddin_2015 [36] | Insulin (short + intermediate-acting) | 75 | 31 ± 4 | NR | NR | NR | NR | 29.2 ± 1.5 | NR | 28.19 ± 1.5 | NR |
Metformin | 43 | 30.6 ± 2.9 | NR | NR | NR | NR | 29.9 ± 1.1 | NR | NR | NR | |
Insulin added-on to metformin | 32 | 30 ± 3.3 | NR | NR | NR | NR | 29.7 ± 1.6 | NR | 31.78 ± 5.9 | NR | |
Mirzamoradi_2015 [42] | Insulin | 59 | 31.18 ± 5.01 | NR | 31.77 ± 5.11 | NR | NR | 193.59 ± 20.01 | Previous GDM: 2 (3.38%) | 211.89 ± 27.80 days | NR |
Glyburide | 37 | 29.50 ± 4.06 | NR | 30.18 ± 5.35 | NR | NR | 194.89 ± 29.54 | Previous GDM: 1 (2.07%) | 209.24 ± 28.84 | NR | |
Mukhopadhyay_2014 [58] | Insulin | 30 | 26 ± 4.3 | NR | 23 ± 2.9 | NR | NR | 27.4 ± 2.7 | NR | NR | NR |
Glibenclamide | 30 | 26.3 ± 4.6 | NR | 23.7 ± 2.7 | NR | NR | 28.3 ± 2.2 | NR | NR | NR | |
Ruholamin_2014 [37] | Insulin | 50 | 23.4 ± 2.5 | NR | 25.1 ± 3.4 | NR | NR | 26.7 ± 3.5 | NR | NR | NR |
Metformin | 50 | 24.6 ± 6.3 | NR | 26.4 ± 2.8 | NR | NR | 27.6 ± 3.3 | NR | NR | NR | |
Spaulonci_2013 [68] | Insulin | 46 | 32.76 ± 4.66 | NR | 31.39 ± 5.71 | NR | NR | 30.63 ± 3.35 | NR | NR | NR |
Metformin | 46 | 31.93 ± 6.02 | NR | 31.96 ± 4.75 | NR | NR | 30.40 ± 3.71 | NR | NR | NR | |
Balaji_2012 [69] | Premixed insulin aspart 30 (BIAsp 30) | 163 | 29.15 ± 3.97 | NR | 26.01 ± 3.40 | NR | NR | 19.32 ± 6.34 | NR | 21.67 ± 9.27 | NR |
Premixed human insulin (BHI 30) | 157 | 29.64 ± 4.52 | NR | 25.83 ± 3.40 | NR | NR | 19.89 ± 7.12 | NR | 22.39 ± 10.14 | NR | |
Hassan_2012 [40] | Regular and intermediate-acting Human insulin | 75 | 30.88 ± 3.6 | NR | 28.74 ± 2.69 | NR | NR | 29.20 ± 1.48 | NR | NR | NR |
Metformin | 75 | 30.29 ± 3.06 | NR | 29.17 ± 1.94 | NR | NR | 29.53 ± 1.33 | NR | NR | NR | |
Mesdaghinia_2012 [56] | NPH and regular | 100 | 30.2 ± 5.9 | NR | 28.46 | NR | NR | 28.9 ± 3.8 | NR | NR | NR |
Metformin | 100 | 29.6 ± 5.3 | NR | 27.6 | NR | NR | 27.9 ± 3.22 | NR | NR | NR | |
Niromanesh_2012 [39] | NPH and regular as needed | 80 | 31.8 ± 5.1 | NR | 27.1 ± 2.1 | NR | NR | 26.0 ± 3.7 | Previous GDM: 11 (13.8%), macrosomia: 5 (6.3%) | NR | NR |
Metformin | 80 | 30.7 ± 5.5 | NR | 28.1 ± 4.0 | NR | NR | 26.0 ± 3.5 | Previous GDM: 6 (7.55), macrosomia: 2 (2.5%) | NR | NR | |
Diet | 371 | NR | NR | NR | NR | Other: European: 30%, Maori: 4.6%, Pacific: 7.6%, Indian: 13.5%, Other Asian: 39.4%, other: 5.1% | NR | NR | NR | NR | |
Tertti_2012 [38] | Insulin | 107 | 32.1 ± 5.4 | NR | 28.9 ± 4.7 | NR | NR | 30.4 ± 1.8 | NR | NR | NR |
Metformin | 110 | 31.9 ± 5.0 | NR | 29.4 ± 5.9 | NR | NR | 30.4 ± 1.8 | NR | NR | NR | |
Ijas_2011 [41] | Long- (Protaphane) and rapid-acting (Humalog) insulin | 50 | 31.7 ± 6.1 | NR | 30.8 ± 5.4 | NR | NR | 30 ± 4.0 | NR | NR | NR |
Metformin | 47 | 32.3 ± 5.6 | NR | 31.5 ± 6.5 | NR | NR | 30 ± 4.9 | NR | NR | NR | |
Preexisting diabetes | |||||||||||
Jing ji_2020 [27] | Insulin detemir + Novolin-R | 120 | 31.67 ± 4.16 | NR | 24.82 ± 3.53 | NR | NR | 27.69 ± 6.05 | NR | NR | NR |
Insulin NPH + Novolin-R | 120 | 30.84 ± 5.24, p = 0.178 | NR | 24.39 ± 3.90, p = 0.581 | NR | NR | 27.70 ± 5.86, p = 0.991 | NR | NR | NR | |
Ainuddin_2015 [44] | Insulin (short- + intermediate-acting) | NR | 33.73 ± 2.95 | NR | Early pregnancy: 32.96 ± 4.04, Late pregnancy: 38.01 ± 4.18 | NR | NR | NR | NR | NR | NR |
Metformin | NR | 31.75 ± 2.82, p = 0.07 vs. insulin | NR | Early pregnancy: 28.25 ± 1.98, p < 0.01 vs. insulin; Late pregnancy: 32.47 ± 2.19, p < < 0.01 vs. insulin | NR | NR | NR | NR | NR | NR | |
Insulin added-on to metformin | NR | 34.09 ± 3.51, p = 0.956 vs. insulin | NR | Early pregnancy: 33.59 ± 3.97, p = 0.171 vs. insulin; late pregnancy: 38.09 ± 4.26, p = 0.714 vs. insulin | NR | NR | NR | NR | NR | NR | |
Herrera_2015 [70] | Insulin detemir | 42 | Median (IQR): 35 (31–38) | NR | NR | NR | Black: 7 (17%), White: 11 (26%), other: Native American Alaskan: 12 (29%), Hispanic: 12 (29%) | Median (IQR): 26.1 (24.8–27.1) | Previous GDM: 8 (19%), PCOS: 5 (12%) | Median (IQR): 29.6 (27.5–31.4) | Chronic HTN: 5 (12%), renal disease: 1 (2%), thyroid disease: 6 (14%) |
Insulin NPH | 45 | Median (IQR): 35 (32–38) | NR | NR | NR | Black: 5 (11%), White: 17 (38%), other: Native American Alaskan: 6 (13%), others: 2 (4%), Hispanic: 15 (33%) | Median (IQR): 26.6 (25.4–28.2) | Previous GDM: 9 (20%), PCOS: 12 (27%) | Median (IQR): 30.0 (25.1–31.5) | Chronic HTN: 6 (13%), renal disease: 5 (11%), thyroid disease: 8 (18%) | |
Refuerzo_2015 [71] | Insulin | 13 | 32.3 ± 4.3 | NR | 40.1 ± 8.4 | NR | Black: 4 (30.8%), White: 6 (46.2%), other: Hispanic: 1 (7.7%), others: 2 (15.4%) | Median (range): 16 (6–18) | NR | NR | NR |
Metformin | 8 | 30.9 ± 5.5 | NR | 40.1 ± 8.4 | NR | Black: 3 (37.5%), White: 4 (50%), other: 1 (12.5%) | Median (range): 16 (8–19) | NR | NR | NR | |
Hod_2014 [57] | Insulin detemir | 152 | 29.7 ± 4.6 | NR | 24.3 ± 4.0 | 11.7 ± 8.1 | NR | NR | NR | NR | Retinopathy: 43 (28.3) |
Insulin NPH | 158 | 30.4 ± 4.2 | NR | 25.2 ± 4.2 | 12.8 ± 7.9 | NR | NR | NR | NR | Retinopathy: 40 (25.3%) | |
Hickman_2013 [52] | Insulin | 14 | Median (IQR): 31 (26–33) | NR | NR | NR | Black: 2 (14%), White: 2 (14%), Hispanic: 10 (71%) | Median (IQR): 14 (13–19) | Previous GDM: 8 (67%), prior CS: 2 (17%) | NR | Chronic HTN: 4 (29%), hypothyroid: 1 (7%), depression: 3 (21%) |
Metformin | 14 | Median (IQR): 36 (35–37) | NR | NR | NR | Black: 2 (14%), Hispanic: 12 (86%) | Median (IQR): 17 (10–22) | Previous GDM: 8 (67%), prior CS: 6 (50%) | NR | Chronic HTN: 4 (29%), hypothyroid: 1 (7%), depression: 2 (14%), asthma: 2 (14%) |
BHI biphasic premixed human insulin, BMI body mass index, GA gestational age, GDM gestational diabetes mellitus, HTN hypertension, IQR interquartile range, n sub-population size, NPH neutral protamine Hagedorn, NR not reported, SD standard deviation
Table 2.
Patient characteristics of observational studies in women with gestational diabetes mellitus and pre-existing diabetes
First author_Year | Treatment arms | Sample size | Maternal age (mean ± SD) | Gestational weight (mean ± SD) kg | BMI (mean ± SD kg/m2) | Disease duration (years) | Race/Ethnicity; n (%) | GA (weeks) at diagnosis/baseline (mean ± SD) | Obstetric history | GA (weeks) at treatment initiation (mean ± SD) | Comorbidities |
---|---|---|---|---|---|---|---|---|---|---|---|
GDM | |||||||||||
Han_2020 [72] | Insulin Lispro + metformin | 62 | 27.63 ± 2.96 | NR | 25.51 ± 2.67 | NR | NR | NR | Fibroid: 14 (22.58%) | NR | NR |
Insulin Lispro | 55 | 27.41 ± 3.21 | NR | 25.12 ± 2.33 | NR | NR | NR | Fibroid: 15 (27.27%) | NR | NR | |
Krishnakumar_2020 [73] | Insulin | 37 | 26.05 ± 2.45 | NR | NR | NR | NR | NR | NR | NR | NR |
Metformin | 44 | 26.05 ± 2.45 | NR | NR | NR | NR | NR | NR | NR | NR | |
Osuagwu_2020 [74] | Insulin | 103 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Diet | 146 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Overall population | 255 | 30.7 ± 5.5 | NR | 33.2 ± 7.5 | NR | Other: Itaukei Fijians: 49.4%, FIDs: 42%, Others: 8.6% | 25.6 ± 7.8 | Previous GDM: 4.3% | NR | NR | |
Rodrigues_2020 [50] | Insulin | 41 | NR | NR | Overall mean BMI NR but data provided in terms of BMI ranges | NR | Black: 12 (29.3), White: 27 (65.9), Asian: 2 (4.3) | 18.6 ± 7.9 | Previous GDM: 4 (9.8%); Previous macrosomia: 2 (4.9%); Previous abortions 12 (29.3%) | 27.3 ± 7.0 | Chronic hypertension: 11 (26.8) |
Metformin + insulin | 94 | NR | NR | Overall mean BMI NR but data provided in terms of BMI ranges | NR | Black: 27 (29.3), White: 61 (66.3), Asian: 4 (4.3); p = 0.99 vs. insulin | 19.1 ± 8.2 | Previous GDM: 14 (14.9%); p = 0.42, Previous macrosomia: 8 (8.5%); p = 0.46, Previous abortions 26 (27.7%); p = 0.85 vs. insulin | 27.6 ± 7.1 | Chronic hypertension: 10 (10.8); p = 0.17 vs. insulin | |
Metformin only | 77 | NR | NR | Overall mean BMI NR but data provided in terms of BMI ranges | NR | Black: 20 (26.7%), White: 52 (69.3%), Asian: 3 (4%); p = 0.92 vs. insulin | 19.5 ± 8.4 | Previous GDM: 12 (15.6%)-p = 0.38 vs. insulin; Previous macrosomia: 6 (7.8%)-p = 0.55; Previous abortions 21 (27.2%)-p = 0.82 | 28.2 ± 7.3 | Chronic hypertension: 6 (7.9); p = 0.006 vs. insulin | |
Zaharieva_2020 [75] | Insulin vs. non-insulins | Total-90; insulin: n = 34 | 31 ± 4 | NR | NR | NR | NR | 27 ± 1 | NR | NR | NR |
Cade_2019 [76] | Insulin | 619 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Meghelli_2019 [77] | Insulin | 63 | 31.6 ± 4.6 | NR | 44.0 ± 2.9 | NR | NR | NR | History of C-section: 18 (28.6%), Hypertension: 11 (17.5%), GDM: 24 (38.1%) | NR | NR |
No insulin | 56 | 29.0 ± 5.2 | NR | 43.6 ± 2.6 | NR | NR | NR | C-section: 13 (23.2%), Hypertension: 4 (7.1%), GDM: 6 (10.7%) | NR | NR | |
Munn_2019 [78] | Glyburide | 195,000 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Insulin | 195,000 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Ng_2019 [79] | Insulin | 576 | 31.93 ± 5.69 | NR | 31.20 ± 7.66 | NR | NR | NR | NA | NR | NR |
No Insulin | 1281 | 30.59 ± 5.55 | NR | 29.00 ± 7.42 | NR | NR | NR | NA | NR | NR | |
Tang_2019 [31] | Insulin | 180 | 32.5 ± 4.1 | 76.8 ± 12.8 | NR | NR | NR | 20.1 ± 8.6 | PCOS: 2 (1.1%), previous adverse pregnancy outcome: 49 (27.2%) | NR | NR |
MNT | 354 | 30.6 ± 3.9 | 71.0 ± 11.1 | NR | NR | NR | 22.3 ± 7.4 | PCOS: 4 (1.1%), previous adverse pregnancy outcome: 72 (20.3%) | NR | NR | |
Bogdanet_2018 [46] | Insulin detemir and insulin aspart | 752 | Median (IQR): 34 (31–37) | NR | Median (IQR): 32 (28–37) | NR | Other: Caucasian: 624 (84.7%), non-Caucasian: 113 (15.3%) | NR | NR | NR | NR |
MNT | 567 | Median (IQR): 33 (30–36) | NR | Median (IQR): 29.8 (26–34.3) | NR | Other: Caucasian: 465 (83.8%), non-Caucasian: 90 (16.2%) | NR | NR | NR | NR | |
Normal glucose tolerance | 2496 | Median (IQR): 32 (28–35) | NR | Median (IQR): 26 (23–29) | NR | Other: Caucasian: 2335 (9.3%), non-Caucasian: 156 (6.3%) | NR | NR | NR | NR | |
Christian_2018 [80] | Insulin | 17 | Median (range): 34 (20–46) | NR | Median (range): 35 (23–53) | NR | Other: Middle eastern: 7 (41.2%), Rest of Asia: 6 (35.3%), Africa: 4 (23.5%) | Median (range): 29 (18–35) | NR | 30.2 weeks | NR |
Metformin | 58 | Median (range): 32 (22–42) | NR | Median (range): 30 (23–41) | NR | Other: Middle eastern: 3 (5.2%), Rest of Asia: 45 (77.6%), Africa: 10 (17.2%) | Median (range): 31 (14–38) | NR | 30.6 weeks | NR | |
Metformin + insulin | 32 | Median (range): 34 (25–45) | NR | Median (range): 32 (23–52) | NR | Other: Middle eastern: 6 (18.7%), Rest of Asia: 19 (59.4%), Africa: 7 (21.9%) | Median (range): 28 (15–35) | NR | 27.8 (metformin)/30.7 (insulin) weeks | NR | |
Hedderson_2018 [60] | Insulin | 401 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Glyburide | 4622 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin + glyburide | 281 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Landi_2018 [49] | Insulin | 3450 | 32.4 | NR | Median (IQR): 28 (24–33) | NR | NR | 30.1 ± 2.9 | Prior GDM: 9.3% | 31.6 ± 2.9 | NR |
Metformin | 3818 | 31.9 | NR | Median (IQR): 28 (23–33) | NR | NR | 30.5 ± 2.9 | Prior GDM: 8.3% | 32.0 ± 2.9 | NR | |
Leung_2018 [81] | Insulin | 223 | NR | NR | 31.89 ± 9.03 | NR | NR | NR | NR | NR | NR |
glyburide | 171 | NR | NR | 30.17 ± 7.43 | NR | NR | NR | NR | NR | NR | |
McGrath_2018 [82] | Insulin | 83 | 33.5 ± 4.3 | NR | 25.2 ± 6.3 | NR | Asian: South Asian: 29 (34.9%), Asian: 20 (24.1%), SEA: 5 (6%), Caucasian: 25 (30.1%), Middle Eastern: 4 (4.8%) | 24.0 ± 5.8 | Previous GDM: 11 (13.3%) | 28.0 ± 5.4 | NR |
Metformin | 83 | 33.1 ± 4.8 | NR | 27.8 ± 8.0 | NR | South Asian: 22 (26.5%), Asian: 18 (21.7%), SEA: 6 (7.2%), Caucasian: 34 (41%), Middle eastern: 2 (2.4%), Pacific Islander: 1 (1.2%) | 23.6 ± 5.9 | Previous GDM: 11 (13.3%) | 27.1 ± 5.7 | NR | |
Diet + lifestyle | 83 | 33.1 ± 4.3 | NR | 22.7 ± 2.9 | NR | South Asian: 15 (18.1%), Asian: 27 (32.5%), SEA: 8 (9.6%), Caucasian: 34 (41%), Middle Eastern: 1 (1.2%), African: 1 (1.2%) | 24.0 ± 5.7 | Previous GDM: 11 (13.3%) | NA | NR | |
Meregaglia_2018 [83] | Insulin | 1616 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Diet | 9924 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Patanjali_2018 [84] | Insulin | 58 (20.1%) | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Metformin | Only metformin: 23 (8%), Required insulin with metformin: 28 (9.7%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Diet | 179 (62.1%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Rowan_2018 [85] | Insulin (Adelaide cohort) | 51 | 33.9 ± 4.7 | NR | 34 ± 7.9 | NR | Other: European/Caucasians: 43 (84.3%), Indian: 4 (7.8%), Chinese and other Southeast Asian: 2 (3.9%), others/mixed: 2 (3.9%) | 31.6 ± 2 | Chronic HTN: 5 (9.8%) | NR | NR |
Metformin (Adelaide cohort) | 58 | 33.6 ± 5.7 | NR | 34.2 ± 7.1 | NR | Other: European/Caucasians: 52 (89.7%), Chinese and other: 4 (6.9%), others/mixed: 2 (3.4%) | 31.3 ± 2.8 | Chronic HTN: 7 (12.1%) | NR | NR | |
Insulin (Auckland cohort) | 54 | 35.21 ± 4.72 | NR | 32.0 ± 6.3 | NR | Other: European/Caucasians: 21 (38.9%), Polynesian: 7 (13.0%), Indian: 16 (29.6%), Chinese and other Southeast Asian: 7 (13.0%), others/mixed: 3 (5.6%) | 29.5 ± 3.4 | Chronic HTN: 5 (9.3%) | NR | NR | |
Metformin (Auckland cohort) | 45 | 34.12 ± 5.12 | NR | 35.4 ± 11.3 | NR | Other: European/Caucasians: 25 (55.6%), Polynesian: 6 (13.3%), Indian: 7 (15.6%), Chinese and other: 6 (13.3%), Others/mixed: 1 (2.2%) | 29.9 ± 3.6 | Chronic HTN: 7 (15.6%) | NR | NR | |
Simeonova-Krstevska_2018 [28] | Levemir (insulin detemir) + aspart | 101 | 32.7 ± 5.7 | NR | NR | NR | NR | 24 ± 7.8 | NR | NR | NR |
Metformin | 48 | 32.2 ± 4.7 | NR | NR | NR | NR | 28.6 ± 5.6 | NR | NR | NR | |
Diet | 200 | 31.5 ± 5.2 | NR | NR | NR | NR | 29.5 ± 5.8 | NR | NR | NR | |
Vanlalhruaii_2018 [86] | Insulin | 151 | 28.9 ± 4.03 | NR | 30.2 ± 6.6 | NR | NR | 23.67 + 7.65 weeks + days | Previous GDM: 34 (22.52%) | NR | NR |
Group A-metformin 1st trimesters | 186 | 29.41 ± 4.64 | NR | 29.8 ± 5.6 | NR | NR | 10.04 ± 1.8 weeks + days | Previous GDM: 53 (28.5%) | NR | NR | |
Group B-metformin 2nd trimesters | 203 | 28.8 ± 5.12 | NR | 28.5 ± 7.1 | NR | NR | 22.45 ± 5.4 | Previous GDM: 37 (18.23%) | NR | NR | |
Bowker_2017 [87] | Human insulin or insulin analogues | 5057 (human insulin, n = 3724 or 73.6%) | 33.2 ± 5.0 | NR | NR | NR | Asian: Chinese: 320 (6.3%), South Asian: 385 (7.6%), other: general population: 4055 (80.2%), status aboriginal: 297 (5.9%) | NR | NR | NR | NR |
Metformin ± insulin | 478 (human insulin or insulin analogues; n = 171 or 82.2%) | 32.8 ± 5.0 | NR | NR | NR | Chinese: 14 (2.9%), South Asian: 28 (5.9%), other: General population: 406 (84.9%), status aboriginal: 30 (6.3%) | NR | NR | NR | NR | |
No specific intervention | 13,226 | 32.4 ± 5.2 | NR | NR | NR | Asian: Chinese: 1052 (8.0%), South Asian: 770 (5.8%), other: General population: 10,575 (80.0%), Status aboriginal: 829 (6.3%) | NR | NR | NR | NR | |
Gibbons_2017 [88] | Insulin | 315 | 33.2 ± 5.0 | NR | Median (IQR): 28.6 (24.8–35.0) | NR | Asian: 49 (15.6%), other: Caucasian: 148 (47.0%), Indigenous: 13 (4.1%), Indian: 36 (11.4%), others: 69 (21.9%) | NR | HTN: 37 (11.7%), thyroid disease: 26 (8.3%) | NR | NR |
OHA (glyburide/metformin) | 211 | 32.5 ± 5.1 | NR | Median (IQR): 26.1 (23.1–30.9) | NR | Asian: 45 (21.3%), other: Caucasian: 83 (39.3%), Indigenous: 2 (0.9%), Indian: 39 (18.5%), others: 42 (19.9%) | NR | HTN: 23 (10.9%), thyroid disease: 15 (7.1%) | NR | NR | |
Diet | 563 | 32.2 ± 5.3 | NR | Median (IQR): 24.0 (20.9–28.5) | NR | Asian: 165 (29.3%), Other: Caucasian: 190 (33.7%), Indigenous: 10 (1.8%), Indian: 73 (13.0%), others: 125 (22.2%) | NR | HTN: 45 (8.0%), thyroid disease: 54 (9.6%) | NR | NR | |
Olmos_2017 [89] | BBIT | 73 | 32.9 ± 5.2 | NR | 27.0 ± 5.0 | NR | NR | 24.6 ± 6.6 | NR | NR | NR |
Without BBIT (diet/metformin) | 58 | 32.5 ± 5.0 | NR | 24.5 ± 3.4 | NR | NR | 28.2 ± 7.7 | NR | NR | NR | |
Xie_2017 [90] | Insulin aspart intensive treatment/insulin pump (research arm) | 45 | 30.8 ± 2.6 (range 23–36) | NR | NR | NR | NR | NR | NR | NR | NR |
Insulin aspart + detemir (reference arm) | 45 | 31.5 ± 2.4 (range 22–35) | NR | NR | NR | NR | NR | NR | NR | NR | |
Fazel-Sarjoui_2016 [91] | Short-acting insulin | 70 | 30.1 ± 5.1 | NR | NR | NR | NR | NR | NR | NR | NR |
Diet | 70 | 29.1 ± 4.6 | NR | NR | NR | NR | NR | NR | NR | NR | |
Ito_2016 [92] | Insulin | 32 | 33.3 ± 5.6 | NR | 24.6 ± 4.3 | NR | NR | 18.6 ± 8.4 | Prior fetal macrosomia: 1 (3.1%) | 23.1 ± 8.3 | NR |
Diet | 70 | 34.4 ± 5.6 | NR | 23.3 ± 3.6 | NR | NR | 20.8 ± 7.5 | Prior fetal macrosomia: 0 (0%) | NA | NR | |
Koning_2016 [93] | Diet + additional insulin (aspart, NPH and aspart + NPH) | 360 (43.9%) | 32.6 ± 5.2 | NR | NR | NR | Asian: 20 (5.6%), Other: Caucasian: 281 (78.1%), African-American: 17 (14.7%), Mediterranean: 35 (9.7%), unknown: 7 (1.9%) | Median (IQR): 27.1 (24.4–29.3) | History of PCOS: 16 (4.4%), previous GDM: 61 (16.9%), History of IUFD: 11 (3.1%), spontaneous abortion: 110 (30.6%), infant weighing ≥ 4500 g at birth: 55 (15.3%) | NR | Chronic hypertension: 22 (6.1%) |
