Skip to main content
Data in Brief logoLink to Data in Brief
. 2024 Apr 10;54:110402. doi: 10.1016/j.dib.2024.110402

Trial data for precision analysis of a three-dimensional mandibular mechanical advantage

Dominique Ellen Carneiro a, Giancarlo De La Torre Canales b,c,d,, Manuel Óscar Lagravère e, Nara Hellen Campanha a, Vanessa Migliorini Urban a, Alfonso Sánchez-Ayala a
PMCID: PMC11043836  PMID: 38665154

Abstract

The data presented in this manuscript describe craniofacial landmark coordinate values, muscle and load moment arm lengths, and mechanical advantage rates for constructing a three-dimensional model of masticatory muscles. Cone-beam computed tomography scans from 30 subjects (aged 12–19 years, 16 females) were used. Thirty-six craniofacial landmarks were identified. Subsequently, the moment arms for 7 muscles and their corresponding load moment arms at incisor and molar positions were determined. Then, the three-dimensional mechanical advantage for each muscle and tooth position was calculated as the ratio of muscle moment arm to load moment arm. This procedure was repeated three times by a main examiner and once by two other examiners. The Friedman test and the square root of the 'method of moments' variance estimator were used to compare data among examiners and calculate random errors, respectively. Although the values for the craniofacial landmark coordinates and biomechanical variables are very close, differences were found between measurements, especially in the interexaminer comparisons. Values served as the basis for reliability (intraclass correlation coefficient) and errors (average mean of absolute differences) analysis in the research paper titled “A three-dimensional method to calculate mechanical advantage in mandibular function: Intra- and interexaminer reliability study,” published in the Journal of Orofacial Orthopedics.

Keywords: Biomechanical phenomena, Cone-beam computed tomography, Reliability, Muscles, Jaw, Planning


Specifications Table

Subject Dentistry, Oral Surgery and Medicine
Specific subject area Craniofacial research: Occlusion, Growth and Development, Orthodontics, Orthopaedics and Surgery
Type of data Table
Figure
How the data were acquired In 30 craniofacial cone-beam computed tomographies of dentate subjects, 36 cephalometric landmarks, 3 skeletal reference planes, muscle and load force vectors, muscle and load moment arms, and mechanical advantage for 7 masticatory muscles (superficial masseter, anterior and posterior deep masseters, anterior and posterior temporals, and medial and lateral pterygoids) at molar and incisal bite positions were determined.
Data format Millimetres (mm) in a three-dimensional space. Orientation was defined as the xz plane being coronal, the yz plane sagittal, and the xy plane axial. To establish landmarks, the coordinate system and the origin (0, 0, 0) provided by Avizo Fire software 8.1 (Mercury Computer Systems, Inc., Berlin, BE, Germany) were utilized. The biomechanical model was constructed using Cabri 3D software 2.1.2 (Cabrilog, Grenoble, Isère, France).
Description of data collection Means and standard deviations of 5 trials corresponding to cephalometric landmarks' coordinates (x, y, and z), muscle and load moment arm lengths (mm), and mechanical advantage ratios for masticatory muscles on the right and left sides. The main examiner repeated all measurements three times (trials 1, 2, and 3). Two other examiners carried out these measures only once (in trials 4 and 5, respectively). Intraexaminer and interexaminer comparisons of the variables were conducted using the Friedman test (α = 0.05), with random error estimated by the square root of the 'method of moments' variance estimator (MME).
Data source location Institution: University of Ponta Grossa
City/Town/Region: Ponta Grossa/Paraná/Sul
Country: Brazil
Latitude and longitude for collected samples/data: GPS: 25°5′23″S 50°6′23″W
Data accessibility The dataset has been deposited into an open repository and is available under the following permanent specifications:
Repository name: Mendeley Data
Data identification number: 10.17632/92m49gvgh6.1
Direct URL to data: https://doi.org/10.17632/92m49gvgh6.1
Related research article A. Sánchez-Ayala, A. Sánchez-Ayala, R.C. Kolodzejezyk, V.M. Urban, M.O. Lagravère, N.H. Campanha, A three-dimensional method to calculate mechanical advantage in mandibular function: Intra- and interexaminer reliability study, J. Orofac. Orthop. 84 (2023) 321–339. https://doi.org/10.1007/s00056-022-00378–7.

1. Value of the Data

  • The data serve as the numerical basis for the subsequent analysis of mandibular biomechanical reliability [1].

  • The analysis can be used as a learning means for studying mandibular function [2] and applied during craniofacial diagnostics and planning for patients with orthodontic, orthopaedic, or surgical needs [3]. Moreover, the improvement of mandibular mechanical advantage can be verified after therapeutical changes in skeletal and dental relationships [4].

  • Favourable moment arm designs can be simulated by considering the spatial movement of the teeth, occlusal plane, and muscular attachments [2], and can be addressed through the design of growth appliances or surgical guides.

2. Background

Mandibular movements are controlled by the neuromuscular system and are determined by the temporomandibular joints and dental occlusion. However, mandibular closing can be biomechanically conceived as a class III lever system. Under ideal conditions, the fulcrum is represented by the condyle, around which the mandible rotates as a rigid bar [5]. The effort or force is generated by the masticatory muscles, while the resistance or load is applied by tooth contact. Thus, the effort is placed between the fulcrum and resistance. A lever system will be in equilibrium when the product of the muscle force multiplied by the muscle moment arm is equal to the product of the bite force multiplied by the load moment arm. Muscle and load moment arms are defined as the distances between the fulcrum, and the muscle and the bite force vectors, respectively [4]. Therefore, a mechanical advantage, where the ratio of the muscle moment arm to the load moment arm is less than 1, would enhance the efficiency of the masticatory muscles in generating strength in a specific bite position for chewing food [6].

In Sánchez-Ayala et al. [1], both three-dimensional landmark coordinates and moment arms for mechanical advantage analysis were only indirectly reported. The study evaluated the intra- and interexaminer reliability of measurements using the Intraclass Correlation Coefficient (ICC) with a two-factor mixed model for absolute agreement. Intra- and interexaminer errors were calculated based on the average mean of absolute differences (AMAD), while intra- and interexaminer disagreements were estimated using the coefficient of variation (CV). However, the original values could not be included due to space limitations when presenting the material.

The present article provides the initial raw data for the aforementioned results: mean and standard deviation; intra- and interexaminer mean differences, evaluated using the Friedman test; and intra- and interexaminer random errors, calculated using the MME. Understanding these numbers is necessary because they illustrate the true extent of the differences. Small or large differences will be more or less relevant if the original data also corresponds. In this way, a given difference becomes smaller as the original values represent large magnitudes, and vice versa. Measurement values and their distributions reflect real data; through reliability tests, data is analysed to generalize the results to other potential scenarios. Thus, values with high reliability are not necessarily very similar.

3. Data Description

Means and standard deviations of trials 1, 2, and 3 corresponding to 36 cephalometric landmark coordinates (axes x, y, and z) in raw form are shown in Table 1 (intraexaminer comparison). Differences were found among trials for Gnathion (y), Orbitale (left: x and y), Coronoid (left: z), Maxillozygomatic (left: z), Pterygoid fovea (right: y), Pterygoid (right: x; left: x and z), and Zyd (right: x).

Table 1.

Intraexaminer mean and standard deviation (SD) corresponding to landmarks' coordinates (mm).