Diet | 460 (56.1%) | 31.6 ± 4.9 | NR | NR | NR | Asian: 35 (7.6%), Caucasian: 377 (82.0%), African-American: 22 (4.8%), Mediterranean: 35 (9.7%), unknown: 8 (1.7%) | Median (IQR): 28.4 (26.7–32.3) | History of PCOS: 24 (5.2%), previous GDM: 25 (5.4%), IUFD: 5 (1.1%), spontaneous abortion: 113 (24.6%), infant weighing ≥ 4500 g at birth: 35 (7.6%) | NR | Chronic hypertension: 15 (3.3%) | |
Overall population | 820 | 32.0 ± 5.1 | NR | NR | NR | Asian: 55 (6.7%), Other: Caucasian: 658 (80.2%), African-American: 35 (4.3%), Mediterranean: 57 (7.0%), unknown: 15 (1.8%) | Median (IQR): 27.9 (25.9–30.7) | History of PCOS: 40 (4.9%), previous GDM: 86 (10.5%), IUFD: 16 (2.0%), spontaneous abortion: 223 (27.2%), infant weighing ≥ 4500 g at birth: 90 (11.0%) | NR | Chronic hypertension: 37 (4.5%) | |
Koren_2016 [55] | Insulin detemir | 29 | 33.8 ± 4.7 | NR | NR | NR | NR | NR | Previous GDM: 6 (20.7%), macrosomia: 4 (13.8%) | 28.5 ± 8.1 | HTN: 3 (10.3%) |
Glyburide | 62 | 33.1 ± 4.0 | NR | NR | NR | NR | NR | Previous GDM: 19 (30.5), macrosomia: 8 (12.9%) | 29.4 ± 5.2 | HTN: 3 (4.8%) | |
Ozgu-Erdinc_2016 [29] | Insulin | 144 | 32.8 ± 5.6 | NR | < 8th GW: Median: 32 (21–52) | NR | NR | NR | History of macrosomia: 22 (15.3%) | NR | NR |
Diet | 115 | 31.9 ± 5.3 | NR | < 8th GW: Median: 31.5 (21–50) | NR | NR | NR | History of macrosomia: 11 (9.6%) | NR | NR | |
Saleem_2016 [94] | Insulin (BiD) | 240 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Insulin-QiD | 240 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Watanabe_2016 [95] | Insulin | 10 | 33.8 ± 7.0 | NR | NR | NR | NR | 18.9 ± 2.0 | Previous GDM: 1 (10.0%) | 26.1 ± 5.9 | NR |
Diet | 27 | 35.7 ± 3.6 | NR | NR | NR | NR | 21.6 ± 4.1 | Previous GDM: 5 (18.5%) | NA | NR | |
Yanagisawa_2016 [30] | Insulin | 36 | 34.2 ± 5.1 | NR | NR | NR | NR | 23.3 ± 6.4 | Previous GDM: 3 (8%), macrosomia: 1 (3%) | NR | NR |
MNT | 77 | 34.2 ± 4.2 | NR | NR | NR | NR | 27.0 ± 5.1 | Previous GDM: 1 (1%), macrosomia: 2 (3%) | NR | NR | |
Benhalima_2015 [32] | Short-acting or long-acting insulin or both | 145 | 32.5 ± 4.7 | NR | 29.1 ± 20.2 | NR | NR | 25.3 ± 4.9 | Previous GDM: 31 (21.5%) | NR | NR |
Diet | 456 | 31.8 ± 4.8 | NR | 26.8 ± 12.9 | NR | NR | 27.1 ± 3.7 | Previous GDM: 47 (10.4%) | NR | NR | |
Castillo_2015 [59] | Insulin | 4191 | 34 ± 4.7 | NR | NR | NR | NR | NR | NR | NR | Infertility treatment: 6.8%, hypothyroidism: 8.3%, PCOS: 4.1%, Hyperandrogenism: 1.6%, metabolic syndrome: 0.7%, Antihypertensive use: 7% |
Glyburide | 4982 | 34 ± 4.7 | NR | NR | NR | NR | NR | NR | NR | Infertility treatment: 5.6%, hypothyroidism: 7.1%, PCOS: 3.3%, hyperandrogenism: 2%, metabolic syndrome: 0.4%, antihypertensive use: 6.9% | |
Cosson_2015 [96] | Insulin | 260 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Inocencio_2015 [97] | Insulin | 460 | – | NR | NR | NR | NR | NR | NR | NR | NR |
Koivunen_2015 [64] | Insulin-2006 | 1128 | 31.6 ± 5.6 | NR | NR | NR | NR | NR | NR | NR | NR |
Insulin-2010 | 887 | 32.1 ± 5.4 | NR | NR | NR | NR | NR | NR | NR | NR | |
Diet-2006 | 4057 | 30.9 ± 5.7 | NR | NR | NR | NR | NR | NR | NR | NR | |
Diet-2010 | 5796 | 30.9 ± 5.4 | NR | NR | NR | NR | NR | NR | NR | NR | |
Kopec_2015 [98] | Insulin | 205 | 30.9 ± 4.5 | NR | NR | NR | NR | NR | Previous GDM: 18 | NR | NR |
OHA | 141 | 29.5 ± 4.1 | NR | NR | NR | NR | NR | NR | NR | PIH: 18 (12%), Hypothyroidism: 2 (1.4%), p = 0.003 vs. OHA | |
You_2015 [99] | Regular insulin (NPH if required) | 55 | 33.4 ± 3.8 | NR | NR | NR | NR | NR | NR | NR | NR |
Fast-acting insulin analogues (NPH if required)-aspart or lispro | 142 | 33.5 ± 3.9 | NR | NR | NR | NR | NR | NR | NR | NR | |
Arshad_2014 [25] | Regular and NPH | 25 | 31.60 ± 4.27 | 77.9 ± 9.03 | NR | NR | NR | NR | NR | NR | NR |
Diet + exercise | 25 | 30.08 ± 3.16 | 78.54 ± 6.93 | NR | NR | NR | NR | NR | NR | NR | |
Deepaklal_2014 [100] | Insulin Lispro | 201 | Median (range): 29 (18–41) | NR | NR | NR | NR | Median (range): 21.75 (4–38) | Previous GDM: 26.6%, N = 195 | NR | NR |
Konig_2014 [101] | Insulin | 40 | 32.26 ± 4.37 | NR | 27.71 ± 6.77 | NR | NR | NR | NR | NR | NR |
No insulin | 83 | 32.69 ± 4.9 | NR | 23.75 ± 3.84 | NR | NR | NR | NR | NR | NR | |
Marques_2014 [102] | NPH insulin | 33 | 34.3 ± 5.3 | NR | 28.8 ± 6.3 | NR | Other: Caucasian: 29 (87.9%), Africans: 4 (12.1%) | NR | NR | NR | NR |
Metformin | 32 | 34.1 ± 5.2 | NR | 32.3 ± 7.7 | NR | Other: Caucasian: 27 (84.4%), Africans: 4 (12.5%), Asian: 1 (3.1%) | NR | NR | NR | NR | |
Al_Rubeaan_2013 [103] | Regular insulin | 674 (8.50%) | NR | NR | NR | NR | NR | NR | NR | NR | NR |
NPH | 653 (8.58%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Premixed insulin | 406 (3.41%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Glargine insulin analogues | 58 (3.11%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Aspart insulin analog | 80 (7.84%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Lispro insulin analog | 3 (3.70%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Overall | 1,878,386 (4.70%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Hernandez-Rivas_2013 [104] | Insulin | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Latif_2013 [105] | Insulin | 32 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Metformin | 68 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Metformin + insulin | 28 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Tempe_2013 [106] | Insulin | 32 | 27.5 ± 3.04 | NR | NR | NR | NR | NR | NR | 27.3 ± 4.1 | NR |
Glyburide | 32 | 26.9 ± 3.06 | NR | NR | NR | NR | NR | NR | 25.9 ± 5.1 | NR | |
Cheng_2012 [107] | Insulin | 8609 | NR | NR | NR | NR | Black: 77.7%, White: 82.7%, Asian: 75.1%, other: 83.2, Hispanic: 81.1% | NR | NR | NR | NR |
Glyburide | 2073 | NR | NR | NR | NR | Black: 22.3%, White: 18.1%, Asian: 24.9%, other: 16.8%, Hispanic: 18.9% | NR | NR | NR | NR | |
Donovan_2012 [47] | Insulin | 359 | NR | NR | NR | NR | NR | NR | Previous CS: 72 (20%) | NR | NR |
Lifestyle | 505 | NR | NR | NR | NR | NR | NR | Previous CS: 91 (18%) | NR | NR | |
Thomas_2012 [108] | Insulin | 137 | 29.2 ± 4.1 | NR | NR | NR | NR | NR | NR | NR | PIH: 18 (12%), Hypothyroidism: 10 (7%), p = 0.003 vs. OHA |
OHA | 141 | 29.5 ± 4.1 | NR | PIH: 18 (12%), Hypothyroidism: 2 (1.4%), p = 0.003 vs. OHA | |||||||
Varghese_2012 [45] | Regular/NPH/both | 186 (83.78%) | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Diet | 36 (16.21%) | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Goh_2011 [109] | Intermediate-acting isophane insulin and short-acting insulin analog | 399 | NR | NR | NR | NR | Other: European: 28.9%, Maori: 7%, Pacific: 21.3%, Indian: 19.6%, other Asian: 19.3%, other: 4% | NR | NR | NR | NR |
Metformin | 465 (216 required insulin) | NR | NR | NR | NR | Other: European: 22%, Maori: 101%, Pacific: 20.9%, Indian: 19.1%, other Asian: 24.3%, other: 3.7%, p < 0.001 across ethnicity overall and treatment groups | NR | NR | NR | NR | |
Diet | 371 | NR | NR | NR | NR | European: 30%, Maori: 4.6%, Pacific: 7.6%, Indian: 13.5%, Other Asian: 39.4%, other: 5.1% | NR | NR | NR | NR | |
Wong_2011 [110] | Insulin | 323 | 31.9 ± 5.3 | NR | 29.9 ± 7.3 | NR | Asian: SEA: 17.8%, SA: 19.4%, Middle eastern: 21.9%, Anglo-European: 30.8%. Other: 10% | NR | Previous GDM: 25.9% | NR | NR |
MNT | 289 | 30.9 ± 5.4, p = 0.140 | NR | 26.5 ± 6.3, p < 0.001 | NR | Asian: SEA: 28.4%, SA: 19.8%, Middle Eastern: 19.8%, Anglo-European: 23.8%, other: 8.2%; p = 0.006 for SEA | NR | Previous GDM: 16.7% | NR | NR | |
Flores-Le Roux_2010 [111] | Insulin | 41 | 34.5 ± 5.9 | NR | NR | NR | Caucasian: 17 (41.4%) | NR | NR | NR | NR |
Diet | 70 | 32.4 ± 6.1 | NR | NR | NR | Caucasian: 35 (50%) | NR | NR | NR | NR | |
NEF-GDM | 18 | 32.8 ± 4.7; p = 0.21 across groups | NR | NR | NR | Caucasian: 4 (22.2%), p = 0.1 across treatment groups | NR | NR | NR | NR | |
Preexisting diabetes/mixed population | |||||||||||
Demasio_2020 [112] | Overall population | 314 | NR | NR | NR | NR | Black: 27%, White: 6%, Asian: 6%, Other: 27%, Hispanic: 38% | NR | NR | NR | NR |
Insulin Levemir-T2DM | 96 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin Levemir-GDM | 127 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin NPH-T2DM | 41 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin NPH-GDM | 50 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Kong_2020 [113] | Insulin | 4000 | 30.15 ± 5.37 | NR | NR | NR | NR | NR | NR | NR | NR |
Mathiesen_2020 [114] | Insulin detemir vs. other basal insulin (mainly insulin glargine) | 1457 | 31 | NR | 26 | NR | NR | NR | NR | NR | |
Sperling_2020 [115] | Metformin | 2542 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Metformin-GDM | 729 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Glyburide-PGDM | 9998 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Glyburide-GDM | 1181 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin + glyburide-PGDM | 1113 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin + glyburide-GDM | 371 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin + metformin-PGDM | 1029 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin + metformin-GDM | 2036 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin-PGDM | 6796 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin-GDM | 5350 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Metformin + glyburide-PGDM | 960 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Metformin + glyburide-GDM | 375 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin + metformin + glyburide-PGDM | 214 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Insulin + metformin + glyburide-GDM | 423 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
Alexander_2019 [116] | CSII | 151 | 31.0 ± 5.5 | NR | 26.2 ± 5.8 | 15.4 ± 8.5 | NR | NR | NR | NR | NR |
Bartal_2019 [48] | Basal insulin analogues | 114 | NR | NR | NR | NR | Other: non-Hispanic White: 27 (23.7%), non-Hispanic Black: 34 (29.8%), non-Hispanic other: 2 (1.8%), unknown: 15 (13.2%), Hispanic: 36 (31.6%) | NR | NR | NR | Chronic hypertension: 49 (43.0%) |
Insulin NPH | 119 | NR | NR | NR | NR | Other: non-Hispanic White: 35 (29.4%), non-Hispanic Black: 52 (43.7%), non-Hispanic other: 1 (0.8%), unknown: 9 (7.6%), Hispanic: 22 (18.5%) | NR | NR | NR | Chronic hypertension: 49 (41.2%) | |
Christman_2019 [117] | CSII and MDI | 154 | 31 ± 5.4 | NR | 42.9% obese at baseline | NR | White: 113/150 (73.4%) | NR | NR | NR | NR |
Sleeman_2019 [118] | Insulin glargine or detemir | 44 | 31.2 ± 6.5 | NR | NR | NR | NR | NR | NR | NR | NR |
Insulin NPH | 19 | 30.6 ± 6.6 | NR | NR | NR | NR | NR | NR | NR | NR | |
Smrz_2019 [119] | CSII vs. MDI | 117 | NR | NR | NR | NR | NR | NR | NR | NR | |
Vasquez_2019 [120] | Insulin (Humulin R U-500) | 10 | NR | NR | NR | NR | NR | NR | Pregnancies complicated by severe insulin resistance | Mean (range): 24 weeks (16.2–33.4) | Gestational age during conversion to U-500 |
Gupta_2018 [121] | Insulin | 120 | 30.17 ± 4.2 | NR | NR | NR | NR | NR | Previous GDM: 21 (20%) | NR | Hypothyroidism: 22 (21.57%) |
Sunjaya_2018 [122] | Insulin | 25 | 31.92 ± 4.3 | 71.88 ± 11.7 | 28.46 ± 4.0 | NR | NR | NR | History of DM in previous pregnancy: 12% | NR | NR |
Oral antidiabetics | 4 | 33.75 ± 4.5 | 73.33 ± 11.5 | 23.53 ± 0.97 | NR | NR | NR | History of DM in previous pregnancy: 12% | NR | NR | |
MNT | 16 | 28.00 ± 2.8 | 66.21 ± 11.6 | 27.76 ± 3.83 | NR | NR | NR | History of DM in previous pregnancy: 12% | NR | NR | |
Abell_2017 [62] | MDI-glargine/detemir/NPH | 127 | Median (IQR): 29 (26–33) | NR | Median (IQR): 26.6 (24.4–30.0) | Median (IQR): 12 (8–20) | NR | NR | NR | NR | NR |
CSII-aspart | 40 | Median (IQR): 31 (28–34) | NR | Median (IQR): 25.1 (23.1–30.1) | Median (IQR): 20 (7–22) | NR | NR | NR | NR | NR | |
Billionnet_2017 [63] | Insulin-treated GDM | 16,108 | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Noninsulin-treated GDM | 41,275 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
GDM-overall | 57,383 | NR | NR | NR | NR | NR | NR | NR | NR | NR | |
No diabetes | 7,29,105 | NR | NR | NR | NA | NR | NA | NR | NA | NR | |
Stanirowski_2017 [123] | Insulin-treated GDM | 6 | Median (IQR): 34 (29–37) | NR | NR | NR | NR | Median (IQR): 39 (38–39) | NR | NR | NR |
Diet-treated GDM | 16 | Median (IQR): 33 (30–37) | NR | NR | NR | NR | Median (IQR): 39 (38–39) | NR | NR | NR | |
Insulin-treated PGDM | 6 | Median (IQR): 35 (33–36) | NR | NR | NR | NR | Median (IQR): 37 (37–38) | NR | NR | NR | |
Controls (no diabetes) | 25 | Median (IQR): 30 (28–32) | NR | NR | NR | NR | Median (IQR): 39 (39–39) | NR | NR | NR | |
Dalfra_2016 [124] | ILPS-GDM | 572 | 34.6 ± 5.1 | NR | NR | NR | NR | NR | NR | NR | NR |
NPH-GDM | 242 | 34.1 ± 4.5 | NR | NR | NR | NR | NR | NR | NR | NR | |
ILPS-PGDM T1DM | 58 | NR | NR | NR | 13.8 ± 9.0 | NR | NR | NR | NR | NR | |
NPH-PGDM T1DM | 61 | NR | NR | NR | 13.4 ± 10.1 | NR | NR | NR | NR | NR | |
Becquet_2015 [125] | Insulin | 36 | Median (IQR): 31.1 (29.4–36.4) | NR | NR | NR | NR | NR | NR | NR | NR |
No insulin | 43 | Median (IQR): 34.2 (30.8–37.2) | NR | NR | NR | NR | NR | NR | NR | NR | |
Neff_2014 [61] | CSII-aspart | 40 | 35 ± 4 | NR | NR | 22 (5–33) | NR | NR | NR | NR | NR |
MDI-aspart + NPH | 424 | 31 ± 5 | NR | NR | 13 (1–36) | NR | NR | NR | NR | NR | |
Colatrella_2013 [126] | Insulin lispro protamine suspension (ILPS)-T2DM | 7 | 36.0 ± 4.3 | NR | NR | 8.0 ± 5.2 | NR | 15.4 ± 9.6 | NR | NR | NR |
Insulin lispro protamine suspension (ILPS)-GDM | 46 | 34.5 ± 6.0 | NR | NR | NR | NR | 23.3 ± 7.8 | NR | NR | NR | |
Insulin NPH-T2DM | 18 | 33.4 ± 5.3 | NR | NR | 6.6 ± 4.7 | NR | 11.1 ± 7.1 | NR | NR | NR | |
Insulin NPH-GDM | 18 | 34.9 ± 4.3 | NR | NR | NR | NR | 29.5 ± 4.9 | NR | NR | NR | |
Fresa_2013 [127] | CSII-insulin lispro/aspart | 47 | 30.5 ± 5 | NR | NR | 15 ± 8 | White: 65 (100%) | NR | NR | NR | NR |
CSII (RT-CGM) | 18 | 32 ± 6 | NR | NR | 17 ± 10 | White: 18 (100%) | NR | NR | NR | NR | |
Bruttomesso_2011 [128] | CSII-rapid-acting insulin analog | 100 | 32.0 ± 4.4 | NR | 23.52 ± 3.22 | 16.5 ± 7.3 | NR | NR | Pre-pregnancy hypertension: 8 (8%) | NR | NR |
Glargine-MDI | 44 | 31.4 ± 5.2 | NR | 23.63 ± 4.71 | 13.5 ± 7.9 | NR | NR | 3 (6.8%) | NR | NR | |
Garcia-Dominguez_2011 [53] | NPH and regular insulin | 241 | 32 ± 3.9 | NR | 24.7 ± 4.2 | 12.2 ± 7.9 | NR | 19.7 ± 8.4 | NR | NR | Chronic HTN: 24 (10%), Retinopathy: 50 (20.7%), Nephropathy: 12 (5%) |
Insulin analogues (NPH and lispro/aspart) | 86 | 32.5 ± 3.8, p = 0.467 across treatment groups | NR | 24 ± 3.9, p = 0.127 across treatment groups | 11.9 ± 8.2, p = 0.935 across treatment groups | NR | 20.5 ± 8.9, p = 0.687 across treatment groups | NR | NR | Chronic HTN: 9 (8.2%), Retinopathy: 16 (14.5%), Nephropathy: 4 (3.6%), p = 0.544 across treatment groups | |
Negrato_2010 [51] | Glargine + lispro-PGDM | 18 | 30.4 ± 7.1 | NR | NR | 6.8 ± 6.3 | NR | NR | NR | NR | NR |
NPH + lispro-PGDM | 38 | 28.1 ± 7.2; p > 0.05 vs. glargine-PGDM | NR | NR | 7.5 ± 5.2, p > 0.05 vs. glargine PGDM | NR | NR | NR | NR | NR | |
Glargine + lispro-GDM | 37 | 30.9 ± 4.2 | NR | NR | NR | NR | NR | NR | NR | NR | |
NPH + lispro-GDM | 45 | 31.7 ± 6.8; p > 0.05 vs. glargine GDM | NR | NR | NR | NR | NR | NR | NR | NR |
BBIT basal-bolus insulin therapy, BHI biphasic premixed human insulin, BiD twice a day, BMI body mass index, CGM continuous glucose monitor, CSII continuous subcutaneous insulin infusion, FID Fijians of Indian descent, GA gestational age, GDM gestational diabetes mellitus, GW gestational week, HTN hypertension, ILPS insulin lispro protamine suspension, IQR interquartile range, IUFD intrauterine fetal demise, MDI multiple daily injection, MNT medical nutrition therapy, n sub-population size, NA not applicable, NEF no endocrinologic follow-up, NPH neutral protamine Hagedorn, NR not reported, OHA oral hypoglycemic agents, PCOS polycystic ovarian syndrome, PGDM pregestational diabetes PIH pregnancy-induced hypertension, RT real-time, SA South-Asian, SEA Sount-east Asian, SD standard deviation, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus, QiD four times a day
Glycemic Outcomes in People with GDM and Pre-existing Diabetes
Of the 108 included studies, 21 clinical trials and 20 observational studies reported the clinical outcomes of interest (FBG, PPG, glycemic range and glycemic variability) in women with GDM (Table 3). Six clinical trials and 12 observational studies reported the clinical outcomes of interest in women with pre-existing diabetes and mixed population (Table 4).
Table 3.