Landmarks Trial 1
Trial 2
Trial 3
Significance (p)
x
y
z
x
y
z
x
y
z
x y z
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
ELSA −19.70 4.65 11.08 9.20 60.71 8.01 −19.65 4.61 11.11 9.20 60.79 8.00 −19.62 4.78 11.17 9.38 60.77 7.86 0.417 0.712 0.342
Nasion −20.82 4.16 −60.06 8.31 92.06 6.23 −20.72 4.21 −60.11 8.30 92.17 6.24 −20.76 4.12 −60.16 8.33 92.02 6.11 0.195 0.515 0.407
Gnathion −20.75 5.22 −60.75 11.63 −19.53 5.66 −20.64 5.22 −60.64 11.83 −19.63 5.71 −20.54 5.24 −60.31 11.71 −19.84 5.62 0.072 0.002 0.072
Incisal −20.67 4.84 64.76 10.81 17.80 6.01 −20.70 4.84 64.72 10.53 17.64 6.20 −20.60 4.81 64.71 10.51 17.70 6.22 0.327 0.356 0.792

Right side

Foramen spinosum −50.41 5.32 11.70 9.13 60.74 8.01 −50.41 5.41 11.63 9.05 60.84 8.09 −50.27 5.83 11.76 9.35 60.93 7.97 0.697 0.291 0.721
Orbitale −55.85 5.20 −47.28 8.48 64.72 6.96 −55.57 5.29 −47.53 8.45 64.67 6.97 −55.70 5.37 −47.41 8.41 64.67 6.98 0.239 0.067 0.851
Porion −73.27 6.32 28.44 10.13 63.40 9.78 −73.13 5.94 28.41 10.14 63.32 9.80 −73.27 6.38 28.29 10.03 63.39 9.68 0.356 0.905 0.497
Condylion −68.43 6.41 15.55 9.75 62.63 8.98 −68.39 6.43 15.54 9.67 62.74 8.87 −68.30 6.50 15.60 9.78 62.75 8.84 0.648 0.122 0.085
Gonion −64.80 7.02 7.70 10.80 7.33 6.93 −64.76 7.06 8.33 10.56 8.00 6.46 −64.91 6.91 7.87 10.75 7.49 6.56 0.506 0.273 0.088
Coronoid −66.30 5.52 −16.32 9.56 57.68 7.77 −66.33 5.47 −16.35 9.55 57.71 7.82 −66.36 5.54 −16.34 9.55 57.75 7.73 0.942 0.943 0.587
Ramus −59.41 5.35 −18.48 9.85 24.06 5.59 −59.46 5.37 −18.48 9.83 24.23 5.78 −59.49 5.39 −18.50 9.81 24.13 5.91 0.792 0.741 0.905
Maxillozygomatic −62.75 4.81 −35.69 9.11 46.61 6.42 −62.93 5.07 −35.62 9.11 46.50 6.48 −62.66 5.85 −35.88 9.08 46.47 6.52 0.435 0.905 0.218
Temporozygomatic −78.58 6.09 −11.04 9.77 57.97 7.67 −78.50 6.00 −11.09 9.73 57.79 7.60 −78.67 6.04 −11.03 9.66 57.85 7.63 0.118 0.741 0.122
Pterygoid fovea −67.73 6.34 10.79 9.36 52.13 8.19 −67.80 6.41 10.77 9.68 52.19 8.31 −67.66 6.31 10.51 9.55 51.90 8.42 0.295 0.020 0.072
Pterygoid −44.55 5.62 −6.75 9.98 43.75 6.87 −45.13 5.77 −5.97 10.14 43.36 6.91 −45.06 5.62 −6.03 10.15 43.50 7.27 0.014 0.356 0.497
Zyd −78.77 6.42 6.20 9.36 57.56 8.53 −78.82 6.54 6.30 9.22 57.58 8.50 −79.09 6.43 6.18 9.38 57.65 8.51 0.010 0.515 0.648
Molar 1.03 4.26 −37.37 10.50 16.86 5.68 1.00 4.15 −37.57 10.59 16.70 5.76 1.04 4.30 −37.47 10.63 16.73 5.72 0.792 0.875 0.889
Maa −61.20 5.76 −9.75 10.04 18.49 5.79 −61.22 5.79 −9.54 9.93 18.82 5.78 −61.30 5.76 −9.73 9.99 18.58 5.93 0.374 0.577 0.374
Map −63.00 6.32 −1.06 10.37 12.95 6.25 −63.00 6.37 −0.65 10.18 13.44 6.01 −63.10 6.27 −0.97 10.30 13.07 6.16 0.337 0.662 0.485
Zys −73.27 5.38 −19.31 9.41 54.17 7.11 −73.28 5.41 −19.32 9.40 54.01 7.11 −73.30 5.77 −19.37 9.36 54.05 7.15 0.498 0.991 0.198
Left side

Foramen spinosum 11.20 4.68 10.45 9.46 60.70 8.20 11.28 4.60 10.56 9.54 60.72 8.13 11.15 4.54 10.55 9.60 60.60 8.06 0.195 0.648 0.832
Orbitale 14.09 3.45 −48.85 8.41 64.39 7.38 14.59 3.88 −48.40 8.96 64.47 7.34 14.55 3.91 −48.61 8.88 64.44 7.35 0.048 0.045 0.697
Porion 35.42 4.89 26.07 10.60 62.63 8.94 35.46 5.19 26.09 10.54 62.57 9.02 35.54 5.04 26.03 10.67 62.56 8.92 0.301 0.531 0.587
Condylion 29.66 4.64 14.02 10.01 62.50 8.43 29.70 4.72 13.95 10.05 62.47 8.43 29.59 4.74 14.04 10.02 62.50 8.44 0.587 0.056 0.744
Gonion 26.29 4.73 6.89 11.25 8.42 7.34 26.20 4.77 7.40 11.53 9.00 7.14 26.17 4.73 7.08 11.36 8.59 6.90 0.587 0.072 0.239
Coronoid 26.58 4.71 −17.54 9.57 57.35 7.56 26.65 4.70 −17.55 9.60 57.38 7.56 26.70 4.76 −17.50 9.64 57.46 7.56 0.792 0.905 0.018
Ramus 19.25 4.20 −19.77 10.48 23.58 5.87 19.36 4.41 −19.67 10.31 23.91 5.14 19.31 4.20 −19.82 10.34 23.48 5.79 0.497 0.131 0.177
Maxillozygomatic 22.31 5.70 −37.18 9.53 46.60 7.00 22.45 5.46 −37.33 9.36 46.32 7.06 22.01 5.29 −37.31 9.31 46.33 7.02 0.239 0.569 0.026
Temporozygomatic 38.44 4.48 −13.94 10.25 57.46 7.98 38.67 4.76 −13.38 10.28 57.56 7.97 38.52 4.69 −13.55 10.20 57.42 8.08 0.400 0.239 0.400
Pterygoid fovea 28.64 4.59 9.27 9.93 52.27 8.09 28.75 4.46 9.03 9.85 52.19 8.26 28.60 4.66 9.04 9.80 51.95 8.14 0.497 0.131 0.435
Pterygoid 4.77 4.34 −7.32 9.87 43.72 6.26 5.02 4.10 −7.40 10.00 43.18 6.17 5.22 4.09 −7.40 9.91 42.91 6.11 0.016 0.497 0.026
Zyd 38.90 4.68 4.36 9.94 57.58 8.29 39.16 4.69 4.38 9.78 57.62 8.22 39.22 4.59 4.35 9.91 57.62 8.19 0.079 0.291 0.721
Molar −41.71 5.46 −37.05 9.88 17.33 5.47 −41.68 5.46 −36.99 9.94 17.22 5.46 −41.68 5.50 −36.94 10.03 17.22 5.52 0.741 0.531 0.758
Maa 21.62 4.21 −10.89 10.62 18.52 6.20 21.64 4.37 −10.66 10.59 18.94 5.59 21.59 4.22 −10.85 10.59 18.51 5.97 0.892 0.204 0.670
Map 23.94 4.40 −2.06 10.87 13.50 6.70 23.90 4.49 −1.67 11.02 14.01 6.28 23.88 4.41 −1.93 10.94 13.59 6.36 0.704 0.404 0.311
Zys 33.12 4.74 −21.62 9.87 53.87 7.55 33.30 4.84 −21.31 9.85 53.85 7.56 33.04 4.71 −21.44 9.79 53.75 7.63 0.723 0.568 0.712