Clinical outcomes in women with gestational diabetes mellitus
First author_Year | Treatment arms | Sample size | Time points | FBG (mean ± SD) mg/dl or mmol/l | PPG (mean ± SD) mg/dl or mmol/l | 1-h PPG (mean ± SD) mg/dl or mmol/l | 2-h PPG (mean ± SD) mg/dl or mmol/l |
---|---|---|---|---|---|---|---|
RCT | |||||||
Wasim_2019 [21] | Insulin-Humulin R and NPH | 141 | Baseline | 120 ± 22.4 | NR | NR | NR |
Delivery | 96.6 ± 6.2 | NR | NR | NR | |||
Metformin | 137 | Baseline | 117 ± 18.1; p = 0.215 vs. insulin | NR | NR | NR | |
Delivery | 92.1 ± 6.0; p = 0.001 vs. insulin | NR | NR | NR | |||
Galal_2019 [20] | Human insulin | 50 | NA | 92.42 ± 4.93 | 129.82 ± 7.88 | NR | NR |
Metformin | 56 | NA;1 week | 86.88 ± 5.02; p = 0.0001 | 117.30 ± 8.84; p = 0.0001 | NR | NR | |
Eid_2018 [34] | Insulin (NPH + regular insulin) | 116 | Before treatment | 116.83 ± 24.5 | NR | NR | 171.1 ± 41.8 |
After treatment | 84.1 ± 3.1 | NR | NR | 101.4 ± 4.8 | |||
Metformin | 113 | Before treatment | 114.38 ± 19.87; p = 0.64 insulin vs. metformin | NR | NR | 168.9 ± 39.1; p = 0.79 insulin vs. metformin | |
After treatment | 81.7 ± 3.6, p = 0.065 insulin vs. metformin | NR | NR | 95.9 ± 4.7, p = 0.53 insulin vs. metformin | |||
Huhtala_2018 [43] | NPH insulin and/or rapid-acting insulin lispro or insulin aspart | 107 | At enrolment | 5.57 ± 0.42 | NR | 11.2 ± 1.24 | 7.91 ± 1.75 |
Metformin | 110 | At enrolment | 5.52 ± 0.55; p = 0.44 vs. insulin | NR | 11.2 ± 1.49; p = 0.61 vs. insulin | 8.33 ± 1.76; p = 0.076 vs. insulin | |
Diet | 103 | At enrolment | 5.38 ± 0.43 | NR | 10.9 ± 1.06 | 7.81 ± 1.91 | |
Ghomian_2018 [33] | Levemir (insulin detemir) + aspart | 143 | At treatment onset | 92.21 ± 4.41 | NR | NR | 152.58 ± 4.87 |
Delivery | 88.03 ± 5.00 | NR | NR | 118.99 ± 6.24 | |||
Metformin | 143 | At treatment onset | 91.22 ± 4.37; p = 0.57 vs. insulin | NR | NR | 152.25 ± 5.11; p = 0.69 vs. insulin | |
Delivery | 89.16 ± 3.44; p = 0.79 vs. insulin | NR | NR | 119.38 ± 4.03; p = 0.33 vs. insulin | |||
Khan_2017 [24] | Insulin (mixed human suspension) | 385 | Before treatment | 122.37 ± 9.94 | NR | NR | 174.46 ± 6.02 |
After treatment | 76.88 ± 7.75 | NR | NR | 112.34 ± 5.02 | |||
Metformin | 385 | Before treatment | 130.06 ± 10.34; t = 10.53; p = 0.000 vs. insulin | NR | NR | 175.18 ± 7.89; t = 1.42; p = 0.157 vs. insulin | |
After treatment | 82.28 ± 5.51; t = 11.15; p = 0.000 vs. insulin | NR | NR | 111.94 ± 7.02; t = − 0.909; p = 0.364 vs. insulin | |||
Zawiejska_2016 [23] | Basal-bolus insulin (human recombined insulin) | 43 | At booking | 5.5 ± 0.7 | NR | NR | NR |
At term | 4.7 ± 1; p < 0.0001 change from baseline | NR | NR | NR | |||
Metformin and metformin + insulin | 35 | At booking | 5.8 ± 0.6 | NR | NR | NR | |
At term | 5.2 ± 0.5; p = 0.004 change from baseline; p (booking) = 0.101; p (at term) = 0.008 vs. insulin | NR | NR | NR | |||
Behrashi_2016 [67] | Regular insulin and NPH | 129 | NA | 83.75 ± 6.77 | NR | NR | 107.14 ± 7.99 |
Glibenclamide | 120 | NA | 84.85 ± 5.26; p = 0.38 vs. insulin | NR | NR | 114.38 ± 81.74; p = 0.95 vs. insulin | |
Ashoush_2016 [22] | Insulin-control (regular + NPH) | 48 | Baseline | 106.4 ± 4.4 | NR | 208.3 ± 13.2 | 177.6 ± 8.8 |
1 week | 93.5 ± 2.6 | NR | NR | 122.9 ± 7.2 | |||
First 2 weeks | 103.5 ± 3.5 | NR | NR | 170.5 ± 8.2 | |||
Last week | 79.9 ± 3.7 | NR | NR | 111.3 ± 4.2 | |||
Last 2 weeks | 80.8 ± 4.7 | NR | NR | 112.2 ± 6.8 | |||
Metformin and metformin + insulin-research | 36 + 11 | Baseline | 105.7 ± 4.7, p = 0.417 vs. insulin | NR | 203.9 ± 9.9, p = 0.075 vs. insulin | 175.7 ± 10.0, p = 0.318 vs. insulin | |
1 week | 92.8 ± 2.8, p = 0.257 vs. insulin | NR | NR | 120.6 ± 7.8, p = 0.142 vs. insulin | |||
First 2 weeks | 100.7 ± 3.3; p = 0.014 vs. insulin | NR | NR | 166.9 ± 8.9, p = 0.197 vs. insulin | |||
Last week | 78 ± 3.1; p = 0.0008 vs. insulin | NR | NR | 109.9 ± 3.7; p = 0.104 vs. insulin | |||
Last 2 weeks | 78.9 ± 3.5; p = 0.029 vs. insulin | NR | NR | 111 ± 5.2; p = 0.342 vs. insulin | |||
Somani_2016 [26] | Regular/NPH or both | 33 | Baseline | 102.67 ± 9.61 | NR | 216.61 ± 22.39 | 179.0 ± 20.98 |
Delivery | 82.27 ± 5.57 | NR | NR | 113.06 ± 11.71 | |||
Metformin | 32 | Baseline | 100.03 ± 10.79; p = 0.30 vs. insulin | NR | 215.22 ± 15.34; p = 0.77 vs. insulin | 182.69 ± 17.33; p = 0.44 vs. insulin | |
Delivery | 85.41 ± 5.96; p = 0.32 vs. insulin | NR | NR | 121.28 ± 11.0; p = 0.005 vs. insulin | |||
Mirzamoradi_2015 [42] | Insulin (regular + NPH) | 59 | At diagnosis | 112.15 ± 19.39 | NR | NR | NR |
At treatment to delivery | 123.42 ± 14.71 | 120.15 ± 9.56 | NR | NR | |||
Glyburide | 37 | At diagnosis | 109.83 ± 68.99; p = 0.72 vs. glyburide | NR | NR | NR | |
At treatment to delivery | 114.02 ± 10.65; p = 0.83 vs. glyburide | 115.46 ± 8.21; p = 0.83 vs. glyburide | NR | NR | |||
Ainuddin_2015 [36] | Insulin (short- + intermediate-acting)-GDM | 75 | Treatment initiation | 172 ± 21.5 | NR | NR | NR |
Throughout pregnancy | 97.4 ± 2.5 | NR | NR | NR | |||
Metformin-GDM | 43 | Treatment initiation | 138 ± 16 | NR | NR | NR | |
Throughout pregnancy | 96.4 ± 5.7 | NR | NR | NR | |||
Insulin + metformin-GDM | 32 | Treatment initiation | 144 ± 23 | NR | NR | NR | |
Throughout pregnancy | 95.3 ± 6.3 | NR | NR | NR | |||
Arshad_2014 [25] | Regular and NPH | 25 | 1 week of enrolment | 117 ± 29.0 | NR | NR | NR |
Diet + exercise | 25 | 1 week of enrolment | 90.96 ± 16.84; p = 0.00 vs. insulin | NR | NR | NR | |
Mukhopadhyay_2014 [58] | Insulin | 30 | At enrolment | 109.3 ± 19.63 | 194.3 ± 18.47 | NR | NR |
Before confinement | 88.17 ± 8.44 | 128 ± 12.38 | NR | NR | |||
Glibenclamide | 30 | At enrolment | 103 ± 14.62; p = 0.199 vs. insulin | 184.1 ± 20.46; p = 0.048 vs. insulin | NR | NR | |
Before confinement | 88.23 ± 6.55; p = 0.97 vs. insulin | 122.7 ± 10.3; p = 0.07 vs. insulin | NR | NR | |||
Mesdaghinia_2012 [56] | NPH and regular | 100 | Baseline | NR | NR | NR | NR |
Delivery | NR | NR | NR | NR | |||
Metformin | 100 | Baseline | NR | NR | NR | NR | |
Spaulonci_2013 [68] | NPH insulin | 46 | Before treatment | 100.87 ± 15.05 | Breakfast: 119.81 ± 21.59; lunch: 123.72 ± 19.4; dinner: 132.63 ± 23.82 | NR | NR |
After treatment | 88.35 ± 7.45 | Breakfast: 106.45 ± 11.75; lunch: 111.43 ± 8.84; dinner: 119.09 ± 16.47 | NR | NR | |||
Metformin | 46 | Before treatment | 102.15 ± 21.96 | Breakfast: 120.67 ± 24.03; lunch: 120.61 ± 22.63; dinner: 131.22 ± 25.43 | NR | NR | |
After treatment | 90.09 ± 16.29 | Breakfast: 107.7 ± 16.69; lunch: 106.87 ± 11.16; dinner: 110.76 ± 11.57; p = 0.020 | NR | NR | |||
Tertti_2013 [38] | Insulin (NPH + lispro + aspart) | 107 | At randomisation | NR | NR | NR | NR |
Metformin (23 required additional insulin) | 110 | At randomisation | NR | NR | NR | NR | |
Delivery | NR | NR | NR | NR | |||
Niromanesh_2012 [39] | NPH and regular as needed | 80 | First 2 weeks after randomisation | 91.2 ± 7.9 | 114.6 ± 12.1 | NR | NR |
Second week after randomisation and until delivery | 86.2 ± 8.7 | 107.6 ± 10.0 | NR | NR | |||
Randomisation-delivery | 88.7 ± 6.3 | 111.1 ± 9.0 | NR | NR | |||
Metformin | 80 | First 2 weeks after randomisation | 90.3 ± 9.8; p = 0.529 | 112.2 ± 13.0; p = 0.237 | NR | NR | |
Second week after randomisation and until delivery | 86.2 ± 8.6; p = 0.985 | 110.4 ± 11.9; p = 0.106 | NR | NR | |||
80 | Randomisation-delivery | 88.3 ± 7.7; p = 0.683 | 111.3 ± 9.1; p = 0.870 | NR | NR | ||
Balaji_2012 [69] | BIAsp 30 | 163 | At enrolment | 103.77 ± 17.94 | NR | NR | 164.66 ± 38.71 |
Delivery | 92.97 ± 14.44 | NR | NR | 127.59 ± 28.99 | |||
BHI 30 | 157 | At enrolment | 108.24 ± 24.88 | NR | NR | 163.83 ± 48.12 | |
Delivery | 95.43 ± 18.96 | NR | NR | 126.98 ± 29.89 | |||
Hassan_2012 [40] | Regular and intermediate-acting human insulin | 75 | At enrolment | Median (range): 102.11 (89–110) | NR | NR | Median (range): 236.41 (180–309) |
Third trimester/delivery | NR | NR | NR | NR | |||
Metformin | 75 | At enrolment | Median (range): 100.89 (88–120); p = 0.079 vs. insulin | NR | NR | Median (range): 231.56 (188–280); p = 0.058 vs. insulin | |
Third trimester/delivery | NR | NR | NR | NR | |||
Ijas_2011 [41] | Long-(Protaphane) and rapid-(humalog) acting insulin | 50 | At randomisation | 5.4 ± 0.6 mmol | NR | NR | 8.1 ± 1.8 |
Metformin | 47 | At randomisation | 5.6 ± 0.9 mmol | NR | NR | 8.2 ± 1.9 | |
Observational | |||||||
Han_2020 [72] | Insulin lispro + metformin | 62 | Before treatment | 8 | NR | NR | Breakfast: 13; lunch: 11.8; dinner: 11.8 |
After treatment | 5.2 | NR | NR | Breakfast: 7; lunch: 6; dinner: 6 | |||
Insulin lispro | 55 | Before treatment | 7.9 | NR | NR | Breakfast: 12.8; lunch: 11.8; dinner: 11.8 | |
After treatment | 7; p < 0.05 vs. insulin + metformin | NR | NR | Breakfast: 9.2, lunch: 8.8, dinner: 9; p < 0.05 vs. insulin + metformin | |||
Krishnakumar_2020 [73] | Insulin | 37 | Baseline | 103.81 ± 7.98 | 128.30 ± 7.26 | NR | NR |
2 months | 94.59 ± 5.77; p < 0.0001 vs. baseline | 116.05 ± 6.01; p < 0.0001 vs. baseline | NR | NR | |||
Metformin | 44 | Baseline | 105.16 ± 15.16 | 130.23 ± 16.83 | NR | NR | |
2 months | 94.84 ± 6.18; p < 0.0001 vs. baseline | 117.86 ± 6.54; p < 0.0001 vs. baseline | NR | NR | |||
Rodrigues 2020 [50] | Insulin | 41 | 3rd trimester | NR | NR | NR | NR |
Metformin + insulin | 94 | 3rd trimester | NR | NR | NR | NR | |
Metformin only (subgroup of metformin +) | 77 | 3rd trimester | NR | NR | NR | NR | |
Zaharieva_2020 [75] | Insulin vs. no insulin | Total-90; insulin n = 34 | NR | 5.2 vs. 4.8; p = 0.0004 | NR | NR | NR |
Tang_2019 [31] | Insulin | 180 | NA | Median (IQR): 5.8 (5.5, 6.2) | NR | Median (IQR): 10.2 (9.0, 11.8) | Median (IQR): 8.6 (7.5, 9.3) |
MNT | 354 | NA | Median (IQR): 5.3 (5.1, 5.5); p < 0.001 | NR | Median (IQR): 9.5 (8.3, 10.6); p < 0.001 | Median (IQR): 8.3 (7.0, 9.4); p < 0.292 | |
McGrath_2018 [82] | Insulin (NPH or Levemir and/or NovoRapid) | 83 | At diagnosis | 4.8 | NR | NR | NR |
Metformin | 83 | At diagnosis | 4.9 | NR | NR | NR | |
Diet + lifestyle | 83 | At diagnosis | 4.4; p < 0.001 across treatment arms | NR | NR | NR | |
Rowan_2018 [85] | Insulin (Adelaide cohort) | 51 | At enrolment | 88 ± 13 | NR | NR | NR |
Metformin (Adelaide cohort) | 51 | 36 weeks | NR | NR | NR | NR | |
Insulin (Auckland cohort) | 58 | At enrolment | 88 ± 16 | NR | NR | NR | |
Metformin (Auckland cohort) | 58 | 36 weeks | NR | NR | NR | NR | |
Insulin (Adelaide cohort) | 54 | At enrolment | 90 ± 11 | NR | NR | NR | |
Metformin (Adelaide cohort) | 54 | 36 weeks | NR | NR | NR | NR | |
Insulin (Auckland cohort) | 45 | At enrolment | 95 ± 16 | NR | NR | NR | |
36 weeks | NR | NR | NR | NR | |||
Simeonova-Krstevska_2018 [28] | Levemir (detemir) + aspart | 101 | NA | 5.8 ± 1.4; p < 0.05 vs. metformin | 7.9 ± 1.9; p < 0.05 vs. metformin | NR | NR |
Metformin | 48 | NA | 5.3 ± 0.7; p = NS vs. diet | 7.0 ± 1.2; p = NS vs. diet | NR | NR | |
Diet | 200 | NA | 5.1 ± 0.9; p < 0.01 vs. insulin | 6.9 ± 1.6; p < 0.05 vs. insulin | NR | NR | |
Olmos_2017 [89] | Basal-bolus insulin therapy (BBIT) | 73 | NA | NR | NR | NR | NR |
Without BBIT (diet/metformin) | 58 | NA | NR | NR | NR | NR | |
Xie_2017 [90] | Research arm (insulin aspart intensive treatment/insulin pump) | 45 | NA | 5.2 ± 0.6 | NR | NR | 7.3 ± 1.2 |
Reference arm (insulin aspart + detemir) | 45 | NA | 6.8 ± 0.6; p < 0.05 vs. research arm | NR | NR | 8.8 ± 1.2; p < 0.05 vs. research arm | |
Ito_2016 [92] | RHI or rapid-acting insulin (insulin aspart or lispro) and NPH insulin) | 32 | At diagnosis | 91.5 ± 7.9 | NR | 179.9 ± 34.9 | 150.5 ± 28.5 |
32 | Delivery | 93.2 ± 9.4 | NR | 162.2 ± 41.2 | 124.2 ± 31.4 | ||
Diet | 70 | At diagnosis | 89.6 ± 8.7; p = 0.313 vs. insulin | NR | 155.3 ± 33.6; p = 0.001 vs. insulin | 135.3 ± 29.7; p = 0.017 vs. insulin | |
Delivery | 90.8 ± 7.7; p = 0.251 vs. insulin | NR | 142.9 ± 40.7; p = 0.064 vs. insulin | 118.0 ± 29.0; p = 0.410 vs. insulin | |||
Koren_2016 [55] | Insulin detemir | 29 | NA | 5.1 ± 0.5 | NR | 8 ± 1.3 | 7.78 ± 1.3 |
Glyburide | 62 | NA | 5.1 ± 1; p = 0.91 | NR | 7.8 ± 1.3; p = 0.82 | 7.12 ± 1.8; p = 0.13 | |
Ozgu-Erdinc_2016 [29] | Insulin | 144 | NA | Median (range): 87 (56–275) | NR | Median (max–min): 144 (67–340) | Median (max–min): 132 (53–320) |
Diet | 115 | NA | Median (range): 80 (58–157); p < 0.001 | NR | Median (max–min): 137.5 (72–212); p = 0.002 | Median (max–min): 118.5 (72–207); p < 0.001 | |
Yanagisawa_2016 [30] | Insulin | 36 | NA | OGTT: 88 ± 11 meal TT: 92 ± 16 | NR | OGTT: 177 ± 29; meal TT: 147 ± 32 | OGTT: 161 ± 22; Meal TT: 128 ± 32 |
MNT | 77 | NA | OGTT: 83 ± 9; p = 0.013 vs. insulin, meal TT: 84 ± 7; p = 0.014 | NR | OGTT: 173 ± 28; p = NS vs. insulin Meal TT: 121 ± 20 p < 0.001 | OGTT: 157 ± 25; p = NS vs. insulin meal TT: 104 ± 18 p < 0.001 | |
You_2016 [99] | Regular insulin (NPH if required) | 55 | Baseline | 96.9 ± 15.4 | NR | 200.7 ± 33.9 | 195.9 ± 37.2 |
Fast-acting insulin analogues (NPH if required)-aspart or lispro | 142 | Baseline | 99.4 ± 20.5; p = 0.494 | NR | 208.0 ± 36.4; p = 0.194 | 188.8 ± 40.6; p = 0.249 | |
Benhalima_2015 [32] | Short-acting or long-acting insulin or both | 145 | NA | 97.6 ± 18.8 | NR | 194.7 ± 30.1 | 185.2 ± 28.5 |
Diet | 456 | NA | 87.7 ± 10.3; p < 0.0001 vs. insulin | NR | 184.5 ± 25.8; p < 0.0001 vs. insulin | 175.0 ± 22.8; p < 0.0001 vs. insulin | |
Deepaklal_2014 [100] | Insulin lispro | 201 | At enrolment/first trimester | 99.01 | Post breakfast: 126.9 ± 44.2, post lunch: 125.5 ± 38.3, post dinner: 127.2 ± 38.6 | NR | NR |
Delivery | NR | Post breakfast: 106.5 ± 18.8, post lunch: 111 ± 18.4, post dinner: 111.8 ± 19.5 | NR | NR | |||
Marques_2014 [102] | NPH insulin | 33 | NA | NR | NR | NR | NR |
Metformin | 32 | NA | NR | NR | NR | NR | |
Goh_2011 [109] | Intermediate-acting isophane insulin and short-acting insulin analog | 399 | NA | 5.4 ± 1.1 | NR | NR | 9.9 ± 2.1 |
Metformin | 465 | NA | 5.3 ± 0.8 | NR | NR | 9.4 ± 1.6 | |
Diet | 371 | NA | 4.5 ± 0.7, p < 0.0001 across treatment arms | NR | NR | 9.5 ± 1.1, p = 0.0008 across treatment arms | |
Flores-Le Roux_2010 [111] | Insulin | 41 | 3rd trimester | NR | NR | NR | NR |
Diet | 70 | 3rd trimester | NR | NR | NR | NR | |
NEF-GDM | 18 | 3rd trimester | NR | NR | NR | NR |
BBIT basal-bolus insulin therapy, BHI biphasic premixed human insulin, BIAsp biphasic insulin aspart, FBG fasting blood glucose, GDM gestational diabetes mellitus, NA not applicable, NEF no endocrinologic follow-up, NPH neutral protamine Hagedorn, NR not reported, PPG postprandial glucose, RCT randomized controlled trial, RHI regular human insulin, SD standard deviation
Table 4.
Clinical outcomes in women with pre-existing diabetes and mixed population
First author_Year | Treatment arms | Sample size | Time points | FBG (mean ± SD) mg/dl or mmol/l | PPG (mean ± SD) mg/dl or mmol/l | 2-h PPG (mean ± SD) mg/dl or mmol/l |
---|---|---|---|---|---|---|
RCT | ||||||
Jing ji_2020 [27] | IDET + Novolin-R | 120 | Before treatment | 6.84 ± 1.31 | NR | 9.40 ± 1.62 |
120 | 7 days after treatment | 5.33 ± 0.72 | NR | 6.73 ± 0.79 | ||
120 | 3 months after treatment | NR | NR | NR | ||
Insulin NPH + Novolin-R | 120 | Before treatment | 6.86 ± 1; p = 0.918 vs. IDET + Novolin-R | NR | 9.55 ± 1.54; p = 0.549 vs. IDET + Novolin-R | |
120 | 7 days after treatment | 5.71 ± 0.87, p < 0.001 vs. IDET + Novolin-R | NR | 7.38 ± 0.80; p < 0.001 vs. IDET + Novolin-R | ||
120 | 3 months after treatment | NR | NR | NR | ||
Ainuddin_2015 [44] | Insulin (short- + intermediate-acting) T2DM | 100 | Treatment initiation | 139.85 ± 29.43 | NR | NR |
100 | Throughout pregnancy | 97.55 ± 3.29 | NR | NR | ||
Metformin-T2DM | 16 | Treatment initiation | 138.06 ± 45.58 | NR | NR | |
16 | Throughout pregnancy | 97.87 ± 3.83 | NR | NR | ||
Insulin added-on to metformin-T2GDM | 90 | Treatment initiation | 144.14 ± 29.64 | NR | NR | |
90 | Throughout pregnancy | 97.50 ± 3.35 | NR | NR | ||
Herrera_2015 [70] | IDET | 42 | NA | Per protocol: 100.7 ± 10.1; ITT: 101.2 ± 9.2 | Per protocol: 115.2 ± 10.2 ITT: 115.2 ± 9.6 | NR |
Insulin NPH | 45 | NA | Per protocol: 97.3 ± 7.4; p = 0.1093; ITT: 99.3 ± 8.8; p = 0.3347 | Per protocol: 112.9 ± 8.9; p = 0.3204. ITT: 113.4 ± 9.0; p = 0.3879 | NR | |
Refuerzo_2015 [71] | Regular + NPH | 13 | At enrolment/1st trimester | NR | NR | NR |
Mid-trimester | NR | NR | NR | |||
3rd trimester | NR | NR | NR | |||
Delivery | NR | NR | NR | |||
3rd trimester/delivery | NR | NR | NR | |||
Metformin | 8 | At enrolment/1st trimester | NR | NR | NR | |
Mid-trimester | NR | NR | NR | |||
3rd trimester | NR | NR | NR | |||
Delivery | NR | NR | NR | |||
3rd trimester/delivery | NR | NR | NR | |||
Hod_2014 [57] | IDET + aspart | 152 | Before treatment | 106.0 ± 59.2 | NR | NR |
152 | 24 weeks | 96.8 mg/dl ± 5.4 mmol/l | NR | NR | ||
152 | 36 weeks | 85.7 mg/dl ± 4.8 mmol/l | NR | NR | ||
Insulin NPH + aspart | 158 | Before Treatment | 107.8 ± 58.1 | NR | NR | |
158 | 24 weeks | 113.8 mg/dl ± 6.3 mmol/l; p = 0.012 vs. IDET | NR | NR | ||
158 | 36 weeks | 97.4 mg/dl ± 5.4 mmol/l; p = 0.017 vs. IDET | NR | NR | ||
Hickman_2013 [52] | Regular + NPH | 14 | At enrolment | Median (IQR): 95.04 (86–115) | Median (IQR): 128.62 (115–143) | NR |
14 | 18–20 weeks | Median (IQR): 92.38 (89–116) | Median (IQR): 120.46 (113, 142) | NR | ||
14 | 28–30 weeks | Median (IQR): 90.64 (84–106) | Median (IQR): 126.45 (115–137) | NR | ||
14 | 36–38 weeks | Median (IQR): 85.18 (80–107) | Median (IQR): 125.25 (112–138) | NR | ||
Metformin | 14 | At enrolment | Median (IQR): 97.38 (92–101); p = 0.4 | Median (IQR): 120.40 (115–129); p = 0.31 | NR | |
14 | 18–20 weeks | Median (IQR): 97.00 (93–100); p = 0.69 | Median (IQR): 118.40 (107–122); p = 0.5 | NR | ||
14 | 28–30 weeks | Median (IQR): 92.43 (90–98); p = 0.44 | Median (IQR): 119.00 (114–125); p = 0.35 | NR | ||
14 | 36–38 weeks | Median (IQR): 89.49 (82–96); p = 0.93 | Median (IQR): 122.59 (118–130); p = 0.63 | NR | ||
Observational | ||||||
Christman 2019 [117] | IDET | 154 | Hospital stay duration | 109.2 ± 22.6 | NR | NR |
Sleeman_2019 [118] | Insulin glargine or IDET | 44 | Baseline | NR | NR | NR |
Delivery | NR | NR | NR | |||
Insulin NPH | 19 | Baseline | NR | NR | NR | |
Delivery | NR | NR | NR | |||
Smrz_2019 [119] | CSII vs. MDI | 117 | NR | NR | NR | NR |
Sunjaya_2018 [122] | Insulin (long-acting, intermediate-acting, short-acting, rapid-acting and human premixed) | 25 | Before treatment | 157.12 ± 40.24 | NR | 234.88 ± 52.58 |
After treatment | 124.88 ± 34.14 | NR | NR | |||
Oral antidiabetics (metformin and pioglitazone) | 4 | Before treatment | 153.50 ± 21.64 | NR | 199.75 ± 14.43 | |
After treatment | 175.75 ± 71.94 | NR | NR | |||
MNT | 16 | Before treatment | 134.33 ± 41.43 | NR | 207.31 ± 60.66 | |
After treatment | 113.81 ± 34.20; p = 0.021 across treatment arms | NR | NR | |||
Abell_2017 [62] | MDI-glargine/detemir/NPH | 127 | 1st trimester | NR | NR | NR |
127 | 2nd trimester | NR | NR | NR | ||
127 | 3rd trimester/delivery | NR | NR | NR | ||
CSII-Aspart | 40 | 1st trimester | NR | NR | NR | |
40 | 2nd trimester | NR | NR | NR | ||
40 | 3rd trimester/delivery | NR | NR | NR | ||
Stanirowski_2017 [123] | Insulin-treated GDM | 6 | NA | Median (IQR): 98 (96–112) | NR | Median (IQR): 153 (143–158) |
Diet-treated GDM | 16 | NA | Median (IQR): 86 (80–97) | NR | Median (IQR): 156 (138–163) | |
Insulin-treated PGDM | 6 | NA | NR | NR | NR | |
No diabetes | 25 | NA | Median (IQR): 79 (74–83); p < 0.05 | NR | Median (IQR): 103.5 (85.5–116.5); p < 0.01 | |
Dalfra_2016 [124] | ILPS-GDM | 572 | NA | 4.9 ± 0.7 | NR | NR |
NPH-GDM | 242 | NA | 6.3 ± 1.5; p < 0.001 vs. ILPS-GDM | NR | NR | |
ILPS-Pregestational T1DM | 58 | NA | 6.0 ± 1.4 | NR | NR | |
NPH-Pregestational T1DM | 61 | NA | 7.7 ± 2.2; p = 0.001 vs. ILPS-T1DM | NR | NR | |
Neff_2014 [61] | CSII-Aspart | 40 | At booking | NR | NR | NR |
Delivery | NR | NR | NR | |||
MDI-aspart + NPH | 424 | At booking | NR | NR | NR | |
Delivery | NR | NR | NR | |||
Colatrella_2013 [126] | ILPS-T2DM | 7 | Baseline | 110.0 ± 7.8 | NR | NR |
After treatment | 89.2 ± 12.7 | NR | NR | |||
ILPS-GDM | 46 | Baseline | 98.6 ± 15.8 | NR | NR | |
After treatment | 94.3 ± 13.5 | NR | NR | |||
Insulin NPH-T2DM | 18 | Baseline | 109.8 ± 15.8 | NR | NR | |
After treatment | 95.5 ± 8.2 | NR | NR | |||
Insulin NPH-GDM | 18 | Baseline | 92.2 ± 14.5 | NR | NR | |
After treatment | 95.8 ± 12.8 | NR | NR | |||
Bruttomesso_2011 [128] | CSII-rapid-acting insulin analog | 100 | 1st trimester | NR | NR | NR |
2nd trimester | NR | NR | NR | |||
End of pregnancy | NR | NR | NR | |||
Glargine-MDI | 44 | 1st trimester | NR | NR | NR | |
2nd trimester | NR | NR | NR | |||
End of pregnancy | NR | NR | NR | |||
Garcia-Dominguez_2011 [53] | Human insulin | 241 | 1st trimester | NR | NR | NR |
2nd trimester | NR | NR | NR | |||
Delivery | NR | NR | NR | |||
Insulin analog | 86 | 1st trimester | NR | NR | NR | |
2nd trimester | NR | NR | NR | |||
Delivery | NR | NR | NR | |||
Negrato_2010 [51] | Glargine + lispro-PGDM | 18 | 36 weeks | 107.9 ± 27.4 | NR | NR |
NPH + lispro-PGDM | 38 | 36 weeks | 109.5 ± 37.1; p > 0.05 vs. glargine-PGDM group | NR | NR | |
Glargine + lispro-GDM | 37 | 36 weeks | 82.8 ± 14.5 | NR | NR | |
NPH + lispro-GDM | 45 | 36 weeks | 91.6 ± 21.5; p = 0.03 vs. glargine-GDM group | NR | NR |
FBG fasting blood glucose, GDM gestational diabetes mellitus, IDET insulin detemir, ILPS insulin lispro protamine suspension, IQR interquartile range, MDI multiple daily injection, MNT medical nutrition therapy, NPH neutral protamine Hagedorn, NR not reported, OGTT oral glucose tolerance test, OHA oral hypoglycemic agents, PGDM pregestational diabetes mellitus, PPG postprandial glucose, SD standard deviation, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus
Evidence from Clinical Trials
In women diagnosed with GDM, majority of the trials compared an insulin regimen [basal only, basal/bolus, or bolus only] to metformin (n = 13) (Table 3). In addition, few trials compared insulin to glibenclamide/glyburide (n = 3), (Table 3). The difference in the glycemic outcomes in women treated with insulin versus other therapies varied across the trials and provided very low-quality of evidence for the outcomes. The study design varied widely across the trials.
FBG was the most reported clinical outcome (n = 22). Some RCTs (n = 3) reported a significantly better (p ≤ 0.01) FBG in the metformin-treated group compared to those with insulin [20–22]. Two RCTs by Zawiejska et al. and Khan et al. compared glycemic control in women diagnosed with GDM in response to insulin and metformin and reported significantly better FBG in the insulin-treated groups compared to other therapies (p ≤ 0.01) [23, 24]. Arshad et al. compared insulin with diet therapy and exercise and reported a significantly better FBG in the diet-treated group compared to those treated with insulin [25].
In an RCT by Somani et al. with no differences in glycemic outcomes between the metformin and insulin groups at baseline, higher PPG levels were reported in group treated with insulin compared to those treated with metformin (p = 0.005) [26]. In an RCT by Ji et al. with mixed population, a significant improvement in PPG and time in range (TIR) was observed with insulin detemir compared to insulin neutral protamine Hagedorn (NPH) (p < 0.001) [27].
Evidence from Observational Studies
In women with GDM, most observational studies that reported clinical outcomes of interest compared insulin to diet/MNT (n = 6), metformin (n = 5), combination of metformin and/or diet and/or lifestyle interventions (n = 4). Additionally, other studies reported a comparison between different types of insulin (n = 3), insulin versus no insulin (n = 1) and insulin versus glyburide (n = 1) (Table 3). Five studies showed significant improvement in FBG and PPG among those managed with other therapies compared to the insulin-treated group [28–32] (p < 0.05). These observational studies provide an insight into the real-world use of insulin within this specific population, highlighting that potential barriers of insulin use may be limiting its full benefits in optimizing glycemic control.
Maternal Outcomes in People with GDM and Pre-existing Diabetes
Of the 108 included studies, 18 clinical trials and 44 observational studies reported the maternal outcomes of interest (prevalence of hypoglycemia, cesarean section, preterm labor, hypertension, induced labor and preterm delivery) in women with GDM (Table 5). Maternal outcomes in women with diabetes prior to pregnancy and mixed population were reported in 6 trials and 18 observational studies (Table 6).
Table 5.
Maternal outcomes in women with gestational diabetes mellitus
First Author_Year | Treatment arms | Sample size | Timepoints | Proportion of induced labor, n (%) | Induced labor, OR (95% CI), p value | Preterm labor/delivery n (%) | Preterm labor/delivery OR (95% CI), p value | Proportion of CS, n (%) | CS: OR (95% CI), p value | Prevalence/rate of preeclampsia/eclampsia, n (%) | Preeclampsia/eclampsia: OR (95% CI), p value | Prevalence/rate of maternal hypoglycemia, n (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
RCT | ||||||||||||
Galal_2019 [20] | Human insulin (intermediate-acting and short-acting) | 50 | 1 week | NR | NR | 4 (7.4%) | NR | 44 (81.5%) | NR | NR | NR | NR |
Metformin | 56 | 1 week | NR | NR | 7 (13.5%); p = 0.056 | NR | 30 (57.7%); p = 0.031 | NR | NR | NR | NR | |
Ghomian_2019 [33] | Levemir (IDET) + aspart | 143 | Delivery | NR | NR | 19 (13.2%) | NR | 68 (48%) | NR | NR | NR | NR |
Metformin | 143 | Delivery | NR | NR | 20 (13.9%); | NR | 56 (39%) | NR | NR | NR | NR | |
Wasim_2019 [21] | Insulin-humulin R and NPH | 141 | Delivery | NR | NR | 20 (14.5%) | NR | 93 (65.9%) | NR | 28 (19.8%) | NR | 19 (13.4%) |
Metformin | 137 | Delivery | NR | NR | 13 (9.2%); p = 0.226 | NR | 76 (55.4%); p = 0.073 | NR | 17 (12.4%); p = 0.092 vs. insulin | NR | 06 (4.3%) | |
Eid_2018 [34] | Insulin (NPH + regular) | 116 | After treatment | 43 (37.1%) | NR | 7 (6%) | NR | 49 (42.2%) | NR | 6 (5.2%) | NR | 3 (2.9%) |
Metformin | 113 | After treatment | 39 (34.5%); p = 0.29 | NR | 8 (7.3%); p = 0.93 | NR | 42 (37.2%); p = 0.81 | NR | 5 (4.4%); p = 0.71 | NR | 0 | |
Huhtala_2018 [43] | NPH insulin and/or rapid-acting insulin lispro or insulin aspart | 107 | Delivery | 58 (54.2%) | NR | NR | NR | 18 (16.8%) | NR | GHTN: 4 (3.7%) PE: 10 (9.3%) | NR | NR |
Metformin | 110 | Delivery | 41 (37.6%); p = 0.014 vs. insulin | NR | NR | NR | 15 (13.8%); p = 0.53 vs. insulin | NR | GHTN: 2 (1.8%); p = 0.44; PE: 5 (4.6%); p = 0.17 vs. insulin | NR | NR | |
Diet | 103 | Delivery | 31 (30.1) | NR | NR | NR | 16 (15.5) | NR | GHTN: 4 (3.9%), PE: 2 (1.9%) | NR | NR | |
Senat_2018 [54] | Insulin (rapid analogues/basal or intermediate) | 442 | NA | NR | NR | 18 (4.1%) | NR | Elective CS: 66 (14.9%), emergency CS: 58 (13.1%) | NA | NR | NR | 13 (3.5%) |
Glyburide | 367 | NA | NR | NR | 25 (6.8%) | RD: 2.7 (− 1.0 to 6.4); p = 0.09 | Elective CS: 36 (9.8%), emergency CS: 63 (17.2%) | Elective CS RD: − 5.1 (− 9.6 to − 0.6), emergency CS RD: 4.0 (− 0.9 to 9.0); p = 0.08 | NR | NR | 93 (28.8%) p < 0.001 | |
Hamadani_2017 [35] | Insulin NPH | 30 | NA | NR | NR | NR | NR | 11 (36.7%) | NR | NR | NR | NR |
Metformin | 30 | NA | NR | NR | NR | NR | 13 (43.3%); p = 0.59 vs. insulin | NR | NR | NR | NR | |
Khan_2017 [24] | Insulin (mixed human suspension) | 385 | After treatment | NR | NR | 48 (12.5%) | NR | 139 (36.1%) | NR | 60 (15.6%) | NR | NR |
Metformin | 385 | After treatment | NR | NR | 10 (2.6%), χ2 = 26.93; p = 0.000 | NR | 157 (40.8%), χ2 = 1.778; p = 0.182 | NR | 17 (4.4%), χ2 = 26.68; p = 0.000 vs. insulin | NR | NR | |
Somani_2016 [26] | Human insulin (regular, NPH or both) | 33 | Delivery | 8 (24.24%) | NR | NR | NR | 23 (69.7%) | NR | NR | NR | 3 (9.09%) |
Metformin | 32 | Delivery | 12 (37.5%); p = 0.29 vs. insulin | NR | NR | NR | 24 (75%); p = 0.64 vs. insulin | NR | NR | NR | 1 (3.1%); p = 0.57 vs. insulin | |
Ainuddin_2015 [36] | Insulin (short- + intermediate-acting)-GDM | 75 | Throughout pregnancy | 14 (18.7%) | NR | NR | NR | 38 (50.7%) | NR | PIH: 18 (24%); PE: 6 (8%) | NR | NR |
Metformin-GDM | 43 | Throughout pregnancy | 10 (23.3%) | NR | NR | NR | 18 (41.9%) | NR | PIH: 8 (18.6); PE: 0% | NR | NR | |
Insulin added on to metformin-GDM | 32 | Throughout pregnancy | 10 (31.3%) | NR | NR | NR | 18 (56.3%) | NR | PIH: 3 (9.4%); PE: 1 (3.1%) | NR | NR | |
Mirzamoradi_2015 [42] | Insulin (regular + NPH) | 59 | At treatment to delivery | NR | NR | NR | NR | 42 (71.20%) | NR | 13.6% | NR | NR |
Glyburide | 37 | At treatment to delivery | NR | NR | NR | NR | 28 (75.7%); p = 0.63 | NR | 8.1%; p = 0.41 | NR | NR | |
Ruholamin_2014 [37] | Insulin | 50 | NA | NR | NR | NR | NR | 35 (70%) | NR | NR | NR | NR |
Metformin | 50 | NA | NR | NR | NR | NR | 37 (74%) p = 0.66 | NR | NR | NR | NR | |
Tertti_2013 [38] | Insulin (NPH + lispro + aspart) | 107 | Delivery | 58 (54.2%) | NR | NR | 18 (16.8%) | PIH: 4 (3.7%); PE: 10 (9.4%) | NR | NR | ||
Metformin | 110 | Delivery | 42 (38.2%) | RR: 0.7 (0.5–1.0); p = 0.08 | NR | NR | 15 (13.6%) | RR: 0.8 (0.4–1.6); p = 0.55 | PIH: 2 (1.8%); PE: 5 (4.6%) | RR (95% CI)-PIH: 0.5 (0.1–2.7); p = 0.41; PE: 0.5 (0.2–1.4); p = 0.19 | NR | |
Balaji_2012 [69] | BIAsp 30 | 163 | Delivery | NR | NR | 1 (1.63%) | NR | 144 (88.3%) | NR | NR | ||
BHI 30 | 157 | Delivery | NR | NR | 2 (3.26%); p > 0.05 | NR | 141 (89.8%); p > 0.05 | NR | NR | |||
Hassan_2012 [40] | Regular- and intermediate-acting human insulin | 75 | Delivery | 14 (18.7%) | NR | NR | NR | 42 (56%) | NR | NR | ||
Metformin | 75 | Delivery | 20 (26.7%); p = 0.001 vs. insulin | NR | NR | NR | 25 (33.3%); p = 0.004 vs. insulin | NR | NR | |||
Mesdaghinia_2012 [56] | NPH and regular | 100 | NA | NR | NR | 8 (8) | NR | NR | NR | NR | ||
Metformin | 100 | NA | NR | NR | 0 (0) | NR | NR | NR | NR | |||
Niromanesh_2012 [39] | NPH and regular as needed | 80 | Randomisation-delivery | NR | NR | 4 (5.0%) | Overall CS: 37 (46.3%), emergency CS: 16 (20.0%) | NR | PE: 7 (8.8%); PIH: 11 (13.8%) | NR | NR | |
Metformin | 80 | Randomisation-delivery | NR | NR | 9 (11.3%) | RR: 2.2 (0.7–7.0); p = 0.148 | Overall CS: 34 (42.5%), emergency CS: 25 (31.3%) | RR-Overall CS: 0.7 (0.2–2.2); p = 0.633; emergency CS: 1.6 (0.9–2.7); p = 0.102 | PE: 5 (6.3%); PIH: 4 (5%) | RR (95% CI)-PE: 0.7 (0.2–2.2), p = 0.548; PIH: 0.4 (0.1–1.1), p = 0.058 | NR | |
Ijas_2011 [41] | Long- (Protaphane) and rapid-(Humalog) acting insulin | 50 | NA | 26 (52.0%) | NA | NR | NR | 10 (20.0%) | NR | NR | NR | NR |
Metformin | 47 | NA | 24 (51.0%) | RR: 1.0 (0.67–1.45), p = 0.960 vs. insulin | NR | NR | 18 (38.3%) | RR: 1.9 (0.99–3.31), p = 0.047 vs. insulin | NR | NR | NR | |
Observational | ||||||||||||
Han_2020 [72] | Insulin lispro + metformin | 62 | After treatment | NR | NR | NR | NR | 21 (33.87%) | NR | NR | NR | NR |
Insulin lispro | 55 | After treatment | NR | NR | NR | NR | 34 (61.82%); p = 0.003 vs. lispro | NR | NR | NR | NR | |
Meghelli_2020 [77] | Insulin | 63 | NA | 25 (39.7%) | NR | 6 (9.5%) | NR | 22 (34.9%) | NR | 1 (1.6%) | NR | NR |
No Insulin | 56 | NA | 18 (32.7%); p = 0.43 vs. insulin | NR | 7 (12.7%) | NR | 21 (37.5%) | NR | 2 (3.6%) | NR | NR | |
Rodrigues_2020 [50] | Insulin | 41 | NA | 22/40 (55) | NR | NR | NR | 17/40 (42.5) | NR | 1 (2.4) | NR | NR |
Metformin + insulin | 94 | NA | 48/87 (55.2); p = 0.986 vs. insulin | NR | NR | NR | 25/93 (26.9) | NR | 1 (1.1); p = 0.52 vs. insulin | NR | NR | |
Metformin only | 77 | NA | 38/73 (52.1); p = 0.076 vs. insulin | NR | NR | NR | 19/76 (25) | NR | 0 | NR | NR | |
Landi_2019 [49] | Insulin | 3450 | NA | 1884 (54.6%) | 311 (9.0%) | Elective CS: 808 (23.4%), emergency CS: 650 (17.0%) | 116 (3.5%) | NR | ||||
Metformin | 3818 | NA | 1965 (51.5%) | RR (95% CI): 0.94 (0.90–0.98) | 269 (7.1%) | RR (95% CI): 0.78 (0.67‐0.92) | Elective CS: 720 (18.9%), emergency CS: 640 (18.6%) | RR (95% CI)-Elective CS: 0.81 (0.74‐0.88), Emergency CS: 0.92 (0.83‐1.01) | 139 (3.6%) | RR (95% CI): 1.08 (0.85‐1.38) | NR | |
Munn_2019 [78] | Glyburide | 195,000 | NA | NR | NR | NR | NR | 64,368 (33%) | NR | NR | NR | NR |
Insulin | 195,000 | NA | NR | NR | NR | NR | 63,982 (33%) | NR | NR | NR | NR | |
Ng_2019 [79] | Insulin | 576 | NA | NR | NR | NR | NR | Emergency CS: 106 (18.40%), elective CS: 162 (28.13%) | NR | 42 (7.29%) | NR | NR |
No insulin | 1281 | NA | NR | NR | NR | NR | Emergency CS: 215 (16.78%), elective CS: 287 (22.40%) | NR | 52 (4.06%) | NR | NR | |
Bogdanet_2018 [46] | IDET and insulin aspart | 752 | NA | NR | NR | NR | NR | 353/742 (47.6%) | PE: 41/718 (5.7%) PIH: 96/719 (13.4%) | NR | NR | |
MNT | 567 | NA | NR | NR | NR | NR | 172/567 (30.3%) | Adjusted: 1.67 (1.25–2.23) | PE: 24/567 (4.2%) PIH: 66/567 (11.6%) | Adjuster OR; PE: 0.81 (0.40–1.62), p = 0.55. PIH: 0.87 (0.57–1.33); p = 0.53 vs. insulin | NR | |
Normal glucose tolerance | 2496 | NA | NR | NR | NR | NR | 608/2468 (24.63%) | Adjusted: 1.44 (1.11–1.87); p < 0.01 vs. insulin | PE: 94/2496 (3.76%); PIH: 190/2420 (7.85%) | Adjusted OR; PE: 0.64 (0.34–1.12); p = 0.17. PIH: 1.11 (0.74–1.66); p = 0.60 vs. insulin | NR | |
Christian_2018 [80] | IDET (with/without aspart) | 17 | NA | NR | NR | NR | NR | 9 (53%) | NR | 2 (12%) | NR | NR |
Metformin | 58 | NA | NR | NR | NR | NR | 24 (41.3%) | NR | 2 (3.4%) | NR | NR | |
Metformin + insulin | 32 | NA | NR | NR | NR | NR | 23 (71.8%) | NR | 1 (3.1%) | NR | NR | |
Leung_2018 [81] | Insulin | 223 | NA | NR | NR | 17 (7.6%) | NR | 47 (21%) | NR | 19 (8.5%) | NR | NR |
Glyburide | 171 | NA | NR | NR | 11 (6.4%); p = 0.871 | NR | 23 (13.4%); p = 0.950 | NR | 8 (5.6%) | NR | NR | |
McGrath_2018 [82] | Insulin (NPH or Levemir and/or NovoRapid) | 83 | 38.4 weeks | NR | NR | NR | NR | 25 (30.1%) | NR | NR | NR | NR |
Metformin | 83 | 38.6 weeks | NR | NR | NR | NR | 35 (42.2%) | NR | NR | NR | NR | |
Diet + lifestyle | 82 | 38.9 weeks | NR | NR | NR | NR | 27 (32.9%) | NR | NR | NR | NR | |
Patanjali_2018 [84] | Insulin | 58 (20.1%) | NA | NR | NR | 37.9%; p = 0.04 vs. other group | NR | 0.66 | NR | NR | NR | NR |
Metformin | Only metformin: 23 (8%), required insulin with metformin: 28 (9.7%) | NA | NR | NR | NR | NR | 0.57 | NR | NR | NR | NR | |
Diet | 179 | NA | NR | NR | NR | NR | 0.4 | NR | NR | NR | NR | |
Rowan_2018 [85] | Insulin (Adelaide cohort) | 51 | NR | NR | NR | NR | NR | 18 (35.3%) | NR | 2 (3.9%) | NR | NR |
Metformin (Adelaide cohort) | 58 | NR | NR | NR | NR | NR | 25 (43.1%) | NR | 3 (5.1%) | NR | NR | |
Insulin (Auckland cohort) | 54 | NR | NR | NR | NR | NR | 20 (37.0%) | NR | 0 | NR | NR | |
Metformin (Auckland cohort) | 45 | NR | NR | NR | NR | NR | 15 (33.3%) | NR | 2 (4.4%) | NR | NR | |
Simeonova-Krstevska_2018 [28] | Levemir (IDET) + aspart | 101 | NA | NR | NR | 20 (19.8%) | NR | 66/100 (66%) | NR | 6 (6%); p = NS vs. metformin | NR | NR |
Metformin | 48 | NA | NR | NR | 2 (4.2%); p = NS vs. diet; p < 0.01 vs. insulin | NR | 24/46 (52.2%); p = NS vs. insulin; p < 0.05 vs. diet | NR | 4 (8.3%); p < 0.01 vs. diet | NR | NR | |
Diet | 200 | NA | NR | NR | 13 (6.5%); p < 0.01 vs. insulin | NR | 41/130 (31.5%); p < 0.05 vs. insulin | NR | 1 (0.5%); p < 0.01 vs. insulin | NR | NR | |
Vanlalhruaii_2018 [86] | Insulin | 151 | NA | NR | NR | Insulin throughout: 9 (6.27%), insulin 1st trimester: 5 (8.77%) | NR | NR | NR | PE: 3%; GHTN: 10.5% | NR | 6.30% |
Metformin-1st trimesters | 186 | NA | NR | NR | 23 (12.37%) | NR | NR | NR | PE: 5%; p = 0.44 vs. insulin; GHTN: 15.1% | NR | 3.70%; p = 0.06 vs. insulin | |
Metformin-2nd trimesters | 203 | NA | NR | NR | 20 (9.85%) | NR | NR | NR | PE: 4%; p = 0.35 vs. metformin 1st trimesters; GHTN: 10.5% | NR | 3.10%; p = 0.40 vs. metformin 1st trimesters | |
Bowker_2017 [87] | Insulin | 5057 (27.0%) | NA | NR | NR | 583 (11.5%) | NR | NR | NR | NR | NR | NR |
Metformin ± insulin | 478 (2.5%) | NA | NR | NR | 91 (19.0%) | NR | NR | NR | NR | NR | NR | |
No specific intervention | 13,226 (70.5%) | NA | NR | NR | 1553 (11.7%), p < 0.001 across treatment arms | NR | NR | NR | NR | NR | NR | |
Gibbons_2017 [88] | Insulin | 315 | NA | NR | NR | 116 (36.8%) | 1.82 (1.37–2.41); p < 0.001 vs. OHA and diet | 151 (47.9%); p < 0.001 vs. OHA and diet | NR | NR | NR | NR |
OHA (glyburide/metformin) | 211 | NA | NR | NR | 46 (21.8%) | 89 (42.2%) | NR | NR | NR | NR | ||
Diet | 563 | NA | NR | NR | 142 (25.2%) | 187 (33.2%) | NR | NR | NR | NR | ||
Ito_2016 [92] | Insulin | 32 | Delivery | NR | NR | NR | NR | 11 (34.4%) | NR | NR | NR | |
Diet | 70 | Delivery | NR | NR | NR | NR | 19 (27.1%) | Adjusted: 1.24 (0.47–3.16), p = 0.656 vs. insulin | NR | NR | NR | |
Koning_2016 [93] | Diet + additional insulin (aspart, NPH and aspart + NPH) | 360 (43.9%) | NA | 262 (72.8%) | NR | 24 (6.7%) | NR | CS: 39 (10.8%), planned CS: 56 (15.6%) | NR | PE: 12 (3.3%) GHTN: 32 (8.9%) | NR | NR |
Diet | 460 (56.1%) | NA | 271 (58.9%) | NR | 28 (6%) | NR | CS: 60 (13.0%), p = NS vs. insulin; planned CS: 37 (8.0%), p = 0.0001 vs. insulin | NR | PE: 16 (3.5%); p = NS vs. insulin GHTN: 43 (9.3%); p = NS vs. insulin | NR | NR | |
Koren_2016 [55] | IDET | 29 | NA | NR | NR | 3 (10.3%) | NR | 10 (34.5%) | NR | NR | NR | NR |
Glyburide | 62 | NA | NR | NR | 6 (9.7%); p = 1 vs. insulin | NR | 26 (41.9%); p = 0.64 vs. insulin | NR | NR | NR | Hypoglycaemia (< 3.3 mmol/L): 12 (19.4%); p = 0.01 Severe hypoglycaemia: 1 (1.6%); p = 1 | |
Ozgu-Erdinc_2016 [29] | Insulin | 144 | NA | NR | NR | 24 (16.7%) | NR | 99 (68.8%) | NR | 15 (10.4%) | NR | NR |
Diet | 115 | NA | NR | NR | 14 (12.2%); p = 0.952 vs. insulin | NR | 74 (64.3%); p = 0.507 vs. insulin | NR | 10 (8.7%); p = 0.678 vs. insulin | NR | NR | |
Saleem_2016 [94] | Insulin BiD | 240 | NA | NR | NR | NR | NR | 120 (50%) | NR | NR | NR | 80 (33.3%) |
Insulin QiD | 240 | NA | NR | NR | NR | NR | 72 (30%); p = 0.001 vs. BiD | NR | NR | NR | NR | |
Watanabe_2016 [95] | Insulin | 10 | NA | NR | NR | 3 (30.0%) | NR | 7 (70.0%) | NR | PIH: 3 (30.0%) | NR | NR |
Diet | 27 | NA | NR | NR | 5 (18.5%); p = 0.451 vs. insulin | NR | 10 (37.0%); p = 0.074 vs. insulin | NR | PIH: 2 (7.4%); p = 0.074 vs. insulin | NR | NR | |
Yanagisawa_2016 [30] | Insulin | 36 | NA | NR | NR | 2 (6%) | NR | 17 (47%) | NR | PIH: 3 (8%) | NR | NR |
MNT | 77 | NA | NR | NR | 2 (3%); p = NS vs. insulin | NR | 23 (30%); p = NS vs. insulin | NR | PIH: 6 (8%); p = NS vs. insulin | NR | NR | |
You_2016 [99] | Regular insulin (NPH, if required) | 55 | Delivery | NR | NR | 9 (16.4%) | NR | Elective: 25 (45.5%), Emergency: 5/30 (16.7%) | NR | PE: 6 (10.9%) | NR | NR |
Fast-acting insulin analogues (NPH if required)-aspart or lispro | 142 | Delivery | NR | NR | 29 (20.4%); p = 0.554 | NR | Elective: 57 (40.1%), p = 0.522, Emergency: 21/85 (24.7%), p = 0.452 vs. regular insulin | NR | PE: 11 (7.7%); p = 0.572 | NR | NR | |
Benhalima_2015 [32] | Short-acting or long-acting insulin or both | 145 | NA | NR | NR | 20 (13.9%) | NR | 64 (44.1%) | NR | GHTN: 6 (4.2%); PE: 11 (7.6%) | NR | NR |