p < 0.05 are shown in bold type.

Table 2 describes interexaminer comparisons (trials 1, 4, and 5) for 36 raw cephalometric landmark coordinates (axes x, y, and z). ELSA (x), Gnathion (x, y, and z), Incisal (x and z), Foramen spinosum (right: x and y; left: x), Orbitale (right and left: x, y, and z), Porion (left: x), Condylion (right: x and y; left: x, y, and z), Gonion (right and left: x, y, and z), Coronoid (right: x and y; left: x, y, and z), Ramus (right and left: x, y, and z), Maxillozygomatic (right and left: y and z), Temporozygomatic (right: x; left: x and z), Pterygoid fovea (right and left: x, y, and z), Pterygoid (right: x,y, and z; left: x and z), Zyd (right: y), Molar (left: y and z), Maa (right and left: x, y, and z), Map (right: y and z; left: x, y, and z), and Zys (right: x, y, and z; left: x and y) presented differences.

Table 2.

Interexaminer mean and standard deviation (SD) corresponding to landmarks' coordinates (mm).

Landmarks Trial 1
Trial 4
Trial 5
Significance (p)
x
y
z
x
y
z
x
y
z
x y z
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
ELSA −19.70 4.65 11.08 9.20 60.71 8.01 −19.68 4.54 10.70 9.09 60.73 8.20 −19.47 4.47 10.62 9.37 60.40 7.88 0.024 0.075 0.154
Nasion −20.82 4.16 −60.06 8.31 92.06 6.23 −20.69 4.14 −60.16 8.39 91.84 6.19 −20.75 4.20 −60.07 8.26 92.08 6.29 0.131 0.356 0.587
Gnathion −20.75 5.22 −60.75 11.63 −19.53 5.66 −20.62 5.11 −61.63 11.28 −18.34 5.64 −21.45 5.08 −60.70 11.82 −19.47 5.61 0.000 0.000 0.000
Incisal −20.67 4.84 64.76 10.81 17.80 6.01 −20.90 4.81 65.03 10.64 17.42 6.11 −20.63 4.63 65.22 10.59 17.48 6.21 0.003 0.061 0.012

Right side

Foramen spinosum −50.41 5.32 11.70 9.13 60.74 8.01 −50.66 5.73 11.15 8.94 60.67 8.29 −50.27 5.59 11.35 9.25 60.20 8.01 0.039 0.006 0.072
Orbitale −55.85 5.20 −47.28 8.48 64.72 6.96 −62.46 5.67 −42.79 8.31 67.19 7.43 −57.42 5.71 −46.97 8.21 64.59 6.97 0.000 0.000 0.000
Porion −73.27 6.32 28.44 10.13 63.40 9.78 −73.43 5.65 28.33 10.06 63.38 10.04 −72.85 6.32 28.18 10.23 63.23 9.82 0.202 0.648 0.088
Condylion −68.43 6.41 15.55 9.75 62.63 8.98 −69.10 6.75 15.81 9.70 62.85 8.79 −69.36 5.98 15.31 9.46 62.99 9.07 0.007 0.001 0.179
Gonion −64.80 7.02 7.70 10.80 7.33 6.93 −65.27 6.98 6.58 10.94 6.05 6.70 −65.85 6.79 5.52 10.90 5.72 6.89 0.000 0.000 0.001
Coronoid −66.30 5.52 −16.32 9.56 57.68 7.77 −66.62 5.69 −16.11 9.35 57.51 7.72 −65.92 5.51 −16.70 9.48 57.55 7.75 0.000 0.012 0.118
Ramus −59.41 5.35 −18.48 9.85 24.06 5.59 −59.09 5.30 −19.42 9.93 22.10 5.78 −58.12 5.50 −21.66 10.11 18.42 5.69 0.000 0.000 0.000
Maxillozygomatic −62.75 4.81 −35.69 9.11 46.61 6.42 −62.55 5.08 −36.00 9.17 46.33 6.56 −62.72 4.94 −36.77 9.22 46.19 6.44 0.239 0.000 0.045
Temporozygomatic −78.58 6.09 −11.04 9.77 57.97 7.67 −78.40 6.11 −11.22 9.81 57.74 7.61 −79.23 6.08 −11.30 10.04 57.71 7.59 0.000 0.273 0.061
Pterygoid fovea −67.73 6.34 10.79 9.36 52.13 8.19 −66.79 6.21 9.99 9.16 49.80 7.69 −67.94 6.61 11.34 9.54 53.34 8.19 0.000 0.000 0.000
Pterygoid −44.55 5.62 −6.75 9.98 43.75 6.87 −44.71 5.48 −5.53 10.18 44.53 7.75 −43.93 5.61 −6.98 9.40 44.97 7.30 0.007 0.002 0.048
Zyd −78.77 6.42 6.20 9.36 57.56 8.53 −78.86 6.23 5.65 9.16 57.51 8.41 −79.02 6.53 5.80 9.33 57.58 8.57 0.273 0.000 0.792
Molar 1.03 4.26 −37.37 10.50 16.86 5.68 0.99 4.10 −37.43 10.41 17.18 5.70 0.90 4.58 −37.30 10.25 17.38 5.77 0.531 0.905 0.239
Maa −61.20 5.76 −9.75 10.04 18.49 5.79 −61.15 5.72 −10.75 10.13 16.73 5.91 −60.70 5.76 −12.60 10.17 14.19 5.73 0.001 0.000 0.000
Map −63.00 6.32 −1.06 10.37 12.95 6.25 −63.21 6.27 −2.12 10.48 11.43 6.22 −63.28 6.19 −3.59 10.44 9.96 6.15 0.056 0.000 0.000
Zys −73.27 5.38 −19.31 9.41 54.17 7.11 −73.12 5.53 −19.50 9.49 53.93 7.15 −73.71 5.43 −19.81 9.68 53.85 7.10 0.000 0.000 0.003
Left side

Foramen spinosum 11.20 4.68 10.45 9.46 60.70 8.20 11.45 4.29 10.26 9.49 60.78 8.38 11.53 4.24 9.86 9.95 60.60 8.04 0.010 0.202 0.670
Orbitale 14.09 3.45 −48.85 8.41 64.39 7.38 21.98 4.09 −43.81 8.92 67.24 7.73 14.95 4.32 −48.70 8.92 64.36 7.29 0.000 0.000 0.000
Porion 35.42 4.89 26.07 10.60 62.63 8.94 35.06 5.22 26.58 10.25 62.83 9.26 35.56 5.81 25.65 10.63 62.57 9.13 0.036 0.061 0.648
Condylion 29.66 4.64 14.02 10.01 62.50 8.43 29.39 5.00 14.29 10.16 62.65 8.38 30.57 4.84 13.75 9.76 62.46 8.51 0.002 0.032 0.008
Gonion 26.29 4.73 6.89 11.25 8.42 7.34 26.78 4.85 4.71 11.24 5.67 6.73 27.15 4.79 4.74 11.28 6.46 6.46 0.000 0.000 0.000
Coronoid 26.58 4.71 −17.54 9.57 57.35 7.56 26.93 4.57 −17.37 9.45 57.17 7.62 26.47 4.50 −17.69 9.38 57.29 7.58 0.000 0.003 0.015
Ramus 19.25 4.20 −19.77 10.48 23.58 5.87 19.22 4.30 −20.13 10.25 22.60 5.87 17.04 4.48 −23.31 10.60 17.30 5.98 0.000 0.000 0.000
Maxillozygomatic 22.31 5.70 −37.18 9.53 46.60 7.00 22.02 5.46 −37.33 9.31 46.19 6.98 21.51 5.65 −38.25 9.44 45.87 7.28 0.741 0.000 0.000
Temporozygomatic 38.44 4.48 −13.94 10.25 57.46 7.98 38.29 4.45 −13.55 10.20 57.48 8.17 39.17 4.91 −13.25 10.60 57.74 7.99 0.000 0.195 0.012
Pterygoid fovea 28.64 4.59 9.27 9.93 52.27 8.09 27.64 4.43 7.48 9.98 49.56 7.77 28.50 4.41 10.14 9.95 53.29 8.20 0.000 0.000 0.000
Pterygoid 4.77 4.34 −7.32 9.87 43.72 6.26 3.58 4.19 −7.67 9.90 45.50 7.66 4.03 4.28 −7.37 9.45 44.63 7.26 0.000 0.792 0.025
Zyd 38.90 4.68 4.36 9.94 57.58 8.29 38.79 4.54 4.12 9.68 57.48 8.24 38.96 4.54 4.04 9.65 57.57 8.36 0.967 0.356 0.792
Molar −41.71 5.46 −37.05 9.88 17.33 5.47 −41.71 5.34 −36.51 10.14 17.51 5.37 −41.59 5.67 −36.42 10.28 17.77 5.34 0.875 0.000 0.002
Maa 21.62 4.21 −10.89 10.62 18.52 6.20 21.74 4.33 −11.85 10.47 16.95 5.98 20.40 4.41 −13.96 10.67 13.69 5.88 0.000 0.000 0.000
Map 23.94 4.40 −2.06 10.87 13.50 6.70 24.23 4.52 −3.63 10.79 11.34 6.28 23.76 4.52 −4.66 10.91 10.09 6.04 0.000 0.000 0.000
Zys 33.12 4.74 −21.62 9.87 53.87 7.55 32.90 4.64 −21.43 9.78 53.74 7.68 33.34 4.83 −21.51 10.10 53.83 7.62 0.000 0.001 0.641

p < 0.05 are shown in bold type.

Muscle and load moment arms lengths and mechanical advantage ratios (mean and standard deviation) of 7 masticatory muscles are described for intraexaminer and interexaminer comparisons in Table 3. There were intraexaminer differences among trials to muscle moment arm (left: superficial masseter) and mechanical advantage (right: medial pterygoid; left: superficial masseter and anterior deep masseter). For interexaminer comparisons, muscle moment arm (right and left: superficial masseter, posterior temporal, and lateral pterygoid; left: posterior deep masseter), load moment arm (right and left: molar; right: incisive), mechanical advantage to molar position (right and left: superficial masseter, anterior deep masseter, and lateral pterygoid; right: anterior temporal; left: posterior deep masseter), and mechanical advantage to incisal position (right and left: superficial masseter, posterior temporal, and lateral pterygoid; left: posterior deep masseter) showed differences.

Table 3.

Mean and standard deviation (SD) corresponding to biomechanics variables (mm).

Biomechanics variables Trial 1
Trial 2
Trial 3
Trial 4
Trial 5
Significance (p)
Mean SD Mean SD Mean SD Mean SD Mean SD Intraexaminer Interexaminer
Right side

MUSCLE MOMENT ARM Superficial masseter 34.60 3.31 34.57 3.33 34.77 3.19 35.53 3.29 35.43 3.56 0.426 0.000
Anterior deep masseter 32.60 3.35 32.57 3.44 32.70 3.23 32.73 3.03 32.83 3.16 0.416 0.854
Posterior deep masseter 14.43 3.08 14.37 3.35 14.67 3.13 14.90 2.06 14.33 2.99 0.119 0.475
Anterior temporal 32.47 3.31 32.40 3.43 32.60 3.23 32.40 3.04 32.83 3.21 0.199 0.124
Posterior temporal 28.83 2.91 28.80 2.89 28.87 2.96 28.17 2.93 28.70 3.05 0.794 0.001
Medial pterygoid 37.73 2.39 37.17 2.93 37.10 2.93 37.33 2.90 38.20 2.61 0.055 0.170
Lateral pterygoid 10.13 1.81 10.00 1.64 10.33 1.71 12.53 2.37 9.00 2.10 0.186 0.000

LOAD MOMENT ARM Molar 71.17 5.44 71.17 5.34 71.20 5.37 70.23 5.23 70.47 5.83 0.942 0.010
Incisal 103.13 5.42 103.27 5.07 103.33 5.27 103.53 5.38 103.83 5.23 0.575 0.034

MECHANICAL ADVANTAGE Molar position
Superficial masseter 0.49 0.04 0.49 0.05 0.49 0.05 0.51 0.05 0.50 0.05 0.585 0.000
Anterior deep masseter 0.46 0.04 0.46 0.05 0.46 0.04 0.47 0.04 0.47 0.04 0.766 0.001
Posterior deep masseter 0.20 0.05 0.20 0.05 0.21 0.05 0.21 0.04 0.21 0.05 0.262 0.552
Anterior temporal 0.46 0.04 0.46 0.04 0.46 0.04 0.46 0.04 0.47 0.04 0.616 0.022
Posterior temporal 0.41 0.04 0.41 0.04 0.41 0.04 0.40 0.04 0.41 0.04 0.888 0.056
Medial pterygoid 0.53 0.03 0.52 0.04 0.52 0.04 0.53 0.04 0.55 0.04 0.111 0.296
Lateral pterygoid 0.14 0.03 0.14 0.03 0.15 0.03 0.18 0.03 0.13 0.03 0.141 0.000