Diet | 456 | NA | NR | NR | 58 (12.8%); p = 0.743 | NR | 122 (27.0%); p < 0.0001 | NR | GHTN: 35 (7.7%); p = 0.140; PE: 18 (4.0%); p = 0.076 | NR | NR | |
Castillo_2015 [59] | Insulin | 4191 | NA | NR | NR | 371 (8.9%) | 2201 (52.5%) | NR | NR | NR | NR | |
Glyburide | 4982 | NA | NR | NR | 472 (9.5%) | ARR: 1.06 (0.93–1.21) | 2522 (50.6%) | ARR: 0.97 (0.93–1.00) | NR | NR | NR | |
Inocencio_2015 [97] | Insulin | 167 | NA | NR | NR | NR | NR | 39.5% (n = 87) | NR | NR | NR | NR |
Koivunen_2015 [64] | Insulin-cohort 2006 | 1128 | NA | 373 (33.1%) | NR | NR | NR | 229 (20.4%) | NR | 79 (7.0%) | NR | NR |
Insulin-cohort 2010 | 887 | NA | 398 (44.9%) | NR | NR | NR | 245 (27.8%) | NR | 105 (11.8%); p < 0.0001 vs. insulin-cohort 2006 | NR | NR | |
Diet-cohort 2006 | 4057 | NA | 961 (23.7%) | NR | NR | NR | 847 (21.0%) | NR | 343 (8.5%) | NR | NR | |
Diet-cohort 2010 | 5796 | NA | 1495 (25.8%); p < 0.0001 vs. insulin across the cohort | NR | NR | NR | 1224 (21.2%); p = 0.012 vs. insulin across the cohort | NR | 503 (8.7%); p = 0.696 vs. diet-cohort 2006 | NR | NR | |
Arshad_2014 [25] | Regular and NPH | 25 | NA | NR | NR | NR | NR | 17 (68%) | NR | NR | NR | NR |
Diet + exercise | 25 | NA | NR | NR | NR | NR | 10 (40%) | NR | NR | NR | NR | |
Deepaklal_2014 [100] | Insulin lispro | 201 | Delivery | NR | NR | NR | NR | 50.6%, n = 174 | NR | NR | NR | NR |
Konig_2014 [101] | Insulin | 40 | Delivery | NR | NR | NR | NR | 18/39 (46.15%) | NR | NR | NR | |
No insulin | 83 | Delivery | NR | NR | NR | NR | 26/81 (32.1%) | 1.81 (0.83–3.97); | NR | NR | NR | |
p = 0.14 | NR | NR | NR | |||||||||
Marques_2014 [102] | NPH insulin | 33 | NA | NR | NR | 5 (15.2%) | 10 (30.3%) | PE: 2 (6.1%) | NR | NR | ||
Metformin | 32 | NA | NR | NR | 3 (9.4%) | 0.58 (0.13–2.66); p = 0.48 | 12 (37.5%) | 1.38 (0.49–3.87); p = 0.54 | PE: 2 (6.3%) | 1.03 (0.14–7.81); p = 0.98 | NR | |
Tempe_2013 [106] | Insulin | 32 | NA | NR | NR | 2 (5.9%) | NR | NR | NR | PE: 4 (11.7%) | NR | NR |
Glyburide | 32 | NA | NR | NR | 1 (3.3%); p = 1 | NR | NR | NR | PE: 6 (20%); p = NS | NR | NR | |
Cheng_2012 [107] | Insulin | 8609 | NA | NR | NR | < 37 weeks: 11.5%, < 34 weeks: 1.95% | NR | Overall CS: 44.9%, primary CS: 22.7% | NR | NR | NR | NR |
Glyburide | 2073 | NA | NR | NR | < 37 weeks: 12.2%, < 34 weeks: 2.56% | Adjusted < 37 weeks: 0.97 (0.75–1.24), < 34 weeks: 1.26 0.72–2.22 | Overall CS: 38.8%, primary CS: 22.6% | Adjusted overall CS: 0.77 (0.65–0.91), primary CS: 0.84 (0.67–1.03) | NR | NR | NR | |
Donovan_2012 [47] | Insulin | 359 | NA | 172 (47.9%) | NR | 36 (10%) | NR | 150 (41.8%) | PIH: 27 (7.5%) | NR | NR | |
Lifestyle | 505 | NA | 164 (32.5%) | NR | 44 (9.1%) | NR | 169 (33.5%) | PIH: 41 (8.1%) | NR | NR | ||
No diabetes | 18,520 | NA | 5415 (29.2%); p < 0.001 across treatment arms | NR | 1325 (7.1%); p = 0.028 | NR | 4567 (24.7%); p < 0.0001 | Adjusted: 1.94 (1.54–2.44); p < 0.001 | PIH: 1029 (5.6%); p = 0.015 across treatment arms | NR | NR | |
Thomas_2012 [108] | Insulin | 137 | Delivery | NR | NR | 26 (18.7%) | NR | 52 (38.8%) | NR | NR | NR | NR |
OHA | 141 | Delivery | NR | NR | 18 (12.9%); p = 0.24 vs. insulin | NR | 67 (46.7%); p = 0.22 vs. insulin | NR | NR | NR | NR | |
Varghese_2012 [45] | Insulin | 186 | NR | NR | 93 (50%) | NR | 176 (94.6%) | NR | PIH: 26 (13.9%) | NR | NR | |
Diet | 36 | NA | NR | NR | 14 (38.8%); p = 0.114 vs. insulin | NR | 30 (83.3%); p = 0.013 vs. insulin | NR | PIH: 6 (16.6%); p = 0.675 vs. insulin | NR | NR | |
Goh_2011 [109] | Bedtime intermediate-acting isophane insulin and premeal short-acting insulin | 399 | NA | NR | NR | 19.2% (< 37 weeks), 3% (< 32 weeks) | NR | 0.456 | NR | Chronic HTN: 6.5%, GHTN: 5.3%, PE: 4% | NR | NR |
Metformin | 465 | NA | NR | NR | 12.5% (< 37 weeks), 0.4% (< 32 weeks) | NR | 0.37 | NR | Chronic HTN: 5.4%, GHTN: 8%, PE: 3.4% | NR | NR | |
Diet | 371 | NA | NR | NR | 12.1% (< 37 weeks); p = 0.005 across treatment arms, 2.9% (< 32 weeks); p = 0.009 across treatment arms | NR | 0.34 | NR | Chronic HTN: 3.5%, GHTN: 5.7%, PE: 3.8%; p = 0.3 across treatment arms | NR | NR | |
Wong_2011 [110] | Insulin | 323 | NA | NR | NR | NR | NR | CS: 31%, emergency CS: 15.2% | NR | NR | NR | NR |
MNT | 289 | NA | NR | NR | NR | NR | CS: 24.8%; p = 0.082 vs. insulin emergency CS: 10.7%; p = 0.092 vs. insulin | NR | NR | NR | NR | |
Flores-Le Roux_2010 [111] | Insulin | 41 | NA | 19 (46.3%) | NR | 2 (4.9%) | NR | 16 (39%) | NR | NR | NR | NR |
Diet | 70 | NA | 23 (32.9%) | NR | 3 (4.3%) | NR | 21 (30%) | NR | NR | NR | NR | |
NEF-GDM | 18 | NA | 5 (27.8%); p = 0.37 across treatment arms | NR | 2 (11.1%); p = 0.47 across treatment arms | NR | 6 (35.3%); p = 0.86 across treatment arms | NR | NR | NR | NR |
ARR adjusted relative risk, BiD twice a day, CI confidence interval, CS cesarean section, GDM gestational diabetes mellitus, GHTN gestational hypertension, IDET insulin detemir, MNT medical nutritional therapy, NA not applicable, NEF no endocrinologic follow-up, NPH neutral protamine Hagedorn, NR not reported, NS not significant, OHA oral hypoglycemic agents, OR odds ratio, PE preeclampsia, PIH pregnancy-induced hypertension, RCT randomized controlled trial, RR relative risk, QiD four times a day
Table 6.
Maternal outcomes in women with pre-existing diabetes and mixed population
First Author_Year | Treatment arms | Sample size | Timepoints | Proportion of induced labor, n (%) | Induced labor: OR (95% CI), p value | Preterm labor/delivery, n (%) | Preterm labor/delivery OR (95% CI), p value | Proportion of CS, n (%) | CS: OR (95% CI), p value | Prevalence/rate of preeclampsia/eclampsia, n (%) | Preeclampsia/ECLAMPSIA: OR (95% CI), p-value | Prevalence/rate of maternal hypoglycaemia, n (%) | Maternal hypoglycemia: OR (95% CI), p value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCT | |||||||||||||
Jing ji_2020 [27] | IDET + Novolin-R | 120 | Delivery | NR | NR | 15 (12.50%) | NR | 78 (65%) | NR | HTN: 14 (11.67%) | NR | 14 (11.67%) | NR |
Insulin NPH + Novolin-R | 120 | Delivery | NR | NR | 18 (15%); p = 0.574 vs. IDET | NR | 74 (61.67%); p = 0.592 vs. IDET | NR | HTN: 23 (19.17%); p = 0.107 vs. IDET | NR | 28 (23.33%); p = 0.017 vs. IDET | NR | |
Ainuddin_2015 [44] | Insulin (short- + intermediate-acting)-T2DM | 100 | Delivery | NR | NR | NR | NR | 82 (82.0%) | NR | PIH: 36 (36.0%); PE: 17 (17%) | NR | NR | NR |
Metformin-T2DM | 16 | Delivery | NR | NR | NR | NR | 13 (81.2%) | NR | PIH: 1 (6.2%); PE: 4 (25%) | NR | NR | NR | |
Insulin added-on to metformin-T2GDM | 90 | Delivery | NR | NR | NR | NR | 47 (52.2%); p < 0.01 | NR | PIH: 21 (23.3%); p = 0.020; PE: 9 (10%); p = 0.184 | NR | NR | NR | |
Refuerzo_2015 [71] | Regular + NPH | 13 | Delivery | 5 (38.5%) | NR | 3 (23.1%) | NR | 6 (46.2%) | NR | 4 (30.8%) | NR | NR | NR |
Metformin | 8 | Delivery | 5 (62.5); p = 0.387 | NR | 1 (12.5%); p = 0.549 | NR | 4 (50%); p = 0.864 | NR | 0; p = 0.131 | NR | NR | NR | |
Hod_2014 [57] | IDET + aspart | 152 | Delivery | NR | NR | 26 (20.3%) | NA | NR | NR | NR | NR | 144 (95%) | |
Insulin NPH + aspart | 158 | Delivery | NR | NR | 36 (26.5%) | 0.71 (0.40–1.26); p = 0.238 vs. IDET | NR | NR | NR | NR | 146 (92%) | RR: 1.11 (0.89–1.38); p = 0.365 vs. IDET | |
Herrera_2015 [70] | IDET | 42 | NA | NR | NR | NR | NR | NR | NR | NR | NR | 11 (26%) | NR |
Insulin NPH | 45 | NA | NR | NR | NR | NR | NR | NR | NR | NR | 16 (36%); p = 0.3454 | NR | |
Hickman_2012 [52] | Regular + NPH | 14 | 36–38 weeks | NR | NR | NR | NR | NR | NR | NR | NR | 7 (50%) | NR |
Metformin | 14 | 36–38 weeks | NR | NR | NR | NR | NR | NR | NR | NR | 1 (7%); p = 0.03 | NR | |
Observational | |||||||||||||
Demasio_2020 [112] | Insulin Levemir-T2DM | 96 | NA | NR | NR | 23 (23.96%) | NR | Unscheduled: 43.75%; scheduled: 23.96% | NR | 6 (6.3%) | NR | NR | NR |
Insulin Levemir-GDM | 127 | NA | NR | NR | 16 (12.6%) | NR | Unscheduled: 24.41%, scheduled: 27.56% | NR | 9 (7.1%) | NR | NR | NR | |
Insulin NPH-T2DM | 41 | NA | NR | NR | 10 (24.4%) | NR | Unscheduled: 46.34%; scheduled: 21.95% | NR | PE: 4 (9.8%), eclampsia: 1 (2.4%) | NR | NR | NR | |
Insulin NPH-GDM | 50 | NA | NR | NR | 5 (10%) | NR | Unscheduled: 30%; scheduled: 26% | NR | 3 (6.0%) | NR | NR | NR | |
Kong_2020 [113] | Insulin | 4000 | NA | NR | NR | 1483 (37.1%) | NR | NR | NR | NR | NR | NR | NR |
Sperling_2020 [115] | Metformin-GDM | 2542 | NA | NR | NR | 0.088 | NR | 0.5 | NR | NR | NR | NR | NR |
Metformin-PGDM | 729 | NA | NR | NR | 0.104 | NR | 0.583 | NR | NR | NR | NR | NR | |
Glyburide-GDM | 9998 | NA | NR | NR | 0.072 | NR | 0.491 | NR | NR | NR | NR | NR | |
Glyburide-PGDM | 1181 | NA | NR | NR | 0.11 | NR | 0.558 | NR | NR | NR | NR | NR | |
Insulin + glyburide-GDM | 1113 | NA | NR | NR | 0.097 | NR | 0.56 | NR | NR | NR | NR | NR | |
Insulin + glyburide-PGDM | 371 | NA | NR | NR | 0.162 | NR | 0.72 | NR | NR | NR | NR | NR | |
Insulin + metformin-GDM | 1029 | NA | NR | NR | 0.088 | NR | 0.595 | NR | NR | NR | NR | NR | |
Insulin + metformin-PGDM | 2036 | NA | NR | NR | 0.143 | NR | 0.713 | NR | NR | NR | NR | NR | |
Insulin-GDM | 6796 | NA | NR | NR | 0.074 | NR | NR | 0.501 | NR | NR | NR | NR | |
Insulin-PGDM | 5350 | NA | NR | NR | 0.164 | NR | 0.692 | NR | NR | NR | NR | NR | |
Metformin + glyburide-GDM | 960 | NA | NR | NR | 0.09 | NR | 0.563 | NR | NR | NR | NR | NR | |
Metformin + glyburide-PGDM | 375 | NA | NR | NR | 0.128 | NR | 0.68 | NR | NR | NR | NR | NR | |
Insulin + metformin + glyburide-GDM | 214 | NA | NR | NR | 0.075 | NR | 0.636 | NR | NR | NR | NR | NR | |
Insulin + metformin + glyburide-PGDM | 423 | NA | NR | NR | 0.123 | NR | 0.723 | NR | NR | NR | NR | NR | |
Bartal_2019 [48] | Basal insulin analogues | 114 | NA | 44 (38.6%) | NA | 63 (55.3%) | NA | CS: 76 (66.7%), primary CS: 24 (21.1%) | NA | GHTN: 2 (1.8%), PE: 6 (5.3%), PE with severe features: 31 (27.2%) | NR | 15 (13.2%) | NR |
Insulin NPH | 119 | NA | 42 (35.3%) | ARR: 0.89 (0.57–1.37); p = 0.60 vs. BIA | 59 (49.6%) | ARR: 0.93 (0.68–1.26); p = 0.39 | CS: 86 (72.9%), primary CS: 43 (36.4%) | ARR-CS: 0.93 (0.75–1.15); p = 0.30 vs. BIA, ARR-Primary CS: 0.44 (0.25–0.78); p = 0.01 | GHTN: 5 (4.2%), PE: 5 (4.2%), PE with severe features: 34 (28.6%) | NR | 24 (20.2%) | ARR: 0.72 (0.35–1.45); p = 0.15 | |
Christman_2019 [117] | IDET | 154 | NR | NR | NR | NR | NR | 79 (51.3%) | NR | NR | NR | NR | NR |
Sleeman_2019 [118] | Insulin glargine or IDET | 38 | Delivery | NR | NR | 18 (47.4%) | NR | 26 (68.4%) | NR | 3 (7.9%) | NR | NR | NR |
Insulin NPH | 14 | Delivery | NR | NR | 7 (50%); p = 0.866 vs. glargine/detemir | NR | 10 (71.4%); p = 0.835 vs. glargine/detemir | NR | 3 (21.4%); p = 0.324 | NR | NR | NR | |
Sunjaya_2018 [122] | Insulin (long-acting, intermediate-acting, short-acting, rapid-acting and human premixed) | 25 | After treatment | NR | NR | NR | NR | 0.76 | NR | NR | NR | NR | NR |
Oral antidiabetics (metformin and pioglitazone) | 4 | After treatment | NR | NR | NR | NR | 0.5 | NR | NR | NR | NR | NR | |
MNT | 16 | After treatment | NR | NR | NR | NR | 0.75 | NR | NR | NR | NR | NR | |
Abell_2017 [62] | MDI-glargine/detemir/NPH | 127 | Delivery | 37 (35.9%) | NR | 45 (35.4%) | NR | 80 (63.0%) | NR | 8 (6.3%) | NR | NR | NR |
CSII-aspart | 40 | Delivery | 17 (54.8%); p = 0.060 | NR | 19 (47.5%); p = 0.171 | NR | 25 (62.5%); p = 0.955 | NR | 3 (7.5%); p = 0.726 | NR | NR | NR | |
Billionnet_2017 [63] | Insulin-treated GDM | 16,108 | Delivery after 28 weeks | NR | NR | 9.20% (< 37 weeks) | 1.5 (1.4; 1.6) | 0.34 | 1.7 (1.7; 1.8) | 0.024 | 1.6 (1.4; 1.7) | NR | NR |
14,633 | Delivery after 37 weeks | NR | NR | NR | NR | 0.327 | 1.8 (1.7; 1.9) | 0.016 | 1.6 (1.4; 1.8) | NR | NR | ||
Noninsulin-treated GDM | 41,275 | Delivery after 28 weeks | NR | NR | 0.076 | 1.2 (1.2; 1.3) | 0.253 | 1.3 (1.2; 1.3) | 0.026 | 1.7 (1.6; 1.8) | NR | NR | |
38,147 | Delivery after 37 weeks | NR | NR | NR | NR | 0.238 | 1.3 (1.2; 1.3) | 0.017 | 1.7 (1.6; 1.9) | NR | NR | ||
GDM-overall | 57,383 | Delivery after 28 weeks | NR | NR | 0.08 | 1.3 (1.3; 1.4) | 0.278 | 1.4 (1.4; 1.4) | 0.025 | 1.7 (1.6; 1.7) | NR | NR | |
52,780 | Delivery after 37 weeks | NR | NR | NR | NR | 0.262 | 1.4 (1.4; 1.4) | 0.017 | 1.7 (1.6; 1.8) | NR | NR | ||
No diabetes | 729,105 | Delivery after 28 weeks | NR | NR | 0.061 | NR | 0.195 | NR | 0.015 | NR | NR | NR | |
684,398 | Delivery after 37 weeks | NR | NR | NR | NR | 0.183 | NR | 0.01 | NR | NR | NR | ||
Stanirowski_2017 [123] | Insulin-treated GDM | 6 | NA | NR | NR | NR | NR | 6 (100%) | NR | NR | NR | NR | NR |
Diet-treated GDM | 16 | NA | NR | NR | NR | NR | 10 (62.5%) | NR | NR | NR | NR | NR | |
Insulin-treated PGDM | 6 | NA | NR | NR | NR | NR | 6 (100%) | NR | NR | NR | NR | NR | |
No diabetes | 25 | NA | NR | NR | NR | NR | 16 (64.0%) | NR | NR | NR | NR | NR | |
Dalfra_2016 [124] | ILPS-GDM | 572 | NA | NR | NR | 0.086 | NR | 0.312 | NR | NR | NR | 0.003 | NR |
NPH-GDM | 242 | NA | NR | NR | 14.9%; p = 0.01 | NR | 46.2%; p = 0.01 | NR | NR | NR | 2.1%; p = NS vs. ILPS-GDM | NR | |
ILPS-pregestational T1DM | 58 | NA | NR | NR | 0.155 | NR | 0.482 | NR | NR | NR | 0.052 | NR | |
NPH-pregestational T1DM | 61 | NA | NR | NR | 32.8%; p = 0.05 | NR | 63.9%; p = 0.001 | NR | NR | NR | 13.1%; p = NS vs. ILPS-T1DM | NR | |
Becquet_2015 [125] | Insulin | 36 | NA | NR | NR | NR | NR | CS: 8 (22%), elective CS: 16 (45%) | NR | GHTN: 2 (6%), PE: 2 (6%) | NR | NR | NR |
No insulin | 43 | NA | NR | NR | NR | NR | CS: 12 (28%), elective CS: 4 (9%) | NR | GHTN: 1 (2%); p = 0.33; PE: 1 (2%); p = 0.74 vs. insulin | NR | NR | NR | |
Neff_2014 [61] | CSII-aspart | 40 | Delivery | NR | NR | 0.1 | NR | 0.8 | NR | NR | NR | NR | NR |
MDI-aspart + NPH | 424 | Delivery | NR | NR | 16%; p = 0.17 | NR | 54%; p = 0.001 | NR | NR | NR | NR | NR | |
Colatrella_2013 [126] | ILPS-T2DM | 7 | After treatment | NR | NR | 0 | NR | 1 | NR | GHTN: 42.8% | NR | NR | NR |
ILPS-GDM | 46 | After treatment | NR | NR | 0.087 | NR | 0.652 | NR | GHTN: 17.4% | NR | NR | NR | |
Insulin NPH-T2DM | 18 | After treatment | NR | NR | 0 | NR | 1 | NR | GHTN: 44.4% | NR | NR | NR | |
Insulin NPH-GDM | 18 | After treatment | NR | NR | 0.055 | NR | 0.611 | NR | GHTN: 33.3% | NR | NR | NR | |
Fresa_2013 [127] | Insulin lispro/aspart-CSII | 47 | NA | NR | NR | 13 (27.6%) | NR | 41 (87%) | NR | NR | NR | NR | NR |
Insulin lispro/aspart-CSII (RT-CGM) | 18 | NA | NR | NR | 3 (16.6%) | NR | 15 (83%) | NR | NR | NR | NR | NR | |
Garcia-Dominguez_2011 [53] | Human insulin | 241 | Delivery | NR | NR | NR | NR | 154 (64.7%) | NR | GHTN: 66 (27.4%), PE: 18 (7.5%) | NR | 24 (10%) | NR |
Insulin analog | 86 | Delivery | NR | NR | NR | NR | 47 (54.7%); p = 0.1 vs. human insulin | NR | GHTN: 17 (19.8%); p = 0.163, PE: 12 (14%); p = 0.074 vs. human insulin | NR | 2 (2.3%); p = 0.025 vs. human insulin | NR | |
Negrato_2010 [51] | Glargine + lispro-PGDM | 18 | NA | NR | NR | NR | NR | 0.945 | NR | 0 | NR | NR | NR |
NPH + lispro-PGDM | 38 | NA | NR | NR | NR | NR | 94%, p > 0.05 vs. glargine-PGDM | NR | PE: 7 (19%); p < 0.0001 vs. glargine-PGDM group | NR | NR | NR | |
Glargine + lispro-GDM | 37 | NA | NR | NR | NR | NR | 0.95 | NR | 1 (2.5%) | NR | NR | NR | |
NPH + lispro-GDM | 45 | NA | NR | NR | NR | NR | 96%, p > 0.05 vs. glargine-GDM | NR | PE: 4 (9%) | RR: 0.35 (0.09–1.2), p > 0.05 vs. glargine-GDM | NR | NR | |
Bruttomesso_2011 [128] | CSII-rapid-acting insulin analog | 100 | Delivery | NR | NR | NR | NR | NR | NR | PIH: 14 (15.1%), PE: 9 (9.7%) | NR | NR | |
Glargine-MDI | 44 | Delivery | NR | NR | NR | NR | NR | NR | PIH: 3 (7%), PE: 1 (2.3%); p = NS for both | NR | NR | ||
Gupta_2018 [121] | Insulin | 102 | NA | NR | NR | NR | NR | NR | NR | PIH: 14 (13.73%) | NR | NR | NR |
ARR adjusted relative risk, CGM continuous glucose monitor, CS cesarean section, CSII continuous subcutaneous insulin infusion, GDM gestational diabetes mellitus, GHTN gestational hypertension, IDET insulin detemir, ILPS insulin lispro protamine suspension, MDI multiple daily injection, MNT medical nutritional therapy, NA not applicable, NPH neutral protamine Hagedorn, NR not reported, OR odds ratio, PE preeclampsia, PGDM pregestational diabetes mellitus, PIH pregnancy-induced hypertension, RCT randomized controlled trial, RR relative risk, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus
Evidence from Clinical Trials
Most trials included in this study had small numbers of participants and no prolonged follow-up after the treatment. Some of the included trials had unclear risk of bias due to lack of blinding, unclear methods of randomization and selective reporting of outcomes. The primary outcomes of interest were different across the included studies.
Most included trials reported no difference in the proportion of cesarean sections among women treated with metformin versus insulin [21, 24, 26, 33–39]. However, two RCTs by Galal et al. and Hassan et al. reported a significantly higher rate (p ≤ 0.05) of cesarean sections in the insulin-treated group [20, 40], while an RCT by Ijas et al. reported a lower rate of cesarean section in the insulin-treated group versus metformin (p = 0.047) [41]. In three RCTs by Khan et al., Mirzamoradi et al. and Huhtala et al., numerically higher rates of preterm delivery, preeclampsia and induced labor were observed in the insulin-treated group relative to comparator group using oral anti-diabetic agents [24, 42, 43]. Other RCTs by Galal et al., Niromanesh et al. and Hassan et al. reported a numerically higher incidence of preterm delivery and induced labor in the group treated with metformin versus insulin [20, 39, 40]. In women with pre-existing diabetes, an open-label, randomized study by Ainuddin et al. reported a significantly high rate of incidence of pregnancy-induced hypertension in the insulin-treated group compared to only metformin group and metformin and insulin-treated group [44], while an RCT by Ji et al. demonstrated a numerically higher incidence of gestational hypertension in the insulin NPH-treated group compared to the insulin detemir-treated-group [27].
Evidence from Observational Studies
Among women diagnosed with GDM, across different interventions, retrospective analyses revealed that cases of cesarean section and preterm delivery were higher in women managed with insulin than in those managed with other interventions such as diet/MNT, metformin and metformin + insulin [28, 32, 45, 46]. Compared with other interventions, insulin did not show a significant difference in the rate of gestational hypertension and induced labor in women treated with insulin and those managed with lifestyle modification [47, 48] or metformin [49, 50]. In the mixed population, a prospective cohort study by Negrato et al. compared insulin glargine with NPH and reported a significantly higher rate of preeclampsia in the NPH-treated group compared to the glargine-treated group (p < 0.0001) in women diagnosed with diabetes prior to pregnancy [51].
Maternal Hypoglycemia in Clinical Trials and Observational Studies
The overall rate of hypoglycemia in women with GDM and a mixed population was significantly higher in the insulin-treated group compared to metformin and metformin with additional insulin therapy [27, 52, 53]. Contrarily, a significantly lower incidence of hypoglycemia was reported with insulin (p < 0.001) compared to glyburide [54, 55].
Fetal Outcomes in Women with GDM and Pre-existing Diabetes or Mixed Population
Of the 108 included studies, 7 RCTs and 24 observational studies reported fetal outcomes of interest in women with GDM, and 2 trials and 14 observational studies reported fetal outcomes of interest in women diagnosed with diabetes prior to pregnancy and a mixed population (Tables 7, 8). Most of the included studies scored low to moderate on the Newcastle-Ottawa Scale and quality assessment checklist; they had limited power, relatively small sample size, long individual study period and a high drop-out rate.
Table 7.
Fetal outcomes in women with gestational diabetes mellitus
First author_Year | Treatment arms | Sample size | Time points | Proportion of LGA neonates, n (%) | LGA: OR (95% CI), p value | Proportion of stillborn, n (%) | Stillborn: OR (95% CI), p value | Perinatal mortality rate, n (%) | Perinatal mortality: OR (95% CI), p value |
---|---|---|---|---|---|---|---|---|---|
RCT | |||||||||
Wasim_2019 [21] | Insulin-Humulin R and NPH | 141 | Delivery | NR | NR | NR | NR | 3 (2.1%) | NR |
Metformin | 137 | Delivery | NR | NR | NR | NR | 1 (0.7%) | NR | |
Eid_2018 [34] | Insulin (NPH regular) | 116 | After treatment | 18 (15.5%) | NR | NR | NR | NR | NR |
Metformin | 113 | After treatment | 13 (11.5%); p = 0.001 | NR | NR | NR | NR | NR | |
Somani_2016 [26] | Regular/NPH or both | 33 | Delivery | NR | NR | 1 (3.03%) | NR | NR | NR |
Metformin | 32 | Delivery | NR | NR | 0%; p = 0.32 vs. insulin | NR | NR | NR | |
Ainuddin_2015 [36] | Insulin (short- + intermediate-acting)-GDM | 75 | Throughout pregnancy | 28 (37.3%) | NR | NR | NR | NR | NR |
Metformin-GDM | 43 | Throughout pregnancy | 10 (23.3%) | NR | NR | NR | NR | NR | |
Insulin added on to metformin-GDM | 32 | Throughout pregnancy | 9 (28.1%) | NR | NR | NR | NR | NR | |
Mukhopadhyay_2014 [58] | Insulin | 30 | Before confinement | 2 (6.7%) | NR | NR | NR | NR | NR |
Glibenclamide | 30 | Before confinement | 4 (13.3%) | NR | NR | NR | NR | NR | |
Mesdaghinia_2012 [56] | NPH and regular | 100 | NA | 24 (24%) | NR | NR | NR | 0 (0) | NR |
Metformin | 100 | NA | 16 (16%); p = NS | NR | NR | NR | 0 (0) | NR | |
Ijas_2011 [41] | Long- (Protaphane) and rapid-acting (Humalog) insulin | 50 | NA | 5 (10.0%) | NA | NR | NR | NR | NR |
Metformin | 47 | NA | 4 (8.5%) | RR: 0.9 (0.24–2.98); p = 0.801 vs. insulin | NR | NR | NR | NR | |
Observational | |||||||||
Meghelli_2020 [77] | Insulin | 63 | NA | LGA > 90th Percentile: 18 (29.5%); LGA > 97th Percentile: 18 (29.5%) | NR | 0 | NR | NR | NR |
No insulin | 56 | NA | LGA > 90th Percentile: 19 (35.2%), p = 0.52; LGA > 97th Percentile: 12 (22.2%), p = 0.37 | NR | 0 | NR | NR | NR | |
Rodrigues_2020 [50] | Insulin | 39 | NA | NR | NR | NR | NR | 0 | NR |
Metformin + insulin | 93 | NA | NR | NR | NR | NR | 0 | NR | |
Metformin only | 76 | NA | NR | NR | NR | NR | 0 | NR | |
Landi_2019 [49] | Insulin | 3450 | NA | 653 (19.1%) | NA | NR | NR | NR | NR |
Metformin | 3818 | NA | 549 (14.5%) | RR (95% CI): 0.77 (0.69‐0.85) | NR | NR | NR | NR | |
Bogdanet_2018 [46] | IDET and insulin aspart | 752 | NA | 143/727 (19.7%) | NA | NR | NR | NR | NR |
MNT | 567 | NA | 71/566 (12.5%) | Adjusted: 1.67 (1.15–2.41); p < 0.01 vs. insulin | NR | NR | NR | NR | |
NGT | 2496 | NA | 388/2476 (15.67%) | Adjusted: 1.07 (0.77–1.47); p = 0.67 vs. insulin | NR | NR | NR | NR | |
Hedderson_2018 [60] | Insulin | 401 | NA | 20.50% | NA | NR | NR | NR | NR |
Glyburide | 4622 | NA | 17.90% | RR (95% CI): 1.12 (0.90–1.39) vs. insulin | NR | NR | NR | NR | |
Insulin + glyburide | 281 | NA | NR | RR (95% CI): 1.49 (1.21‐1.83) vs. glyburide only | NR | NR | NR | NR | |
McGrath_2018 [82] | Insulin (NPH or Levemir and/or NovoRapid) | 83 | 38.6 ± 1.2 | 12 (14.5%) | NR | NR | NR | 0 | NR |
Metformin | 83 | 38.6 ± 1.2 | 18 (21.7%) | NR | NR | NR | 0 | NR | |
Diet + lifestyle | 82 | 38.6 ± 1.2 | 7 (8.5%), p = 0.059 across treatment arms | NR | NR | NR | 1 (1.2%) | NR | |
Rowan_2018 [85] | Insulin (Adelaide cohort) | 51 | 36 weeks | 3 (5.9%) | NR | NR | NR | NR | NR |
Metformin (Adelaide cohort) | 58 | 36 weeks | 12 (20.7%); p = 0.029 vs. insulin Adelaide | NR | NR | NR | NR | NR | |
Insulin (Auckland cohort) | 54 | 36 weeks | 6 (11.1%) | NR | NR | NR | NR | NR | |
Metformin (Auckland cohort) | 45 | 36 weeks | 5 (11.1%); p = 1 vs. insulin Auckland | NR | NR | NR | NR | NR | |
Simeonova-Krstevska_2018 [28] | Levemir (IDET) + aspart | 101 | NA | 22 (21.7%) | NR | NR | NR | NR | NR |
Metformin | 48 | NA | 6 (12.5%); p < 0.05 vs. insulin and diet | NR | NR | NR | NR | NR | |
Diet | 200 | NA | 59 (29.5%); p = NS vs. insulin | NR | NR | NR | NR | NR | |
Bowker_2017 [87] | Insulin | 5057 (27.0%) | NA | 862 (17.0%) | 1.40 (1.28; 1.54); p < 0.001 vs. no pharmacologic intervention | NR | NR | NR | NR |
Metformin ± insulin | 478 (2.5%) | NA | 79 (16.5%) | 1.27 (0.99; 1.62); p < 0.056 vs. no intervention | NR | NR | NR | NR | |
No pharmacologic intervention | 13,226 (70.5%) | NA | 1694 (12.8%) | NR | NR | NR | NR | NR | |
Gibbons_2017 [88] | Insulin | 315 | NA | 41 (13.0%) | NA | NR | NR | 2 (0.6%) | 1.64 (0.27–9.87), p = 0.54 across treatment arms |
OHA (glyburide/metformin) | 211 | NA | 14 (6.6%) | NA | NR | NR | 0 | NA | |
Diet | 563 | NA | 54 (9.6%); p = 0.051 vs. OHA and diet | 1.55 (1.03–2.34); p = 0.036 vs. OHA and diet | NR | NR | 3 (0.5%) | NA | |
Olmos_2017 [89] | BBIT | 73 | NA | 8 (10.9%) | NR | NR | NR | NR | NR |
Without BBIT (diet/metformin) | 58 | NA | 5 (8.6%); p = 0.772 | NR | NR | NR | NR | NR | |
Fazel-Sarjoui_2016 [91] | Short-acting Insulin | 70 | NA | NR | NR | NR | NR | 1 (1.4%) | NR |
Diet | 70 | NA | NR | NR | NR | NR | 0%; p < 0.05 vs. insulin | NR | |
Ito_2016 [92] | Insulin | 32 | Delivery | 1 (3.1%) | NA | NR | NR | NR | NR |
Diet | 70 | Delivery | 9 (12.8%) | Adjusted: 0.22 (0.01–1.26); p = 0.096 vs. insulin | NR | NR | NR | NR | |
Koning_2016 [93] | Diet + additional insulin (aspart, NPH and aspart + NPH) | 360 | NA | 65 (18.1%) | NR | 2 (0.6%) | NR | NR | NR |
Diet | 460 | NA | 98 (21.3%); p = NS vs. insulin | NR | 0%; p = NS vs. insulin | NR | NR | NR | |
Overall Population | 820 | NA | 163 (19.9%) | NR | 2 (0.2%) | NR | NR | NR | |
Koren_2016 [55] | IDET | 29 | NA | 4 (13.8%) | NR | NR | NR | NR | NR |
Glyburide | 62 | NA | 16 (25.8%); p = 0.28 | NR | NR | NR | NR | NR | |
Benhalima_2015 [32] | Short-acting or long-acting insulin or both | 145 | NA | 41 (28.5%) | NR | NR | NR | NR | NR |
Diet | 456 | NA | 59 (13.1%); p < 0.0001 | NR | NR | NR | NR | NR | |
Castillo_2015 [59] | Insulin | 4191 | NA | 134 (3.2%) | NA | NR | NR | NR | NR |
Glyburide | 4982 | NA | 234 (4.7%) | ARR: 1.43 (1.16–1.76) | NR | NR | NR | NR | |
Cosson_2015 [96] | Insulin | 260 | - | 50 (19.2%) | NR | NR | NR | NR | NR |
Marques_2014 [102] | NPH insulin | 33 | NA | 3 (9.1%) | NA | NR | NR | NR | NR |
Metformin | 32 | NA | 1 (3.1%) | 0.32 (0.03–3.28); p = 0.34 | NR | NR | NR | NR | |
Hernandez-Rivas_2013 [104] | Insulin | 161 | NA | NR | Adjusted: 2.29 (1.09–4.82) | NR | NR | NR | NR |
Tempe_2013 [106] | Insulin | 32 | NA | NR | NR | 0% | NR | NR | NR |
Glyburide | 32 | NA | NR | NR | 1 (3.3%); p = 0.47 | NR | NR | NR | |
Thomas_2013 [108] | Insulin | 137 | Delivery | 51 (36.7%) | NR | NR | NR | NR | NR |
OHA | 141 | Delivery | 46 (33%); p = 0.61 | NR | NR | NR | NR | NR | |
Donovan_2012 [47] | Insulin | 359 | NA | NR | NR | 1 (0.3%) | NR | NR | NR |
Lifestyle | 505 | NA | NR | NR | 1 (0.2%) | NR | NR | NR | |
No diabetes | 18,520 | NA | NR | NR | 64 (0.3%) | NR | NR | NR | |
Varghese_2012 [45] | Insulin | 186 | 15 (10.6%) | NR | NR | NR | NR | NR | |
Diet | 36 | NA | 4 (11.11%); p = 0.5498 vs. insulin | NR | NR | NR | NR | NR | |
Goh_2011 [109] | Intermediate-acting isophane insulin and short-acting insulin analog | 399 | NA | 18.50% | NR | NR | NR | NR | NR |
Metformin | 465 | NA | 12.50% | NR | NR | NR | NR | NR | |
Diet | 371 | NA | 12.4%; p = 0.02 across treatment arms | NR | NR | NR | NR | NR |
ARR adjusted relative risk, BBIT basal-bolus insulin therapy, CI confidence interval, GDM gestational diabetes mellitus, IDET insulin detemir, LGA large for gestational age, MNT medical nutritional therapy, NA not applicable, NPH neutral protamine Hagedorn, NR not reported, OHA oral hypoglycemic agents, OR odds ratio, RCT randomized clinical trial, RR relative risk
Table 8.
Fetal outcomes in women with pre-existing diabetes and mixed population
First author_Year | Treatment arms | Sample size | Time points | Proportion of LGA neonates, n (%) | LGA: OR (95% CI), p value | Proportion of stillborn, n (%) | Stillborn: OR (95% CI), p value | Perinatal mortality rate, n (%) | Perinatal mortality: OR (95% CI), p value |
---|---|---|---|---|---|---|---|---|---|
RCT | |||||||||
Ainuddin_2015 [44] | Insulin (short- + intermediate-acting)-T2DM | 100 | Throughout pregnancy | 27 (27.0%) | NR | NR | NR | NR | 0 |
Metformin –T2DM | 16 | Throughout pregnancy | 2 (12.5%) | NR | NR | NR | NR | 0 | |
Insulin added on to metformin-T2GDM | 90 | Throughout pregnancy | 30 (33.3%), p = 0.208 | NR | NR | NR | NR | 0 | |
Hod_2014 [57] | IDET + aspart | 152 | Delivery | 59 (46.1%) | NR | NR | 2 (1.4%) | NR | |
Insulin NPH + aspart | 158 | Delivery | 73 (53.7%) | 74 (0.46–1.21); p = 0.228 vs. IDET | NR | NR | 1 (0.7%) | NR | |
Observational | |||||||||
Kong_2020 [113] | Insulin | 4000 | NA | 1585 (39.6%) | NR | NR | NR | NR | NR |
Mathiesen 2020 [114] | IDET vs. other basal insulins | IDET-727, Other basal-730 | NR | NR | NR | NR | NR | IDET-6/741 (0.8%); Other basal-13/740 (1.8%) | Adjusted risk diff (95% CI): 0.002 (− 0.015, 0.02) |
Alexander_2019 [116] | CSII | 151 | NA | 38/73 (52%) | Association LGA and CSII: 2.08 (0.94–4.61); p = 0.07 | NR | NR | NR | NR |
Bartal_2020 [48] | Basal insulin analogues | 114 | NA | 30 (26.5%) | NA | NR | NR | 5 (4.4%) | NA |
Insulin NPH | 119 | NA | 29 (24.4%) | ARR: 1.56 (0.89–2.73); p = 0.70 | NR | NR | 2 (1.7%) | ARR: 1.89 (0.27–13.32); p = 0.37 | |
Smrz_2019 [119] | CSII vs. MDI | 117 | NR | CSII vs. MDI-57% vs. 49%; p = 0.370 vs. MDI | NR | NR | NR | NR | NR |
Abell_2017 [62] | MDI-glargine/detemir/NPH | 127 | Delivery | 52 (40.9%) | NR | NR | NR | 6 (6.9%) | NR |
CSII-aspart | 40 | Delivery | 21 (52.5%); p = 0.199 | NR | NR | NR | 1 (5.0%); p = 1.000 | NR | |
Billionnet_2017 [63] | Insulin-treated GDM | 16,108 | Delivery after 28 weeks | NR | NR | NR | NR | 0.35% | 1.0 (0.8; 1.4) |
14,633 | Delivery after 37 weeks | NR | NR | NR | NR | 0.21% | 1.3 (0.9; 1.9) | ||
Noninsulin-treated GDM | 41,275 | Delivery after 28 weeks | NR | NR | NR | NR | 0.36% | 1.1 (0.9; 1.3) | |
38,147 | Delivery after 37 weeks | NR | NR | NR | NR | 0.21% | 1.3 (1.1; 1.7) | ||
GDM-overall | 57,383 | Delivery after 28 weeks | NR | NR | NR | NR | 0.36% | 1.1 (0.9; 1.3) | |
52,780 | Delivery after 37 weeks | NR | NR | NR | NR | 0.21% | 1.3 (1.1; 1.6) | ||
No diabetes | 7,29,105 | Delivery after 28 weeks | NR | NR | NR | NR | 0.32% | NR | |
6,84,398 | Delivery after 37 weeks | NR | NR | NR | NR | 0.15% | NR | ||
Dalfra_2016 [124] | ILPS-GDM | 572 | NA | 16.60% | NR | 0.50% | NR | NR | NR |
NPH-GDM | 242 | NA | 19.4%; p = ns vs. ILPS-GDM | NR | 0.4%; p = ns vs. ILPS-GDM | NR | NR | NR | |
ILPS-pregestational T1DM | 58 | NA | 43.10% | NR | 3.40% | NR | NR | NR | |
NPH-pregestational T1DM | 61 | NA | 37.7%; p = ns vs. pregestational T1DM | NR | 1.6%; p = ns vs. pregestational T1DM | NR | NR | NR | |
Neff_2014 [61] | CSII-aspart | 40 | Delivery | 36% | NR | NR | NR | NR | NR |
MDI-aspart + NPH | 424 | Delivery | 20%; p = 0.03 | NR | NR | NR | NR | NR | |
Colatrella_2013 [126] | ILPS-T2DM | 7 | After treatment | 14.30% | NR | NR | NR | NR | NR |
ILPS-GDM | 46 | After treatment | 15.20% | NR | NR | NR | NR | NR | |
Insulin NPH- | 18 | After treatment | 22.20% | NR | NR | NR | NR | NR | |
Insulin NPH-GDM | 18 | After treatment | 22.20% | NR | NR | NR | NR | NR | |
Fresa_2013 [127] | Insulin lispro/aspart-CSII | 47 | NA | 20 (42.5%) | NR | NR | NR | NR | NR |
Insulin lispro/aspart-CSII (RT-CGM) | 18 | NA | 8 (44%) | NR | NR | NR | NR | NR | |
Bruttomesso_2011 [128] | CSII-rapid-acting insulin analog | 100 | Delivery | 46 (46%) | NR | NR | NR | NR | NR |
Glargine-MDI | 44 | Delivery | 20 (45.5%) | NR | NR | NR | NR | NR | |
Garcia-Dominguez_2011 [53] | Human insulin | 241 | Delivery | 91 (38.4%) | NR | 4 (1.7%) | NR | NR | NR |
Insulin analog | 86 | Delivery | 43 (50.0%); p = 0.061 vs. human insulin | NR | 1 (1.2%); p = 0.747 vs. human insulin | NR | NR | NR | |
Negrato_2010 [51] | Glargine + lispro-PGDM | 18 | NA | 9 (50%) | NA | NR | NR | 0 | NR |
NPH + lispro-PGDM | 38 | NA | 14 (37%) | RR: 1.35 (1.02–1.77); p > 0.05 vs. glargine-PGDM | NR | NR | 2 (6%); p = 0.028 vs. glargine-PGDM | NR | |
Glargine + lispro-GDM | 37 | NA | 13 (34%) | NA | NR | NR | 0 | NR | |
NPH + lispro-GDM | 45 | NA | 18 (40%) | RR: 0.87 (0.65–1.18); p > 0.05 vs. glargine-GDM | NR | NR | 0 | NR |
ARR adjusted relative risk, CGM continuous glucose monitor, CI confidence interval, CSII continuous subcutaneous insulin infusion, IDET insulin detemir, ILPS insulin lispro protamine suspension, LGA large for gestational age, MDI multiple daily injection, NA not applicable, NPH neutral protamine Hagedorn, NR not reported, OR odds ratio, PGDM pregestational diabetes mellitus, RCT randomized clinical trial, RR relative risk, RT real time, T1DM type 1 diabetes mellitus, T2DM type 2 diabetes mellitus
Evidence from Clinical Trials
A number of studies on women with GDM and pre-existing diabetes reported a numerically higher proportion of LGA in women treated with insulin compared to women treated with metformin [34, 36, 41, 56], with a significant difference (p = 0.001) reported by Eid et al. [34]. In an RCT, Hod et al. compared insulin detemir with NPH in pregnant women diagnosed with diabetes and reported a significantly higher rate of LGA in the group treated with insulin NPH compared to the group treated with insulin detemir [57]. Other RCTs by Ainuddin et al. and Mukopadhyay et al. reported a lower proportion of LGA in women treated with basal/bolus insulin compared to metformin + insulin and glibenclamide, respectively [44, 58]. In another RCT, Somani et al. compared stillbirth in women treated with insulin (regular or NPH or both) versus metformin. This trial reported one case of stillbirth in the insulin-treated group compared to no stillbirth in the metformin group (p = 0.32) [26].