Incisal position
Superficial masseter 0.34 0.03 0.33 0.03 0.34 0.03 0.34 0.03 0.34 0.03 0.326 0.002
Anterior deep masseter 0.32 0.03 0.32 0.03 0.32 0.02 0.32 0.03 0.32 0.03 0.589 0.868
Posterior deep masseter 0.14 0.03 0.14 0.03 0.14 0.03 0.15 0.02 0.14 0.03 0.220 0.337
Anterior temporal 0.31 0.03 0.31 0.03 0.32 0.03 0.31 0.03 0.32 0.03 0.238 0.358
Posterior temporal 0.28 0.03 0.28 0.02 0.28 0.02 0.27 0.02 0.28 0.02 0.931 0.003
Medial pterygoid 0.37 0.02 0.36 0.03 0.36 0.02 0.36 0.02 0.37 0.02 0.031 0.180
Lateral pterygoid 0.10 0.02 0.10 0.02 0.10 0.02 0.12 0.02 0.09 0.02 0.254 0.000
Left side

MUSCLE MOMENT ARM Superficial masseter 35.00 2.80 34.47 2.70 34.87 2.76 35.83 2.67 35.17 3.29 0.026 0.001
Anterior deep masseter 32.43 3.23 32.20 3.10 32.33 3.33 32.40 3.17 32.20 3.41 0.128 0.645
Posterior deep masseter 14.03 2.34 14.23 2.46 14.47 2.33 14.53 2.21 13.43 2.57 0.193 0.008
Anterior temporal 32.23 2.97 32.13 3.04 32.17 3.07 32.03 2.93 32.17 3.28 0.751 0.298
Posterior temporal 28.33 2.60 28.27 2.64 28.33 2.55 27.80 2.92 28.17 3.25 0.766 0.018
Medial pterygoid 37.63 2.83 37.73 2.88 37.90 2.77 37.90 2.77 38.30 2.93 0.267 0.482
Lateral pterygoid 9.57 1.85 9.53 1.81 9.87 1.68 13.47 1.98 8.43 2.39 0.108 0.000

LOAD MOMENT ARM Molar 71.03 4.53 71.37 4.39 71.37 4.51 70.10 4.34 70.70 4.53 0.158 0.011
Incisal 103.03 4.66 103.10 4.42 103.13 4.55 103.23 4.52 103.63 4.52 0.814 0.364

MECHANICAL ADVANTAGE Molar position
Superficial masseter 0.49 0.04 0.48 0.04 0.49 0.04 0.51 0.04 0.50 0.05 0.008 0.000
Anterior deep masseter 0.46 0.04 0.45 0.04 0.45 0.04 0.46 0.04 0.46 0.04 0.017 0.046
Posterior deep masseter 0.20 0.04 0.20 0.04 0.20 0.04 0.21 0.04 0.19 0.04 0.408 0.003
Anterior temporal 0.45 0.04 0.45 0.04 0.45 0.04 0.46 0.04 0.46 0.04 0.128 0.673
Posterior temporal 0.40 0.04 0.40 0.03 0.40 0.03 0.40 0.04 0.40 0.05 0.358 0.523
Medial pterygoid 0.53 0.03 0.53 0.04 0.53 0.03 0.54 0.04 0.54 0.04 0.957 0.075
Lateral pterygoid 0.14 0.03 0.13 0.03 0.14 0.03 0.19 0.03 0.12 0.04 0.317 0.000
Incisal position
Superficial masseter 0.34 0.03 0.33 0.03 0.34 0.03 0.35 0.03 0.34 0.03 0.085 0.001
Anterior deep masseter 0.32 0.03 0.31 0.02 0.31 0.03 0.31 0.03 0.31 0.03 0.225 0.065
Posterior deep masseter 0.14 0.03 0.14 0.02 0.14 0.02 0.14 0.02 0.13 0.03 0.343 0.021
Anterior temporal 0.31 0.02 0.31 0.02 0.31 0.02 0.31 0.02 0.31 0.03 0.595 0.170
Posterior temporal 0.28 0.02 0.27 0.02 0.27 0.02 0.27 0.02 0.27 0.03 0.673 0.006
Medial pterygoid 0.37 0.02 0.37 0.02 0.37 0.02 0.37 0.02 0.37 0.02 0.486 0.757
Lateral pterygoid 0.09 0.02 0.09 0.02 0.10 0.02 0.13 0.02 0.08 0.02 0.126 0.000

p < 0.05 are shown in bold type.

Results only indicated an interexaminer error of 1.55 mm for the method of moments variance estimator on the right Porion x-axis (Table 4, Table 5). Errors lower than 1.5 mm are considered clinically acceptable [5].

Table 4.

Intra- and interexaminer errors of landmarks coordinates (mm).

Landmarks Intraexaminer
Interexaminer
MME
Lower limit
Upper limit
MME
Lower limit
Upper limit
x y z x y z x y z x y z x y z x y z
ELSA 0.11 0.16 0.37 0.09 0.13 0.30 0.12 0.17 0.40 0.19 0.78 0.39 0.15 0.62 0.31 0.20 0.84 0.42
Nasion 0.10 0.10 0.35 0.08 0.08 0.28 0.13 0.14 0.47 0.12 0.16 0.51 0.10 0.13 0.41 0.16 0.22 0.69
Gnathion 0.16 0.24 0.23 0.13 0.19 0.18 0.21 0.32 0.31 0.28 0.44 0.39 0.23 0.35 0.31 0.38 0.59 0.53
Incisal 0.16 0.30 0.45 0.13 0.24 0.36 0.21 0.41 0.61 0.51 0.31 0.46 0.41 0.24 0.36 0.69 0.41 0.61

Right side

Foramen spinosum 0.35 0.27 0.69 0.28 0.22 0.55 0.46 0.37 0.93 0.31 0.35 0.54 0.24 0.28 0.43 0.41 0.47 0.73
Orbitale 0.31 0.24 0.07 0.25 0.19 0.05 0.42 0.32 0.09 1.14 0.89 0.66 0.91 0.71 0.53 1.53 1.20 0.89
Porion 1.13 0.32 0.24 0.90 0.26 0.19 1.52 0.43 0.32 1.55 0.59 0.31 1.23 0.47 0.25 2.08 0.79 0.42
Condylion 0.18 0.07 0.23 0.14 0.06 0.18 0.24 0.10 0.31 0.79 0.30 0.43 0.63 0.24 0.34 1.06 0.40 0.58
Gonion 0.26 0.43 0.52 0.21 0.34 0.41 0.35 0.58 0.70 0.32 0.95 0.71 0.26 0.75 0.56 0.43 1.27 0.95
Coronoid 0.17 0.13 0.15 0.14 0.11 0.12 0.23 0.18 0.21 0.34 0.32 0.18 0.27 0.25 0.14 0.46 0.43 0.24
Ramus 0.20 0.25 0.45 0.16 0.20 0.36 0.27 0.34 0.60 0.42 0.74 0.98 0.34 0.59 0.78 0.57 0.99 1.32
Maxillozygomatic 0.95 0.39 0.33 0.75 0.31 0.26 1.27 0.52 0.44 0.54 0.41 0.31 0.43 0.32 0.25 0.73 0.55 0.42
Temporozygomatic 0.14 0.16 0.15 0.11 0.13 0.12 0.18 0.21 0.21 0.26 0.32 0.21 0.21 0.25 0.16 0.36 0.42 0.28
Pterygoid fovea 0.16 0.31 0.34 0.13 0.25 0.27 0.22 0.42 0.46 0.43 0.46 0.96 0.34 0.37 0.76 0.58 0.62 1.29
Pterygoid 0.30 0.55 0.47 0.24 0.44 0.38 0.40 0.74 0.64 0.37 1.02 0.65 0.30 0.82 0.52 0.50 1.38 0.87
Zyd 0.22 0.36 0.09 0.17 0.29 0.07 0.29 0.48 0.12 0.38 0.49 0.16 0.30 0.39 0.13 0.51 0.66 0.22
Molar 0.14 0.12 0.19 0.11 0.09 0.15 0.19 0.16 0.25 0.56 0.54 0.29 0.44 0.43 0.23 0.75 0.73 0.39
Maa 0.11 0.24 0.45 0.09 0.19 0.36 0.12 0.26 0.48 0.28 0.61 0.74 0.22 0.49 0.59 0.29 0.66 0.80
Map 0.18 0.37 0.49 0.14 0.29 0.39 0.19 0.39 0.53 0.20 0.73 0.70 0.16 0.58 0.56 0.21 0.79 0.75
Zys 0.25 0.44 0.91 0.20 0.35 0.73 0.27 0.47 0.98 0.26 0.29 0.20 0.21 0.23 0.16 0.28 0.31 0.21
Left side