Evidence from Observational Studies
In women diagnosed with GDM, three retrospective cohort studies by Koren et al., Castillo et al. and Hedderson et al. compared insulin versus glyburide and reported no substantial differences in the proportion of LGA in between the treatment groups [55, 59, 60]. However, other retrospective analyses by Simeonova-Krstevska et al., Benhalima et al. and Bogdanet et al. reported a significantly higher proportion of LGA in the insulin-treated group compared to diet/MNT and metformin (p < 0.0001–p < 0.05) [28, 32, 46]. In women diagnosed with diabetes prior to pregnancy, one retrospective database review by Neff et al. reported a significantly higher rate of delivery of LGA in mothers treated with CSII-aspart and NPH compared to those treated using MDI-aspart and NPH (p = 0.03) [61]. Most of the studies did not report stillbirth, with only five studies reporting this outcome. Perinatal mortality among women with pre-existing diabetes was reported in retrospective studies by Bartal et al., Abell et al. and Billionnet et al., and no differences across the treatment arms were observed [48, 62, 63]. However, in a prospective cohort study by Negrato et al., a significantly higher rate of perinatal mortality (p = 0.028) in pregnant women diagnosed with diabetes prior to pregnancy was reported among NPH-treated women compared to those treated with glargine [51].
Discussion
We conducted an SLR that assessed the paradigm of reported insulin use in pregnant women with diabetes, as well as the outcomes, including recommended clinical parameters related to glycemic control as part of their treatment goals and maternal and fetal outcomes. The wide variety in outcomes of interest when comparing insulin use with other anti-diabetic agents across the included studies makes it extremely difficult and potentially misleading to summarize findings and make management recommendations, illustrating the need for standardization of study design with consistent glycemic and maternal/fetal efficacy outcomes to evaluate the use of glucose-lowering medications in pregnancy.
Glycemic outcomes of interest were reported in 27 clinical trials and 32 observational studies. Notably, while 1-h and 2-h PPGs are the recommended treatment goals in patients with GDM, many of the studies captured in this review focused on HbA1c as a primary outcome measure. Furthermore, compared to the non-pregnant population, there are very few well-powered RCTs evaluating insulin use in pregnancy. Ji et al. published a well-designed RCT in 2020 showing that in pregnant women diagnosed with diabetes prior to pregnancy, a significant improvement in PPG and TIR was observed among those treated with detemir compared with insulin NPH as basal insulin. Both groups received the short-acting human insulin three times a day before the meals [27]. These results increase the options for women requiring basal insulin therapy for diabetes management in pregnancy [27]. Use of continuous glucose monitoring (CGM) was also observed to be effective in improving glycemic range metrics in women treated with insulin. However, at the time of this SLR there was limited evidence to draw a conclusive statement on the impact of CGM role in improving glycemic outcomes for diabetes in pregnancy. Overall, there was no clear consensus between the study outcomes and use of various intervention types and regimens. The quality of the included studies was assessed, and they were found to be low on evidence with high risk of bias. Therefore, we could not conclude which intervention type or regimen was best for pregnant women with diabetes.
Maternal outcomes such as hypoglycemia, preeclampsia, cesarean delivery, preterm delivery and induced labor were reported in 18 RCTs, which may be due to the difficulty in collecting these outcome measures. They were reported more frequently in studies designed to compare an insulin regimen to another regimen such as in women treated with insulin versus those treated with metformin, diet/MNT and other anti-diabetic agents [20, 28, 32, 40, 45, 46, 64]. Most of the studies included in this review used insulin therapy as the last option of treatment, after the failure of nutritional therapy or in association with other drug interventions such as metformin and/or sulfonylureas. This suggests that these patients could have had more severe insulin resistance and/or deficiency than the other patients, and this would likely confound glycemic, maternal and fetal outcomes. Heterogeneity was observed across maternal outcomes among the studies, including rates of cesarean delivery, gestational age at delivery and induction of labor. The plausible reason for heterogeneity could be due to various ethnic groups, study designs, treatment requirements and selection criteria.
The most common fetal complication reported across the included studies for any type of diabetes during pregnancy was LGA, confirming that these patients were mostly in hyperglycemic state, a common cause of LGA. Other common neonatal outcomes observed, commonly associated with LGA and the mother’s hyperglycemia, included the rate of complications such as preterm birth and neonatal hypoglycemia. Across studies covered in this review, insulin was associated with fewer cases of LGA only compared with glibenclamide, as observed in a study by Mukopadhyay et al. that compared insulin and glibenclamide for treatment of GDM [58]. In accordance with another meta-analysis, women treated with glibenclamide reported the highest incidence of LGA, preeclampsia, neonatal hypoglycemia and preterm birth; metformin (plus insulin when required) had the lowest risk of macrosomia, pregnancy hypertension, LGA, preterm birth and low birth weight [65]. Overall, there was no clear evidence of the risk of delivery of LGA in those born of mothers with diabetes treated with insulin versus other oral anti-diabetic agents. Based on the current results, it is difficult to make a conclusive affirmation of the most effective form of treatment to reduce incidence of neonatal complications in pregnant women with diabetes.
Across the included studies, treatments with metformin and diet/MNT were associated with better clinical, maternal and fetal outcomes than those treated with insulin therapy. However, the studies did not provide enough evidence on whether insulin can help achieve improved outcomes compared with other therapies. Overall, the quality of the evidence of RCTs ranged from low to moderate, whereas for observational studies the quality ranged from low to good. A variety of methods was used to diagnose GDM in the included studies. Furthermore, it is difficult to draw conclusions about the optimal approach to treatment of diabetes in pregnancy because of inconsistencies in the criteria for management of glucose targets, patient adherence to treatment, clinical outcome measures across studies and lack of long-term safety data.
The current SLR included clinical trials and observational studies with diverse populations and treatment arms. Some studies lacked appropriate sample size, and many studies utilized a variety of methods for diagnosis of GDM. Data on pregnant women diagnosed with diabetes prior to pregnancy were very limited. Furthermore, high-quality studies are needed to identify the optimal treatment regimens for women with diabetes in pregnancy who are treated with insulin.
There were clear limitations to the current SLR. With limited evidence and meta-analyses, the included studies did not provide sufficient evidence to identify clear differences between the various insulin types and regimens. Most of the included studies did not adjust for other potential confounding factors such as maternal age, educational status, income, ethnicity and other factors that might influence the results; therefore, findings should be interpreted with caution. This SLR included clinical trials and observational studies with varied populations and treatment arms. For some studies, sample size was small, and many studies did not report statistical tests for significance. In the included studies, there was no consensus on the types of outcome measures reported in pregnant women with diabetes. Most of the studies reported that there was no evidence of clear-cut benefit of one intervention type or regimen over the other. Hence, no firm conclusions or management recommendations could be made about different insulin types and regimens in pregnant women with diabetes. Future trials are required that are multi-centered, randomized, well-powered and of improved methodological quality with standardization of glycemic and maternal/fetal efficacy outcome measures. Furthermore, more research is warranted with larger groups of pregnant women, with transparent reporting of how the trials were conducted, and that reports clinical, maternal and fetal outcomes.
Conclusion
In summary, the findings of this review were comparable to the existing reviews evaluating treatment of diabetes in pregnancy. There is a tremendous paucity of well-designed RCTs and no consensus for the study design and definition of diabetes in pregnancy in the existing literature. We identified a variety of definitions being used that did not always overlap. We observed that the lack of standard diagnosis also results in a diversity of outcomes that are used in clinical practice to evaluate optimal medical management in pregnant women with diabetes. It would be helpful for the practitioners and patient populations if the outcomes were consistently defined and reported globally. According to the ADA Management of Diabetes in Pregnancy guidelines, the standard treatment goals for pregnant women with diabetes are aimed at maintaining target blood glucose levels (fasting glucose 70–95 mg/dl [3.9–5.3 mmol/l], 1-h postprandial glucose 110–140 mg/dl [6.1–7.8 mmol/l] and/or 2-h postprandial glucose 100–120 mg/dl [5.6–6.7 mmol/l]) to prevent maternal and fetal complications, achieved through stringent glucose monitoring and insulin therapy [11]. However, the universal adoption of these recommendations in the real-world is limited, as we identified in the observational studies analyzed, and some misalignment still exists in randomized clinical trials as well. This makes identifying any real-world association of the effectiveness of insulin in maternal and fetal outcomes difficult. With the increased access to CGM, the collection of glycemic values will increase, and more glycemic outcome data will be generated. However, this will require a more standardized approach, especially without a clear consensus on clinically relevant CGM metrics for GDM and T2D.
Conducting well-designed RCTs to evaluate the efficacy of various insulins or insulin regimens in this unique population remains an area that requires specialized attention. There is a need to be better aligned on clinical endpoints to study pregnant populations to delineate what treatment or therapies unequivocally demonstrate improvement in maternal and neonatal outcomes, especially with introduction of innovative insulin formulations and improved technologies that evaluate glucose management.
Supplementary Information
Below is the link to the electronic supplementary material.
Acknowledgments
Medical Writing and Editorial Assistance
Medical writing and editorial assistance was provided by Mythili Ananth and Era Seth, employees of Eli Lilly Services India Private Limited.
Authorship
All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.
Author Contributions
Beatrice Osumili, Theophilus Lakiang, Carolina Piras De Oliveira, and Kristin Castorino contributed to the conception and design of the study. Beatrice Osumili, Theophilus Lakiang, Carolina Piras De Oliveira, and Kushal Kumar Banerjee were involved in data collection. All authors Goldyn contributed to the interpretation of study results, provided critical revisions, and have read and approved the final version of the manuscript.
Funding
This research and the journal’s Rapid Service Fee was funded by Eli Lilly and Company, Indianapolis, IN.
Declarations
Conflict of Interest
Beatrice Osumili, Kushal Kumar Banerjee, Andrea Goldyn, and Carolina Piras De Oliveira are full-time employees and shareholders of Eli Lilly and Company. Theophilus Lakiang was an employee of Eli Lilly and Company at the time this research was conducted and is currently an employee of GE Healthcare. Kristin Castorino receives research support provided to her institution from Dexcom, Abbott, Medtronic, Novonordisk, Ely Lilly, and Insulet and consulting fees from Dexcom. Theophilus Lakiang: Author affiliation has changed since the time this research was conducted. Assigned affiliation is the institution of employment at the time this research was conducted.
Ethical Approval
This article is based on previously conducted studies and does not contain any studies with human participants or animals.
References
- 1.Metzger BE. Proceedings of the fourth international workshop conference on gestational diabetes mellitus. Diabetes Care. 1998;21(2):B1–B167. [PubMed] [Google Scholar]
- 2.Hunt KJ, Schuller KL. The increasing prevalence of diabetes in pregnancy. Obstet Gynecol Clin North Am. 2007;34(2):173–199. doi: 10.1016/j.ogc.2007.03.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.CDC. Diabetes During Pregnancy. Centers for Disease Control and Prevention. 2018. https://www.cdc.gov/diabetes/basics/gestational.html#:~:text=Gestational%20diabetes%20is%20a%20type,pregnancy%20and%20a%20healthy%20baby
- 4.Association AD. Gestational diabetes mellitus. Diabetes Care. 2004;27(suppl 1):s88–s90. doi: 10.2337/diacare.27.2007.S88. [DOI] [PubMed] [Google Scholar]
- 5.Tyrala EE. The infant of the diabetic mother. Obstet Gynecol Clin. 1996;23(1):221–241. doi: 10.1016/S0889-8545(05)70253-9. [DOI] [PubMed] [Google Scholar]
- 6.Pollex E, Moretti ME, Koren G, Feig DS. Safety of insulin glargine use in pregnancy: a systematic review and meta-analysis. Ann Pharmacother. 2011;45(1):9–16. doi: 10.1345/aph.1P327. [DOI] [PubMed] [Google Scholar]
- 7.Serlin DC, Lash RW. Diagnosis and management of gestational diabetes mellitus. (0002-838X (Print)). [PubMed]
- 8.Pantea-Stoian A, Stoica RA, Stefan SD. Insulin therapy in gestational diabetes. Gestational diabetes mellitus—an overview with some recent advances. London: IntechOpen; 2019. [Google Scholar]
- 9.Bulletins-Obstetrics C. ACOG practice bulletin no. 190: gestational diabetes mellitus. Obstet Gynecol. 2018;131(2):e49–e64. doi: 10.1097/AOG.0000000000002501. [DOI] [PubMed] [Google Scholar]
- 10.Cho N, Shaw J, Karuranga S, Huang YD, da Rocha Fernandes J, Ohlrogge A, et al. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271–281. doi: 10.1016/j.diabres.2018.02.023. [DOI] [PubMed] [Google Scholar]
- 11.ElSayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. 15. Management of diabetes in pregnancy: standards of care in diabetes—2023. Diabetes Care. 2023;46(Supplement_1):S254–S266. doi: 10.2337/dc23-S015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Wilson LM, Castle JR. Recent advances in insulin therapy. Diabetes Technol Ther. 2020;22(12):929–936. doi: 10.1089/dia.2020.0065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Oude Rengerink K, Logtenberg S, Hooft L, Bossuyt PM, Mol BW. Pregnant womens’ concerns when invited to a randomized trial: a qualitative case control study. BMC Pregnancy Childbirth. 2015;15(1):1–11. doi: 10.1186/s12884-015-0641-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med. 2015;162(11):777–784. doi: 10.7326/M14-2385. [DOI] [PubMed] [Google Scholar]
- 16.Dissemination C. Systematic reviews: CRD's guidance for undertaking reviews in healthcare. York: University of York NHS Centre for Reviews & Dissemination; 2009. [Google Scholar]
- 17.Higgins J. Cochrane handbook for systematic reviews of interventions. Version 5.1. 0 [updated March 2011]. The Cochrane Collaboration. http://www.cochrane-handbook.org. 2011.
- 18.NICE. Appendix C: methodology checklist: randomised controlled trials. 2019. https://www.nice.org.uk/process/pmg6/resources/the-guidelines-manual-appendices-bi-2549703709/chapter/appendix-c-methodology-checklist-randomised-controlled-trials. Accessed on Sept 2020.
- 19.The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2019. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed on Sept 2020.
- 20.Galal M, El Bassiou WM, Sherif L. Metformin versus insulin in treatment of gestational diabetes mellitus: a randomized controlled trial. Res J Obstet Gynecol. 2019;12(1):23–27. doi: 10.3923/rjog.2019.23.27. [DOI] [Google Scholar]
- 21.Wasim T, Shaukat S, Javaid L, Mukhtar S, Amer WJ. Comparison of metformin and insulin for management of gestational diabetes mellitus: a randomized control trial. Pak J Med Sci. 2019;13:823–827. [Google Scholar]
- 22.Ashoush S, El-Said M, Fathi H, Abdelnaby M. Identification of metformin poor responders, requiring supplemental insulin, during randomization of metformin versus insulin for the control of gestational diabetes mellitus. J Obstet Gynaecol Res. 2016;42(6):640–647. doi: 10.1111/jog.12950. [DOI] [PubMed] [Google Scholar]
- 23.Zawiejska A, Wender-Ozegowska E, Grewling-Szmit K, Brazert M, Brazert Short-term antidiabetic treatment with insulin or metformin has a similar impact on the components of metabolic syndrome in women with gestational diabetes mellitus requiring antidiabetic agents: Results of a prospective, randomised study. J Physiol Pharmacol. 2016;67(2):227–233. [PubMed] [Google Scholar]
- 24.Khan R, Mukhtar A, Khawar A. Comparison of metformin with insulin in the management of gestational diabetes. Med Forum Mon. 2017;28(11):105–109. [Google Scholar]
- 25.Arshad R, Karim N, Ara HJ. Effects of insulin on placental, fetal and maternal outcomes in gestational diabetes mellitus. Pak J Med Sci. 2014;30(2):240–244. doi: 10.12669/pjms.302.4396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Subhash Somani P, Kumar Sahana P, Chaudhuri P, Sengupta N. Treatment of gestational diabetes mellitus: insulin or metformin? J Evol Med Dent Sci. 2016;5(63):4423–4429. doi: 10.14260/jemds/2016/1011. [DOI] [Google Scholar]
- 27.Ji J, He Z, Yang Z, Mi Y, Guo N, Zhao H, et al. Comparing the efficacy and safety of insulin detemir versus neutral protamine Hagedorn insulin in treatment of diabetes during pregnancy: a randomized, controlled study. BMJ Open Diabetes Res Care. 2020;8(1). [DOI] [PMC free article] [PubMed]
- 28.Simeonova-Krstevska S, Bogoev M, Bogoeva K, Zisovska E, Samardziski I, Velkoska-Nakova V, et al. Maternal and neonatal outcomes in pregnant women with gestational diabetes mellitus treated with diet, metformin or insulin. Open Access Maced J Med Sci. 2018;6(5):803–807. doi: 10.3889/oamjms.2018.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Ozgu-Erdinc AS, Iskender C, Uygur D, Oksuzoglu A, Seckin KD, Yeral MI, et al. One-hour versus two-hour postprandial blood glucose measurement in women with gestational diabetes mellitus: which is more predictive? Endocrine. 2016;52(3):561–570. doi: 10.1007/s12020-015-0813-5. [DOI] [PubMed] [Google Scholar]
- 30.Yanagisawa K, Muraoka M, Takagi K, Ichimura Y, Kambara M, Sato A, et al. Assessment of predictors of insulin therapy in patients with gestational diabetes diagnosed according to the IADPSG criteria. Diabetol Int. 2016;7(4):440–446. doi: 10.1007/s13340-016-0272-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Tang L, Xu S, Li P, Li L. Predictors of insulin treatment during pregnancy and abnormal postpartum glucose metabolism in patients with gestational diabetes mellitus. Diabetes Metab Syndr Obes. 2019;12:2655–2665. doi: 10.2147/DMSO.S233554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Benhalima K, Robyns K, Van Crombrugge P, Deprez N, Seynhave B, Devlieger R, et al. Differences in pregnancy outcomes and characteristics between insulin- and diet-treated women with gestational diabetes. BMC Pregnancy Childbirth. 2015;15:271. doi: 10.1186/s12884-015-0706-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Ghomian N, Vahed SHM, Firouz S, Yaghoubi MA, Mohebbi M, Sahebkar A. The efficacy of metformin compared with insulin in regulating blood glucose levels during gestational diabetes mellitus: a randomized clinical trial. J Cell Physiol. 2019;234(4):4695–4701. doi: 10.1002/jcp.27238. [DOI] [PubMed] [Google Scholar]
- 34.Eid SR, Moustafa RSI, Salah MM, Hanafy SK, Aly RH, Mostafa WFG, et al. Is metformin a viable alternative to insulin in the treatment of gestational diabetes mellitus (GDM)? Comparison of maternal and neonatal outcomes. Egypt Pediatr Assoc Gazette. 2018;66(1):15–21. doi: 10.1016/j.epag.2018.01.002. [DOI] [Google Scholar]
- 35.Hamadani A, Zahid S, Butt ZB. Metformin versus insulin treatment in gestational diabetes in pregnancy and their effects on neonatal birthweight. Pak J Med Sci. 2017;11:914–916. [Google Scholar]
- 36.Ainuddin J, Karim N, Hasan AA, Naqvi SA. Metformin versus insulin treatment in gestational diabetes in pregnancy in a developing country: a randomized control trial. Diabetes Res Clin Pract. 2015;107(2):290–299. doi: 10.1016/j.diabres.2014.10.001. [DOI] [PubMed] [Google Scholar]
- 37.Ruholamin S, Eshaghian S, Allame Z. Neonatal outcomes in women with gestational diabetes mellitus treated with metformin in compare with insulin: a randomized clinical trial. J Res Med Sci. 2014;19(10):970. [PMC free article] [PubMed] [Google Scholar]
- 38.Tertti K, Ekblad U, Koskinen P, Vahlberg T, Ronnemaa T. Metformin vs. insulin in gestational diabetes. A randomized study characterizing metformin patients needing additional insulin. Diabetes Obes Metab. 2013;15(3):246–251. doi: 10.1111/dom.12017. [DOI] [PubMed] [Google Scholar]
- 39.Niromanesh S, Alavi A, Sharbaf FR, Amjadi N, Moosavi S, Akbari S. Metformin compared with insulin in the management of gestational diabetes mellitus: a randomized clinical trial. Diabetes Res Clin Pract. 2012;98(3):422–429. doi: 10.1016/j.diabres.2012.09.031. [DOI] [PubMed] [Google Scholar]
- 40.Hassan JA, Karim N, Sheikh Z. Metformin prevents macrosomia and neonatal morbidity in gestational diabetes. J Pak J Med Sci. 2012;28(3):384–389. [Google Scholar]
- 41.Ijas H, Vaarasmaki M, Morin-Papunen L, Keravuo R, Ebeling T, Saarela T, et al. Metformin should be considered in the treatment of gestational diabetes: a prospective randomised study. BJOG. 2011;118(7):880–885. doi: 10.1111/j.1471-0528.2010.02763.x. [DOI] [PubMed] [Google Scholar]
- 42.Mirzamoradi M, Heidar Z, Faalpoor Z, Naeiji Z, Jamali R. Comparison of glyburide and insulin in women with gestational diabetes mellitus and associated perinatal outcome: a randomized clinical trial. Acta Med Iran. 2015;53:97–103. [PubMed] [Google Scholar]
- 43.Huhtala MS, Tertti K, Pellonpera O, Ronnemaa T. Amino acid profile in women with gestational diabetes mellitus treated with metformin or insulin. Diabetes Res Clin Pract. 2018;146:8–17. doi: 10.1016/j.diabres.2018.09.014. [DOI] [PubMed] [Google Scholar]
- 44.Ainuddin JA, Karim N, Zaheer S, Ali SS, Hasan AA. Metformin treatment in type 2 diabetes in pregnancy: an active controlled, parallel-group, randomized, open label study in patients with type 2 diabetes in pregnancy. J Diabetes Res. 2015;2015:325851. doi: 10.1155/2015/325851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Varghese R, Thomas B, Hail MA, Rauf A, Sadi MA, Sualiti AA, et al. The prevalence, risk factors, maternal and fetal outcomes in gestational diabetes mellitus. J Int J Drug Dev Res. 2012;4(3):356–368. [Google Scholar]
- 46.Bogdanet D, Egan A, Reddin C, Kirwan B, Carmody L, Dunne F. ATLANTIC DIP: despite insulin therapy in women with IADPSG diagnosed GDM, desired pregnancy outcomes are still not achieved. What are we missing? Diabetes Res Clin Pract. 2018;136:116–123. doi: 10.1016/j.diabres.2017.12.003. [DOI] [PubMed] [Google Scholar]
- 47.Donovan LE, Boyle SL, McNeil DA, Pedersen SD, Dean SR, Wood S, et al. Label of gestational diabetes mellitus affects caesarean section and neonatal intensive care unit admission without conventional indications. Can J Diabetes. 2012;36(2):58–63. doi: 10.1016/j.jcjd.2012.01.003. [DOI] [Google Scholar]
- 48.Fishel Bartal M, Ward C, Refuerzo JS, Ashimi SS, Joycelyn CA, Chen HY, et al. Basal insulin analogs versus neutral protamine Hagedorn for type 2 diabetics. Am J Perinatol. 2020;37(1):30–36. doi: 10.1055/s-0039-1694733. [DOI] [PubMed] [Google Scholar]
- 49.Landi SN, Radke S, Boggess K, Engel SM, Sturmer T, Howe AS, et al. Comparative effectiveness of metformin versus insulin for gestational diabetes in New Zealand. Pharmacoepidemiol Drug Saf. 2019;28(12):1609–1619. doi: 10.1002/pds.4907. [DOI] [PubMed] [Google Scholar]
- 50.Morais Rodrigues I, Figueiredo A, Pereira N, Amaral N, Pratas S, Valadas C, et al. Metformin as a safe option to insulin in gestational diabetes mellitus: a retrospective study. SN Compr Clin Med. 2020;2(3):272–277. doi: 10.1007/s42399-020-00229-9. [DOI] [Google Scholar]
- 51.Negrato CA, Rafacho A, Negrato G, Teixeira MF, Araujo CA, Vieira L, et al. Glargine vs. NPH insulin therapy in pregnancies complicated by diabetes: an observational cohort study. Diabetes Res Clin Pract. 2010;89(1):46–51. doi: 10.1016/j.diabres.2010.03.015. [DOI] [PubMed] [Google Scholar]
- 52.Hickman MA, McBride R, Boggess KA, Strauss R. Metformin compared with insulin in the treatment of pregnant women with overt diabetes: a randomized controlled trial. Am J Perinatol. 2013;30(6):483–490. doi: 10.1055/s-0032-1326994. [DOI] [PubMed] [Google Scholar]
- 53.Garcia-Dominguez M, Herranz L, Hillman N, Martin-Vaquero P, Janez M, Moya-Chimenti E, et al. Use of insulin lispro during pregnancy in women with pregestational diabetes mellitus. Med Clin (Barc) 2011;137(13):581–586. doi: 10.1016/j.medcli.2010.11.021. [DOI] [PubMed] [Google Scholar]
- 54.Senat MV, Affres H, Letourneau A, Coustols-Valat M, Cazaubiel M, Legardeur H, et al. Effect of glyburide vs subcutaneous insulin on perinatal complications among women with gestational diabetes: a randomized clinical trial. JAMA. 2018;319(17):1773–1780. doi: 10.1001/jama.2018.4072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Koren R, Ashwal E, Hod M, Toledano Y. Insulin detemir versus glyburide in women with gestational diabetes mellitus. Gynecol Endocrinol. 2016;32(11):916–919. doi: 10.1080/09513590.2016.1209479. [DOI] [PubMed] [Google Scholar]
- 56.Mesdaghinia E, Samimi M, Homaei Z, Saberi F, Moosavi SGA, Yaribakht M. Comparison of newborn outcomes in women with gestational diabetes mellitus treated with metformin or insulin: a randomised blinded trial. Int J Prev Med. 2013;4(3):327. [PMC free article] [PubMed] [Google Scholar]
- 57.Hod M, Mathiesen ER, Jovanovic L, McCance DR, Ivanisevic M, Duran-Garcia S, et al. A randomized trial comparing perinatal outcomes using insulin detemir or neutral protamine Hagedorn in type 1 diabetes. J Matern Fetal Neonatal Med. 2014;27(1):7–13. doi: 10.3109/14767058.2013.799650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Mukhopadhyay P, Bag TS, Kyal A, Saha DP, Khalid N. Oral hypoglycemic glibenclamide: can it be a substitute to insulin in the management of gestational diabetes mellitus? A comparative study. J South Asian Fed Obstet Gynaecol. 2012;4(1):28–31. doi: 10.5005/jp-journals-10006-1167. [DOI] [Google Scholar]
- 59.Camelo Castillo W, Boggess K, Sturmer T, Brookhart MA, Benjamin DK, Jr, Jonsson FM. Association of adverse pregnancy outcomes with glyburide vs insulin in women with gestational diabetes. JAMA Pediatr. 2015;169(5):452–458. doi: 10.1001/jamapediatrics.2015.74. [DOI] [PubMed] [Google Scholar]
- 60.Hedderson MM, Xu F, Neugebauer R, Ferrara A. Pharmacoepodemiology and drug safety. Hoboken: Wiley; 2018. editors. Glyburide versus insulin for the treatment of women with gestational diabetes in Kaiser Permanente Northern California. [Google Scholar]
- 61.Neff KJ, Forde R, Gavin C, Byrne MM, Firth RG, Daly S, et al. Pre-pregnancy care and pregnancy outcomes in type 1 diabetes mellitus: a comparison of continuous subcutaneous insulin infusion and multiple daily injection therapy. Ir J Med Sci. 2014;183(3):397–403. doi: 10.1007/s11845-013-1027-6. [DOI] [PubMed] [Google Scholar]
- 62.Abell SK, Suen M, Pease A, Boyle JA, Soldatos G, Regan J, et al. Pregnancy outcomes and insulin requirements in women with type 1 diabetes treated with continuous subcutaneous insulin infusion and multiple daily injections: cohort study. Diabetes Technol Ther. 2017;19(5):280–287. doi: 10.1089/dia.2016.0412. [DOI] [PubMed] [Google Scholar]
- 63.Billionnet C, Mitanchez D, Weill A, Nizard J, Alla F, Hartemann A, et al. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia. 2017;60(4):636–644. doi: 10.1007/s00125-017-4206-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Koivunen S, Kajantie E, Torkki A, Bloigu A, Gissler M, Pouta A, et al. The changing face of gestational diabetes: the effect of the shift from risk factor-based to comprehensive screening. Eur J Endocrinol. 2015;173(5):623–632. doi: 10.1530/EJE-15-0294. [DOI] [PubMed] [Google Scholar]
- 65.Liang H-L, Ma S-J, Xiao Y-N, Tan H-Z. Comparative efficacy and safety of oral antidiabetic drugs and insulin in treating gestational diabetes mellitus: an updated PRISMA-compliant network meta-analysis. Medicine. 2017;96(38):e7939. doi: 10.1097/MD.0000000000007939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Das V, Priyanka Y, Smriti A, Anjoo A, Namrata K. Oral/free communication session abstracts. 2018;143(S3):158–542.
- 67.Behrashi M, Samimi M, Ghasemi T, Saberi F, Atoof F. Comparison of glibenclamide and insulin on neonatal outcomes in pregnant women with gestational diabetes. Int J Prev Med. 2016;7:88–88. doi: 10.4103/2008-7802.184502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Spaulonci CP, Bernardes LS, Trindade TC, Zugaib M, Francisco RP. Randomized trial of metformin vs insulin in the management of gestational diabetes. Am J Obstet Gynecol. 2013;209(1):34. doi: 10.1016/j.ajog.2013.03.022. [DOI] [PubMed] [Google Scholar]
- 69.Balaji V, Balaji MS, Alexander C, et al. Premixed insulin aspart 30 (BIAsp 30) versus premixed human insulin 30 (BHI 30) in gestational diabetes mellitus: a randomized open-label controlled study. Gynecol Endocrinol. 2012;28(7):529–532. doi: 10.3109/09513590.2011.650661. [DOI] [PubMed] [Google Scholar]
- 70.Herrera KM, Rosenn BM, Foroutan J, et al. Randomized controlled trial of insulin detemir versus NPH for the treatment of pregnant women with diabetes. Am J Obstet Gynecol. 2015;213(3):426. doi: 10.1016/j.ajog.2015.06.010. [DOI] [PubMed] [Google Scholar]
- 71.Refuerzo JS, Gowen R, Pedroza C, Hutchinson M, Blackwell SC, Ramin S. A pilot randomized, controlled trial of metformin versus insulin in women with type 2 diabetes mellitus during pregnancy. Am J Perinatol. 2015;30(2):163–170. doi: 10.1055/s-0034-1378144. [DOI] [PubMed] [Google Scholar]
- 72.Han D, Lu B, Pang Z. Efficacy of metformin combined with insulin lispro on gestational diabetes and effects on serum miR-16. Int J Clin Exp Med. 2020;13(3):1728–1735. [Google Scholar]
- 73.Krishnakumar S, Govindarajulu Y, Vishwanath U, Nagasubramanian VR, Palani T. Impact of patient education on KAP, medication adherence and therapeutic outcomes of metformin versus insulin therapy in patients with gestational diabetes: a hospital based pilot study in South India. Diabetes Metab Syndr. 2020;14(5):1379–1383. doi: 10.1016/j.dsx.2020.07.026. [DOI] [PubMed] [Google Scholar]
- 74.Osuagwu UL, Fuka F, Agho K, Khan A, Simmons D. Adverse maternal outcomes of Fijian women with gestational diabetes mellitus and the associated risk factors. Reprod Sci. 2020;27(11):2029–2037. doi: 10.1007/s43032-020-00222-6. [DOI] [PubMed] [Google Scholar]
- 75.Zaharieva D, Krishnamurthy B, Teng J, et al. Assessment of glycaemia by fingerstick blood glucose monitoring may underestimate the requirement for insulin to address elevated nocturnal glucose levels in women with GDM. Paper presented at: Diabetes Technology and Therapeutics, 2020.
- 76.Cade TJ, Polyakov A, Brennecke SP. Implications of the introduction of new criteria for the diagnosis of gestational diabetes: a health outcome and cost of care analysis. BMJ Open. 2019;9(1):e023293. doi: 10.1136/bmjopen-2018-023293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Meghelli L, Vambergue A, Drumez E, Deruelle P. Complications of pregnancy in morbidly obese patients: what is the impact of gestational diabetes mellitus? J Gynecol Obstet Hum Reprod. 2020;49(1):101628. doi: 10.1016/j.jogoh.2019.101628. [DOI] [PubMed] [Google Scholar]
- 78.Munn AJ, Hersh AR, Vinson AR, Brennan TD, Valent AM, Caughey AB. 492: Neonatal outcomes in gestational diabetes managed with insulin vs. glyburide therapy: a cost-effectiveness analysis. Am J Obstet Gynecol. 2019;220(1):S330. doi: 10.1016/j.ajog.2018.11.514. [DOI] [Google Scholar]
- 79.Ng A, Liu A, Nanan R. Association between insulin and post-caesarean resuscitation rates in infants of women with GDM: a retrospective study. J Diabetes. 2019;12(2):151–157. doi: 10.1111/1753-0407.12974. [DOI] [PubMed] [Google Scholar]
- 80.Christian SJ, Boama V, Satti H, et al. Metformin or insulin: logical treatment in women with gestational diabetes in the Middle East, our experience. BMC Res Notes. 2018;11(1):426. doi: 10.1186/s13104-018-3540-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Leung A, Yu G, Smith L. 993: Adverse pregnancy outcomes with glyburide vs insulin among patients with gestational diabetes established by the International Association of Diabetes and Pregnancy Study Group (IADPSG) Am J Obstet Gynecol. 2018;218(1):S586. doi: 10.1016/j.ajog.2017.11.530. [DOI] [Google Scholar]
- 82.McGrath RT, Glastras SJ, Scott ES, Hocking SL, Fulcher GR. Outcomes for women with gestational diabetes treated with metformin: a retrospective, case–control study. J Clin Med. 2018;7(3):50. doi: 10.3390/jcm7030050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Meregaglia M, Dainelli L, Banks H, Benedetto C, Detzel P, Fattore G. The short-term economic burden of gestational diabetes mellitus in Italy. BMC Pregnancy Childbirth. 2018;18(1):58. doi: 10.1186/s12884-018-1689-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Patanjali CP, Ayyar V, Bantwal G, George B, Perumal N. Maternal and neonatal outcomes in gestational diabetes treated with metformin. Indian J Endocrinol Metab. 2018;22:S44. [Google Scholar]
- 85.Rowan JA, Rush EC, Plank LD, et al. Metformin in gestational diabetes: the offspring follow-up (MiG TOFU): body composition and metabolic outcomes at 7–9 years of age. BMJ Open Diabetes Res Care. 2018;6(1):e000456. doi: 10.1136/bmjdrc-2017-000456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Vanlalhruaii, Dasgupta R, Ramachandran R, et al. How safe is metformin when initiated in early pregnancy? A retrospective 5-year study of pregnant women with gestational diabetes mellitus from India. Diabetes Res Clin Pract. 2018;137:47–55. doi: 10.1016/j.diabres.2018.01.002. [DOI] [PubMed] [Google Scholar]
- 87.Bowker SL, Savu A, Yeung RO, Johnson JA, Ryan EA, Kaul P. Patterns of glucose-lowering therapies and neonatal outcomes in the treatment of gestational diabetes in Canada, 2009–2014. Diabet Med. 2017;34(9):1296–1302. doi: 10.1111/dme.13394. [DOI] [PubMed] [Google Scholar]
- 88.Gibbons A, Flatley C, Kumar S. Cerebroplacental ratio in pregnancies complicated by gestational diabetes mellitus. Ultrasound Obstet Gynecol. 2017;50(2):200–206. doi: 10.1002/uog.17242. [DOI] [PubMed] [Google Scholar]
- 89.Olmos PR, Borzone GR. Basal-bolus insulin therapy reduces maternal triglycerides in gestational diabetes without modifying cholesteryl ester transfer protein activity. J Obstet Gynaecol Res. 2017;43(9):1397–1404. doi: 10.1111/jog.13403. [DOI] [PubMed] [Google Scholar]
- 90.Xie J, Dai L, Tang X. The comparison of the safety and effectiveness of multiple insulin injections and insulin pump therapy in treating gestational diabetes. Biomed Res. 2017;28(18):7830–7833. [Google Scholar]
- 91.Fazel-Sarjoui Z, Namin AK, Kamali M, Namin NK, Tajik A. Complications in neonates of mothers with gestational diabetes mellitus receiving insulin therapy versus dietary regime. Int J Reprod BioMed. 2016;14(4):275. [PMC free article] [PubMed] [Google Scholar]
- 92.Ito Y, Shibuya M, Hosokawa S, et al. Indicators of the need for insulin treatment and the effect of treatment for gestational diabetes on pregnancy outcomes in Japan. Endocr J. 2016;63(3):231–237. doi: 10.1507/endocrj.EJ15-0427. [DOI] [PubMed] [Google Scholar]
- 93.Koning SH, Hoogenberg K, Scheuneman KA, et al. Neonatal and obstetric outcomes in diet- and insulin-treated women with gestational diabetes mellitus: a retrospective study. BMC Endocr Disord. 2016;16(1):52. doi: 10.1186/s12902-016-0136-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Saleem N, Godman B, Hussain S. Comparing twice-versus four-times daily insulin in mothers with gestational diabetes in Pakistan and its implications. J Comp Effect Res. 2016;5(5):453–459. doi: 10.2217/cer-2016-0022. [DOI] [PubMed] [Google Scholar]
- 95.Watanabe M, Katayama A, Kagawa H, Ogawa D, Wada J. Risk factors for the requirement of antenatal insulin treatment in gestational diabetes mellitus. J Diabetes Res. 2016;2016:9648798. doi: 10.1155/2016/9648798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Cosson E, Bihan H, Reach G, Vittaz L, Carbillon L, Valensi P. Psychosocial deprivation in women with gestational diabetes mellitus is associated with poor fetomaternal prognoses: an observational study. BMJ Open. 2015;5(3):e007120. doi: 10.1136/bmjopen-2014-007120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Inocêncio G, Braga A, Lima T, et al. Which factors influence the type of delivery and cesarean section rate in women with gestational diabetes? J Reprod Med. 2015;60(11–12):529–534. [PubMed] [Google Scholar]
- 98.Kopec JA, Ogonowski J, Rahman MM, Miazgowski T. Patient-reported outcomes in women with gestational diabetes: a longitudinal study. Int J Behav Med. 2015;22(2):206–213. doi: 10.1007/s12529-014-9428-0. [DOI] [PubMed] [Google Scholar]
- 99.You JY, Choi SJ, Roh CR, Kim JH, Oh SY. Pregnancy and neonatal outcomes in gestational diabetes treated with regular insulin or fast-acting insulin analogues. Gynecol Obstet Invest. 2016;81(3):232–237. doi: 10.1159/000440616. [DOI] [PubMed] [Google Scholar]
- 100.Deepaklal M, Joseph K, Kurian R, Thakkar NA. Efficacy of insulin lispro in improving glycemic control in gestational diabetes. Indian J Endocrinol Metab. 2014;18(4):491. doi: 10.4103/2230-8210.137492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Konig AB, Junginger S, Reusch J, Louwen F, Badenhoop K. Gestational diabetes outcome in a single center study: higher BMI in children after six months. Horm Metab Res. 2014;46(11):804–809. doi: 10.1055/s-0034-1375652. [DOI] [PubMed] [Google Scholar]
- 102.Marques P, Carvalho MR, Pinto L, Guerra S. Metformin safety in the management of gestational diabetes. Endocr Pract. 2014;20(10):1022–1031. doi: 10.4158/EP14018.OR. [DOI] [PubMed] [Google Scholar]
- 103.Al-Rubeaan KA, Youssef AM, Subhani SN, Ahmad NA, Al-Sharqawi AH, Ibrahim HM. A web-based interactive diabetes registry for health care management and planning in Saudi Arabia. J Med Internet Res. 2013;15(9):e202 [DOI] [PMC free article] [PubMed]
- 104.Hernandez-Rivas E, Flores-Le Roux JA, Benaiges D, et al. Gestational diabetes in a multiethnic population of Spain: clinical characteristics and perinatal outcomes. Diabetes Res Clin Pract. 2013;100(2):215–221. doi: 10.1016/j.diabres.2013.01.030. [DOI] [PubMed] [Google Scholar]
- 105.Latif L, Hyer S, Shehata H. Metformin effects on treatment satisfaction and quality of life in gestational diabetes. Br J Diabetes Vasc Dis. 2013;13(4):178–182. doi: 10.1177/1474651413493933. [DOI] [Google Scholar]
- 106.Tempe A, Mayanglambam RD. Glyburide as treatment option for gestational diabetes mellitus. J Obstet Gynaecol Res. 2013;39(6):1147–1152. doi: 10.1111/jog.12042. [DOI] [PubMed] [Google Scholar]
- 107.Cheng YW, Chung JH, Block-Kurbisch I, Inturrisi M, Caughey AB. Treatment of gestational diabetes mellitus: glyburide compared to subcutaneous insulin therapy and associated perinatal outcomes. J Matern Fetal Neonatal Med. 2012;25(4):379–384. doi: 10.3109/14767058.2011.580402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Thomas N, Chinta AJ, Sridhar S, Kumar M, Kuruvilla KA, Jana AK. Perinatal outcome of infants born to diabetic mothers in a developing country-comparison of insulin and oral hypoglycemic agents. Indian Pediatr. 2013;50(3):289–293. doi: 10.1007/s13312-013-0096-y. [DOI] [PubMed] [Google Scholar]
- 109.Goh JE, Sadler L, Rowan J. Metformin for gestational diabetes in routine clinical practice. Diabet Med. 2011;28(9):1082–1087. doi: 10.1111/j.1464-5491.2011.03361.x. [DOI] [PubMed] [Google Scholar]
- 110.Wong VW, Jalaludin B. Gestational diabetes mellitus: who requires insulin therapy? Aust NZ J Obstet Gynaecol. 2011;51(5):432–436. doi: 10.1111/j.1479-828X.2011.01329.x. [DOI] [PubMed] [Google Scholar]
- 111.Flores-Le Roux JA, Chillaron JJ, Goday A, et al. Peripartum metabolic control in gestational diabetes. Am J Obstet Gynecol. 2010;202(6):568. doi: 10.1016/j.ajog.2010.01.064. [DOI] [PubMed] [Google Scholar]
- 112.Demasio KA, Richley M. 434: Neonatal hypoglycemia; does basal insulin choice matter? Am J Obstet Gynecol. 2020;222(1):S285. doi: 10.1016/j.ajog.2019.11.450. [DOI] [Google Scholar]
- 113.Kong L, Nilsson IAK, Gissler M, Lavebratt C. Associations of Maternal Diabetes and Body Mass Index With Offspring Birth Weight and Prematurity. JAMA Pediatr. 2019;173(4):371–78. [DOI] [PMC free article] [PubMed]
- 114.Mathiesen E, Alibegovic A, Husemoen L, et al. Risk of major congenital malformations, perinatal or neonatal death with insulin detemir vs other basal insulins in pregnant women with pre-existing diabetes: EVOLVE study. Paper presented at: Diabetologia 2020. [DOI] [PMC free article] [PubMed]
- 115.Sperling M, Bentley J, Girsen A, et al. 759: Comparing insulin, metformin, and glyburide in treating diabetes in pregnancy and analyzing obstetric outcomes. Am J Obstet Gynecol. 2020;222(1):S481. doi: 10.1016/j.ajog.2019.11.773. [DOI] [Google Scholar]
- 116.Alexander LD, Tomlinson G, Feig DS. Predictors of large-for-gestational-age birthweight among pregnant women with type 1 and type 2 diabetes: a retrospective cohort study. Can J Diabetes. 2019;43(8):560–566. doi: 10.1016/j.jcjd.2019.08.015. [DOI] [PubMed] [Google Scholar]
- 117.Christman L, Piszczek J, Magee M, Ferris L, Duong J, Farley D. Patients with diabetes mellitus managed with insulin detemir: hospital outcomes [18E] Obstet Gynecol. 2019;133:56S. doi: 10.1097/01.AOG.0000559010.65661.b3. [DOI] [Google Scholar]
- 118.Sleeman A, Odom J, Schellinger M. Comparison of hypoglycemia and safety outcomes with long-acting insulins versus insulin NPH in pregestational and gestational diabetes. Ann Pharmacother. 2020;54(7):669–675. doi: 10.1177/1060028019897897. [DOI] [PubMed] [Google Scholar]
- 119.Smrz S, Finneran MM, Landon MB, Gabbe SG. Difference in glycemic profile with the pump vs multiple daily injections in treating type 1 diabetes in pregnancy [32F] Obstet Gynecol. 2019;133:70S–71S. doi: 10.1097/01.AOG.0000559063.18134.dc. [DOI] [Google Scholar]
- 120.Vasquez BA, Sarumi M, Shultz L, Bedell J, Gherman R, Johnson MJ. Glycemic efficacy with U-500 insulin in pregnancy: a retrospective cross-over study [21K] Obstet Gynecol. 2019;133:123S. doi: 10.1097/01.AOG/01.AOG.0000559215.25911.7b. [DOI] [Google Scholar]
- 121.Gupta S, Gupta K, Gathe S, Bamhra P, Gupta S. Insulin therapy in women with pregestational type 2 diabetes and its relevance to maternal and neonatal complications. Int J Diabetes Dev Ctries. 2018;38(1):47–54. doi: 10.1007/s13410-016-0541-2. [DOI] [Google Scholar]
- 122.Sunjaya AF, Sunjaya AP. Comparing outcomes of nutrition therapy, insulin and oral anti-diabetics in managing diabetes mellitus in pregnancy: retrospective study and review of current guidelines. Diabetes Metab Syndr. 2019;13(1):104–109. doi: 10.1016/j.dsx.2018.08.024. [DOI] [PubMed] [Google Scholar]
- 123.Stanirowski PJ, Szukiewicz D, Pyzlak M, Abdalla N, Sawicki W, Cendrowski K. Impact of pre-gestational and gestational diabetes mellitus on the expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 in human term placenta. Endocrine. 2017;55(3):799–808. doi: 10.1007/s12020-016-1202-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Dalfra MG, Soldato A, Moghetti P, et al. Diabetic pregnancy outcomes in mothers treated with basal insulin lispro protamine suspension or NPH insulin: a multicenter retrospective Italian study. J Matern Fetal Neonatal Med. 2016;29(7):1061–1065. doi: 10.3109/14767058.2015.1033619. [DOI] [PubMed] [Google Scholar]
- 125.Becquet O, El Khabbaz F, Alberti C, et al. Insulin treatment of maternal diabetes mellitus and respiratory outcome in late-preterm and term singletons. BMJ Open. 2015;5(6):e008192. doi: 10.1136/bmjopen-2015-008192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Colatrella A, Visalli N, Abbruzzese S, Leotta S, Bongiovanni M, Napoli A. Comparison of insulin lispro protamine suspension with NPH insulin in pregnant women with type 2 and gestational diabetes mellitus: maternal and perinatal outcomes. Int J Endocrinol. 2013;2013:151975. doi: 10.1155/2013/151975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Fresa R, Visalli N, Di Blasi V, et al. Experiences of continuous subcutaneous insulin infusion in pregnant women with type 1 diabetes during delivery from four Italian centers: a retrospective observational study. Diabetes Technol Ther. 2013;15(4):328–334. doi: 10.1089/dia.2012.0260. [DOI] [PubMed] [Google Scholar]
- 128.Bruttomesso D, Bonomo M, Costa S, et al. Type 1 diabetes control and pregnancy outcomes in women treated with continuous subcutaneous insulin infusion (CSII) or with insulin glargine and multiple daily injections of rapid-acting insulin analogues (glargine-MDI) Diabetes Metab. 2011;37(5):426–431. doi: 10.1016/j.diabet.2011.02.002. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.