Foramen spinosum 0.18 0.16 0.31 0.14 0.13 0.25 0.24 0.22 0.42 0.49 1.33 0.48 0.39 1.06 0.38 0.66 1.79 0.65
Orbitale 0.40 0.45 0.09 0.32 0.36 0.07 0.54 0.60 0.12 1.23 0.67 0.59 0.98 0.53 0.47 1.65 0.90 0.80
Porion 0.80 0.36 0.30 0.64 0.28 0.24 1.08 0.48 0.40 1.25 0.68 0.47 1.00 0.54 0.38 1.69 0.91 0.63
Condylion 0.13 0.08 0.08 0.10 0.06 0.06 0.18 0.11 0.10 0.72 0.32 0.33 0.57 0.26 0.26 0.97 0.43 0.44
Gonion 0.29 0.51 0.62 0.23 0.41 0.50 0.39 0.69 0.84 0.29 0.69 0.87 0.23 0.55 0.70 0.39 0.92 1.17
Coronoid 0.12 0.14 0.09 0.10 0.11 0.07 0.16 0.19 0.12 0.21 0.32 0.18 0.17 0.25 0.15 0.28 0.43 0.25
Ramus 0.17 0.24 0.55 0.13 0.19 0.44 0.22 0.33 0.74 0.60 0.82 1.09 0.47 0.65 0.87 0.80 1.10 1.46
Maxillozygomatic 0.99 0.27 0.24 0.78 0.21 0.19 1.32 0.36 0.33 1.44 0.40 0.60 1.15 0.32 0.48 1.94 0.54 0.81
Temporozygomatic 0.35 0.96 0.22 0.28 0.76 0.17 0.47 1.29 0.29 0.57 1.40 0.29 0.45 1.12 0.23 0.77 1.89 0.40
Pterygoid fovea 0.23 0.22 0.31 0.18 0.17 0.25 0.31 0.30 0.42 0.48 0.57 0.95 0.38 0.46 0.76 0.64 0.77 1.28
Pterygoid 0.27 0.23 0.40 0.21 0.19 0.32 0.36 0.31 0.54 0.43 0.77 0.79 0.34 0.62 0.63 0.58 1.04 1.06
Zyd 0.28 0.23 0.11 0.22 0.19 0.09 0.37 0.31 0.15 0.37 0.27 0.17 0.30 0.22 0.13 0.50 0.36 0.23
Molar 0.29 0.26 0.35 0.23 0.21 0.28 0.39 0.35 0.46 0.69 0.39 0.36 0.55 0.31 0.28 0.93 0.52 0.48
Maa 0.12 0.23 0.40 0.09 0.19 0.32 0.13 0.25 0.43 0.41 0.65 0.89 0.33 0.51 0.71 0.44 0.69 0.95
Map 0.17 0.31 0.41 0.13 0.25 0.33 0.18 0.33 0.44 0.23 0.59 0.83 0.18 0.47 0.66 0.24 0.63 0.89
Zys 0.30 0.44 0.75 0.24 0.35 0.60 0.32 0.48 0.80 0.46 0.92 0.24 0.36 0.73 0.19 0.49 0.98 0.26

MME: Method of moments variance estimator.

Average values >1.5 mm are shown in bold type.

Table 5.

Intra- and Interexaminer errors to biomechanics variables.

Biomechanics variables Intraexaminer
Interexaminer
MME Lower limit Upper limit MME Lower limit Upper limit
Right side
MUSCLE MOMENT ARM (mm)

Superficial masseter 0.22 0.17 0.29 0.41 0.33 0.55
Anterior deep masseter 0.21 0.17 0.29 0.35 0.28 0.48
Posterior deep masseter 0.23 0.18 0.31 0.81 0.65 1.09
Anterior temporal 0.21 0.17 0.29 0.33 0.27 0.45
Posterior temporal 0.19 0.15 0.25 0.35 0.28 0.47
Medial pterygoid 0.42 0.34 0.57 0.75 0.60 1.01
Lateral pterygoid 0.33 0.26 0.44 0.82 0.66 1.11

LOAD MOMENT ARM (mm)

Molar 0.25 0.20 0.34 0.46 0.37 0.62
Incisal 0.44 0.35 0.60 0.49 0.39 0.66

MECHANICAL ADVANTAGE
Molar position

Superficial masseter 0.00 0.00 0.01 0.01 0.01 0.01
Anterior deep masseter 0.00 0.00 0.00 0.00 0.00 0.01
Posterior deep masseter 0.00 0.00 0.00 0.01 0.01 0.02
Anterior temporal 0.00 0.00 0.00 0.00 0.00 0.01
Posterior temporal 0.00 0.00 0.00 0.00 0.00 0.01
Medial pterygoid 0.01 0.01 0.01 0.01 0.01 0.02
Lateral pterygoid 0.00 0.00 0.01 0.01 0.01 0.02

Incisal position

Superficial masseter 0.00 0.00 0.00 0.00 0.00 0.01
Anterior deep masseter 0.00 0.00 0.00 0.00 0.00 0.00
Posterior deep masseter 0.00 0.00 0.00 0.01 0.01 0.01
Anterior temporal 0.00 0.00 0.00 0.00 0.00 0.00
Posterior temporal 0.00 0.00 0.00 0.00 0.00 0.00
Medial pterygoid 0.00 0.00 0.01 0.01 0.01 0.01
Lateral pterygoid 0.00 0.00 0.00 0.01 0.01 0.01

Left side
MUSCLE MOMENT ARM (mm)

Superficial masseter 0.42 0.34 0.57 0.66 0.52 0.89
Anterior deep masseter 0.19 0.15 0.25 0.31 0.25 0.42
Posterior deep masseter 0.37 0.30 0.50 0.58 0.46 0.78
Anterior temporal 0.21 0.17 0.29 0.29 0.23 0.39
Posterior temporal 0.19 0.15 0.26 0.31 0.24 0.41
Medial pterygoid 0.24 0.19 0.32 0.66 0.53 0.89
Lateral pterygoid 0.30 0.24 0.40 0.96 0.76 1.29

LOAD MOMENT ARM (mm)

Molar 0.31 0.25 0.42 0.42 0.33 0.56
Incisal 0.42 0.34 0.57 0.48 0.38 0.65

MECHANICAL ADVANTAGE
Molar position

Superficial masseter 0.01 0.01 0.01 0.01 0.01 0.01
Anterior deep masseter 0.00 0.00 0.00 0.00 0.00 0.01
Posterior deep masseter 0.00 0.00 0.01 0.01 0.01 0.01
Anterior temporal 0.00 0.00 0.00 0.00 0.00 0.01
Posterior temporal 0.00 0.00 0.00 0.00 0.00 0.01
Medial pterygoid 0.00 0.00 0.00 0.01 0.01 0.01
Lateral pterygoid 0.00 0.00 0.01 0.01 0.01 0.02
Incisal position

Superficial masseter 0.00 0.00 0.01 0.01 0.00 0.01
Anterior deep masseter 0.00 0.00 0.00 0.00 0.00 0.00
Posterior deep masseter 0.00 0.00 0.00 0.01 0.00 0.01
Anterior temporal 0.00 0.00 0.00 0.00 0.00 0.00
Posterior temporal 0.00 0.00 0.00 0.00 0.00 0.00
Medial pterygoid 0.00 0.00 0.00 0.01 0.00 0.01
Lateral pterygoid 0.00 0.00 0.00 0.01 0.01 0.01

MME: Method of moments variance estimator.

4. Experimental Design, Materials and Methods

Thirty craniofacial cone-beam computed tomographies from healthy dentate voluntaries (12–19 age range, 16 female) were employed. A NewTom 3G Volumetric Scanner (Aperio Services, Verona, VR, Italy) with 12-in field of view, 8-mm aluminum filtration at 110 kV and 6.19 mAs, and slice thickness of 0.5 mm was used. Using the NewTom software 2.04 (Aperio Services), image data were converted to DICOM format with a voxel size of 0.25 mm. This study was supported by the Health Research Ethics Board of the University of Alberta (#5563), and all voluntaries signed written informed consent to participate.

4.1. Identification of landmarks

Through 390 to 430 DICOM slices, a three-dimensional body was constructed using the digital tools of Avizo Fire software 8.1 (Mercury Computer Systems, Inc., Berlin, BE, Germany). This program is a system for three-dimensional visualization, geometric reconstruction, and data analysis. For this purpose, the Isosurface function was used for image rendering. The view threshold was configured between −1000 and 2000. Within this range, a point around 600–650 was used for object visualization. This threshold provided the required specific density for the tomographic slides of bone structure to visualize in a three-dimensional image. As the threshold number increases, the density of bone structure observed decreases. By using the software's functions Orthoslice and Slide, the object was manipulated in various planes for convenience by adjusting the settings. These tools enabled the rotation and spatial alignment of the image. The colourmap properties were determined in setting number between −1000 and 4180. The contrast of the image was adjusted in the centre to ensure that all features are appropriately visible, while keeping the brightness constant. Therefore, using a precision mouse, it was possible to scroll up and down through the several patients' 2D slice images. By using the orientation properties, we can feasibly navigate through each chosen view of the skull. The orientation was defined with the xz plane as coronal, the yz plane as sagittal, and the xy plane as axial.

The landmark function added reference points for characterizing and simplifying various structures of interest. The size and spherical complexity of the landmarks was 1. Then, primary landmarks for Nasion (most anterior point of the frontonasal suture in the median plane), Gnathion (most anteroinferior point on the symphysis of the chin) and Incisal (junction of the borders of lower central incisors) positions were identified on the midline. Landmarks for Foramen spinosum (geometric center of the smallest circumference with the clearest defined borders viewed in axial view on the foramen spinosum), Orbitale (lowest point in the inferior margin of the orbit), Porion (superior point of the external auditory meatus), Condylion (most superior point on the condylar head), Gonion (point of intersection of the ramus plane and the mandibular plane), Coronoid (apex of the coronoid process), Ramus (point of intersection between the anterior border of the mandibular ramus and the mandible body), Maxillozygomatic (lower point of the maxillozygomatic suture), Temporozygomatic (lower point of the temporozygomatic suture), Pterygoid fovea (most concave point of the neck of the condyle), Pterygoid (midpoint of the lateral lamina of pterygoid process), Zyd (lowest point of articular tubercle), and Molar (central fossa of the lower first molar) locations were also bilaterally determined (Fig. 1, Fig. 2, Fig. 3) [7].

Fig. 1.

Fig 1

Coronal view for Nasion (Na), Gnathion (Gn) and Incisal (In) on the mid line, and Foramen spinosum (FS), Orbitale (Or), Porion (Po), Condylion (Co), Gonion (Go), Coronoid (Cor), Ramus (Ra), Maxillozygomatic suture (MZ), Temporozygomatic suture (TM), Pterygoid fovea (Fo), Pterygoid (Pt), Zyd and Molar (Mo) on the right (R) and left (L) sides.

Fig. 2.

Fig 2

Sagittal view for Nasion (Na), Gnathion (Gn) and Incisal (In) on the mid line, and Foramen spinosum (FS), Orbitale (Or), Porion (Po), Condylion (Co), Gonion (Go), Coronoid (Cor), Ramus (Ra), Maxillozygomatic suture (MZ), Temporozygomatic suture (TM), Pterygoid fovea (Fo), Pterygoid (Pt), Zyd and Molar (Mo) on the right (R) and left (L) sides.

Fig. 3.

Fig 3

Axial view for Nasion (Na), Gnathion (Gn) and Incisal (In) on the mid line, and Foramen spinosum (FS), Orbitale (Or), Porion (Po), Condylion (Co), Gonion (Go), Coronoid (Cor), Ramus (Ra), Maxillozygomatic suture (MZ), Temporozygomatic suture (TM), Pterygoid fovea (Fo), Pterygoid (Pt), Zyd and Molar (Mo) on the right (R) and left (L) sides.

4.2. Transfer of landmark coordinates

The coordinates (x, y, and z) of the primary landmarks were transferred to the Cabri 3D software 2.1.2 (Cabrilog, Grenoble, Isère, France) to create secondary landmarks. This system is an interactive spatial geometry and mathematics program designed to explore the properties of dynamic bodies and create numerical constructions. The original values were reversibly divided proportionally by 10, due to the program's smaller visual field. By using the Point function, ELSA (midpoint on the line connecting both Foramen spinosum landmarks) was placed in the midline, and Maa (point that divides the anterior and middle thirds of the line connecting Ramus and Gonion), Map (point dividing the middle and posterior thirds of the line connecting Ramus and Gonion) and Zys (point that divides the posterior and middle thirds of the line joining Maxillozygomatic and Temporozygomatic) positions, on both sides [8]. With the use of Triangle function, the Frankfort (joining the right Porion and left Porion with the right Orbitale or left Orbitale), mandibular (joining the right Gonion and left Gonion with Gnathion) and sagittal (joining ELSA, Nasion, and Gnathion) planes were defined on the basis of the landmarks previously described. Moreover, accessory bilateral planes were oriented in the coronal (xz) and sagittal (yz) directions and constructed from the coronoid as references for the anterior and posterior temporal muscles. Landmarks and planes were used as regional references for muscle attachments to bones.

4.3. Mechanical advantage analysis

Muscle force vectors were drawn using the Vector function to the superficial masseter (origin in Zys and insertion in Gonion), anterior deep masseter (origin in Coronoid and insertion in Maa), posterior deep masseter (origin in Zyd and insertion in Map), anterior temporal (origin in temporal fossa and insertion in Coronoid), posterior temporal (origin in temporal fossa and insertion in Coronoid), medial pterygoid (origin in Pterygoid and insertion in Gonion), and lateral pterygoid (origin in Pterygoid and insertion in Pterygoid fovea) muscles (Fig. 4).

Fig. 4.

Fig 4

Muscle force vectors to the superficial masseter (SMa), anterior deep masseter (ADMa), posterior deep masseter (PDMa), anterior temporal (AT), posterior temporal (PT), medial pterygoid (MPt) and lateral pterygoid (LPt) muscles are presented as red lines in a right diagonal view.

Since the temporal fossa lacks a defined anatomical characteristic, the orientation of the temporal muscles was determined based on two vectors with angulation in the sagittal and axial planes of 10° and 75°, respectively, to the anterior fibres, and 35° and 61°, respectively, to the posterior fibres.

Bite force vectors were designed at right angles (Perpendicular function) to mandibular plane at the molar and incisal positions (Fig. 5).

Fig. 5.

Fig 5

Bite force vectors at the molar (Mo) and incisal (In) positions on the right (R) and left (L) sides are displayed as red lines in a frontal superior view.

Moment arms to each muscle were then drawn as perpendicular lines (Segment function) to each muscle force vector from Condylion (Fig. 6). When that perpendicularity could not eventually be found, the muscle moment arms were adjusted to align with the projection of the muscle force vector (Line function).

Fig. 6.

Fig 6

Muscle moment arms for the superficial masseter (SMa), anterior deep masseter (ADMa), posterior deep masseter (PDMa), anterior temporal (AT), posterior temporal (PT), medial pterygoid (MPt) and lateral pterygoid (LPt) muscles are presented as green lines in a right lateral view.

Load moment arms were drawn as perpendicular segments to each bite force vector also from Condylion (Fig. 7).

Fig. 7.

Fig 7

Load moment arms at the molar (Mo) and incisal (In) positions on the right (R) and left (L) sides are displayed as blue lines in a frontal inferior view.

All angulations were verified using the Angle function of the program.

Moment arms for all muscles were measured in mm using the Distance function, and the mechanical advantage was defined as the ratio of the muscle moment arm to the load moment arm (Fig. 8) [6]. Since it is a proportion, the transformation previously done for the coordinates (/10) had no effect on its own. However, the values were presented in their original magnitude (Table 3).

Fig. 8.

Fig 8

Complete model for all muscles.

4.4. Precision analysis

A primary examiner repeated all measurements three times (trials 1, 2, and 3) after each 24-h interval. Two other examiners carried out these measures only once (trials 4 and 5, respectively). Cephalometric landmarks' coordinates (x, y, and z), muscle and load moment arm lengths (mm), and mechanical advantage ratios for the masticatory muscles were compared using the Friedman test (α = 0.05). Random errors were assessed by the square root of the ‘method of moments’ variance estimator.

Limitations

In this precision research, the variations among subjects are more significant than the central tendency measures of the variables in the sample under study. Dentate subjects of various ages, races, and craniofacial characteristics were included. However, it would have been very interesting to determine the normative values of mandibular mechanical advantage, which could have been calculated with a larger and more homogeneous sample.

Given that the present analysis provides a plausible description of mandibular biomechanics, it is essential to have sufficient knowledge of craniofacial bone and muscular anatomy for image manipulation and landmark identification, as well as a basic understanding of spatial geometry.

CRediT authorship contribution statement

Dominique Ellen Carneiro: Validation, Investigation, Writing – original draft. Giancarlo De La Torre Canales: Methodology, Resources, Writing – review & editing. Manuel Óscar Lagravère: Methodology, Resources, Writing – review & editing. Nara Hellen Campanha: Validation, Investigation. Vanessa Migliorini Urban: Validation, Investigation. Alfonso Sánchez-Ayala: Conceptualization, Methodology, Formal analysis, Writing – original draft, Writing – review & editing, Supervision, Project administration.

Acknowledgments

Ethics Statement

These images were taken for diagnostic purposes on routine orthodontic register and not for this research itself. This work was approved by the Health Research Ethics Board at the University of Alberta (#5563).

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Footnotes

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2024.110402.

Appendix. Supplementary materials

mmc1.pdf (1.8MB, pdf)

Data Availability

References

  • 1.Sánchez-Ayala A., Sánchez-Ayala A., Kolodzejezyk R.C., Urban V.M., Lagravère M.O., Campanha N.H. A three-dimensional method to calculate mechanical advantage in mandibular function: intra- and interexaminer reliability study. J. Orofac. Orthop. 2023;84:321–339. doi: 10.1007/s00056-022-00378-7. [DOI] [PubMed] [Google Scholar]
  • 2.Throckmorton G.S., Finn R.A., Bell W.H. Biomechanics of differences in lower facial height. Am. J. Orthod. 1980;77:410–420. doi: 10.1016/0002-9416(80)90106-2. [DOI] [PubMed] [Google Scholar]
  • 3.Haskell B., Day M., Tetz J. Computer-aided modeling in the assessment of the biomechanical determinants of diverse skeletal patterns. Am. J. Orthod. 1986;89:363–382. doi: 10.1016/0002-9416(86)90068-0. [DOI] [PubMed] [Google Scholar]
  • 4.Dicker G.J., Koolstra J.H., Castelijns J.A., Van Schijndel R.A., Tuinzing D.B. Positional changes of the masseter and medial pterygoid muscles after surgical mandibular advancement procedures: an MRI study. Int. J. Oral Maxillofac. Surg. 2012;41:922–929. doi: 10.1016/j.ijom.2012.01.007. [DOI] [PubMed] [Google Scholar]
  • 5.Dicker G.J., Tuijt M., Koolstra J.H., Van Schijndel R.A., Castelijns J.A., Tuinzing D.B. Static and dynamic loading of mandibular condyles and their positional changes after bilateral sagittal split advancement osteotomies. Int J Oral Maxillofac Surg. 2012;41:1131–1136. doi: 10.1016/j.ijom.2012.03.013. [DOI] [PubMed] [Google Scholar]
  • 6.van Spronsen P.H. Long-face craniofacial morphology: cause or effect of weak masticatory musculature? Semin. Orthod. 2010;16:99–117. doi: 10.1053/j.sodo.2010.02.001. [DOI] [Google Scholar]
  • 7.Lagravère M.O., Gordon J.M., Guedes I.H., Flores-Mir C., Carey J.P., Heo G., Major P.W. Reliability of traditional cephalometric landmarks as seen in three-dimensional analysis in maxillary expansion treatments. Angle Orthod. 2009;79:1047–1056. doi: 10.2319/010509-10R.1. [DOI] [PubMed] [Google Scholar]
  • 8.Lagravère M.O., Low C., Flores-Mir C., Chung R., Carey J.P., Heo G., Major P.W. Intraexaminer and interexaminer reliabilities of landmark identification on digitized lateral cephalograms and formatted 3-dimensional cone-beam computerized tomography images. Am. J. Orthod. Dentofac. Orthop. 2010;137:598–604. doi: 10.1016/j.ajodo.2008.07.018. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

mmc1.pdf (1.8MB, pdf)

Data Availability Statement


Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES