Skip to main content
Springer logoLink to Springer
. 2024 Jan 2;54(4):895–932. doi: 10.1007/s40279-023-01978-y

Effect of Strength Training Programs in Middle- and Long-Distance Runners’ Economy at Different Running Speeds: A Systematic Review with Meta-analysis

Cristian Llanos-Lagos 1, Rodrigo Ramirez-Campillo 2, Jason Moran 3, Eduardo Sáez de Villarreal 1,
PMCID: PMC11052887  PMID: 38165636

Abstract

Background

Running economy is defined as the energy demand at submaximal running speed, a key determinant of overall running performance. Strength training can improve running economy, although the magnitude of its effect may depend on factors such as the strength training method and the speed at which running economy is assessed.

Aim

To compare the effect of different strength training methods (e.g., high loads, plyometric, combined methods) on the running economy in middle- and long-distance runners, over different running speeds, through a systematic review with meta-analysis.

Methods

A systematic search was conducted across several electronic databases including Web of Science, PubMed, SPORTDiscus, and SCOPUS. Using different keywords and Boolean operators for the search, all articles indexed up to November 2022 were considered for inclusion. In addition, the PICOS criteria were applied: Population: middle- and long-distance runners, without restriction on sex or training/competitive level; Intervention: application of a strength training method for ≥ 3 weeks (i.e., high loads (≥ 80% of one repetition maximum); submaximal loads [40–79% of one repetition maximum); plyometric; isometric; combined methods (i.e., two or more methods); Comparator: control group that performed endurance running training but did not receive strength training or received it with low loads (< 40% of one repetition maximum); Outcome: running economy, measured before and after a strength training intervention programme; Study design: randomized and non-randomized controlled studies. Certainty of evidence was assessed with the GRADE approach. A three-level random-effects meta-analysis and moderator analysis were performed using R software (version 4.2.1).

Results

The certainty of the evidence was found to be moderate for high load training, submaximal load training, plyometric training and isometric training methods and low for combined methods. The studies included 195 moderately trained, 272 well trained, and 185 highly trained athletes. The strength training programmes were between 6 and 24 weeks’ duration, with one to four sessions executed per week. The high load and combined methods induced small (ES = − 0.266, p = 0.039) and moderate (ES = − 0.426, p = 0.018) improvements in running economy at speeds from 8.64 to 17.85 km/h and 10.00 to 14.45 km/h, respectively. Plyometric training improved running economy at speeds ≤ 12.00 km/h (small effect, ES = − 0.307, p = 0.028, β1 = 0.470, p = 0.017). Compared to control groups, no improvement in running economy (assessed speed: 10.00 to 15.28 and 9.75 to 16.00 km/h, respectively) was noted after either submaximal or isometric strength training (all, p > 0.131). The moderator analyses showed that running speed (β1 = − 0.117, p = 0.027) and VO2max (β1 = − 0.040, p = 0.020) modulated the effect of high load strength training on running economy (i.e., greater improvements at higher speeds and higher VO2max).

Conclusions

Compared to a control condition, strength training with high loads, plyometric training, and a combination of strength training methods may improve running economy in middle- and long-distance runners. Other methods such as submaximal load training and isometric strength training seem less effective to improve running economy in this population. Of note, the data derived from this systematic review suggest that although both high load training and plyometric training may improve running economy, plyometric training might be effective at lower speeds (i.e., ≤ 12.00 km/h) and high load strength training might be particularly effective in improving running economy (i) in athletes with a high VO2max, and (ii) at high running speeds.

Protocol Registration

The original protocol was registered (https://osf.io/gyeku) at the Open Science Framework.

Supplementary Information

The online version contains supplementary material available at 10.1007/s40279-023-01978-y.

Key Points

Strength training with high loads (≥ 80% of one repetition maximum) can improve running economy and might be particularly effective in athletes running at high speeds (e.g., > 12.00 km/h) and/or possessing a well-developed VO2max.
Plyometric training could improve running economy at speeds less than 12.00 km/h.
The combination of two or more strength training methods (e.g., high load training, plyometric training) may induce greater running economy improvement, compared to isolated training methods.
These results are based on 31 studies with moderate to low certainty of evidence for the main outcomes, involving a total of 652 middle- and long-distance runners.

Introduction

Concurrent training involves the execution of both endurance and strength training within the same training cycle [1] and is effective in enhancing the running performance [2, 3] and running economy (RE) [2, 4, 5] of middle- and long-distance runners. RE is defined as the energy demanded at submaximal running speeds [6] and is one of the key determinants of overall running performance along with maximal oxygen uptake (VO2max), anaerobic threshold and anaerobic capacity [7, 8]. However, a variety of other strength training methods, or combinations thereof, may generate different types of adaptations [2] that could affect changes in RE and, whilst the different protocols used to measure RE may also affect the results of the effect of strength training [2, 9].

RE has been shown to be associated with performance in middle- and long- distance running [1012]. It has been found that trained runners have better RE than active untrained subjects [13]. Indeed, in athletes with a similar VO2max, those with better RE have demonstrated better running performance [11] because they can run at a higher relative intensity or maintain a constant intensity for a relatively longer period of time [14]. One of the strategies for improving RE has traditionally been strength training which can generate various neuromuscular adaptations such as improved intra- and inter-muscular coordination, improved muscle–tendon stiffness, and increased recruitment and firing rate of motor units, in addition to morphological changes [15]. However, strength training programmes can be designed in multiple different ways by varying some of the training parameters (e.g., load, number of sets and repetitions, exercise sequence) [16], which could induce different neuromuscular adaptations in middle- and long-distance runners [15]. For example, strength training with high loads [HL, i.e., ≥ 80% 1 repetition maximum (1 RM)], submaximal loads (SL, i.e., 40–79% 1 RM), isometric training (ISO) and plyometric training (PL) can enhance maximal strength development, strength at submaximal loads, isometric force production and stretch-shortening cycle activity, respectively [15, 17]. In addition, the inclusion of different strength training methods (e.g., HL with PL) have been used as a strategy to improve in different areas of the force–velocity relationship (i.e., different loads and speeds of movements) [18].

In addition to the above, the improvement of RE through strength training has exhibited varying effects depending on the running speed that is being assessed. For example, Piacentini et al. [19] found that strength training with HL only significantly improved RE at marathon pace (p < 0.05), but not at 1.00 km/h faster or slower than marathon pace. Another study [20] found that HL, PL, and complex training (i.e., HL with PL executed within the same session) improved RE at a speed of 12.00 km/h, whereas HL and complex training improved it at 14.00 km/h, while complex training only elicited improvements at 16.00 km/h. These differences in results could possibly have occurred due to differences in the measurement of RE (e.g., as energy cost or oxygen cost) and the chosen running speed, which could be classified as absolute speed or relative speed (e.g., speed relative to anaerobic threshold or race pace) [21, 22]. Moreover, a U-shaped relationship between energy cost and running speed has been found because at the lowest and highest speeds, there appears to be varying utilisation of the stretch-shortening cycle and activation of skeletal muscle in the muscle–tendon unit [23]. In addition, it has been suggested that RE should be measured at a speed relative to the anaerobic threshold [22] as it ensures the same relative intensity for each participant. Accordingly, several methodological aspects related to running speed should be considered when assessing changes in RE. Although there are several systematic reviews and meta-analyses that have examined the effect of strength training on RE [2, 4, 5, 24], none of these have assessed the effect of different strength training methods on RE and the influence of running speed used in the assessment of RE.

Therefore, this systematic review with meta-analysis aimed to compare the effect of different strength training methods on the RE in middle- and long-distance runners, over different running speeds.

Methods

This systematic review and meta-analysis was conducted according to the guidelines established by the PRISMA statement [25]. The protocol was registered prior to analysis of the data at the Open Science Framework (https://osf.io/gyeku).

Information Sources and Search Strategy

The search for articles was carried out in PubMed, Web of Science (all databases), Scopus and SPORTDiscus databases. All articles indexed up to January 2022 were included for the selection. Different terms and Boolean operators were used for the search [Table S1 in the Online Supplementary Material (OSM)]. No limits of study design, date, language, age, or sex were imposed on the search. The search was updated in November 2022, through notifications of new studies found in the search strategy in the different databases. In addition, the reference lists of includable articles, and from reviews, systematic reviews and meta-analyses retrieved from our search were scanned for additional articles of interest.

Selection Process

All titles and abstracts obtained from the database searches were screened independently by two authors (LL and SV) and those potentially meeting the inclusion criteria (Table 1) were included for full text analysis. In the case of a disagreement between the two authors, a third author (RRC) was consulted.

Table 1.

Inclusion and exclusion criteria for meta-analysis

Category Inclusion criteria Exclusion criteria
Population Amateur and competitive middle- and long-distance runners (i.e., running distances ≥ 1500 m), aged > 16 years old, without restriction to sex or training/competitive level Subject with injuries, comorbidities, or non-runners endurance athletes
Intervention A strength training programme (i.e., HL, SL, PL, ISO, or a combination of them) which was in addition to, or in partial replacement (i.e., matched training load) of endurance running training, lasting ≥ 3 weeks, with ≥ 1 weekly session The programme includes alternative methods in addition to strength training (e.g., electrical stimulation or body vibration), and/or supplementations (e.g., creatin)
Comparator Control group that performed endurance running training but did not receive strength training or received it with low loads (< 40% 1 RM or > 20 RM) Absence of control group
Outcome Running economy was recorded in at least one speed before and after the strength training intervention Baseline and/or follow-up data not available
Study design Randomised and non-randomized controlled studies Cross-sectional, observational, or case studies

HL high load training, ISO isometric training, PL plyometric training, RM repetition maximum, SL submaximal training, 1 RM one repetition maximum

Eligibility Criteria

Studies were eligible for inclusion according to the participants, intervention, comparator, outcome, and study design (PICOS) criteria (Table 1).

Data Collection Process

From included studies, an independent reviewer (LL) extracted the data regarding participants characteristics, intervention characteristics, and the main outcomes (means and standard deviations). In those articles where only figure data were available, the validated (r = 0.99, p < 0.001) [26] software WebPlotDigitizer (version 4.5, Pacifica, California, USA) was used to extract the data. Once recoded, the reviewers (LL, SV and RRC) discussed on disagreements and controversial data.

Participants

Only subjects over 16 years of age were considered as pubertal stage can affect physical fitness due to hormonal changes during this period [27]. Subjects were considered to have strength training experience based on the information from each study. According to VO2max mean values, the performance level was categorized as moderately trained (male ≤ 55 ml/kg/min, female ≤ 45 ml/kg/min), well-trained (male 55–65 ml/kg/min, female 45–55 ml/kg/min) or highly trained (≥ 65 ml/kg/min, ≥ 55 ml/kg/min) [28]. When both sexes were measured without distinction, the ranges established were the average of males and females for the respective performance levels. In the case where VO2max was not recorded in a study, level performance was based on participants’ level of competition (moderately trained = recreational or local club level; well-trained = collegiate or provincial level; highly trained = national or international level) [9].

Strength Training Intervention

Strength training methods (i.e., HL, SL, PL, ISO, or a combination of strength training methods), duration of intervention (i.e., weeks; frequency; total sessions), programming model (i.e., lineal; constant; undulating) and exercise sequence (i.e., traditional training; complex training) were recorded. The strength training programme was considered when it was added to, or partially substituted (i.e., matched the training load) for, endurance running training, with an intervention duration of three weeks or more. This corresponds to the time in which both neural and hypertrophic factors can affect strength gains [29], with at least one session undertaken per week. The strength training methods were classified focusing on load (% 1 RM) and/or training target: HL was defined as a program in which exercise was performed with heavy loads (≥ 80% 1 RM or ≤ 7 RM) that were intended to improve maximal force development (e.g., barbell squat, deadlift, etc.); SL with moderate to low loads (peak power load, 40–79% 1 RM or 8–20 RM) with the aim of improving strength development at SL; PL using light-load exercises (< 40% 1 RM) with the aim of improving the stretch-shortening cycle and muscle–tendon stiffness (e.g., drop jumps) and; ISO using isometric contraction exercises (e.g., isometric mid-thigh pull). Those groups that performed strength training with low loads (< 40% 1 RM or > 20 RM) were considered as a control group. The duration of the intervention was counted as total number of weeks, sessions per week and total sessions. The exercise sequence within the session was classified into two, comprising of traditional sequences where exercises are executed with light loads followed by heavy loads and complex sequences where exercises are executed with heavy loads followed by light loads [18]. In the case that the different strength training methods were performed in separate sessions or in different periods, these were considered as traditional sequences.

Outcome Measurements

RE was recorded as the energy demand at submaximal running speed. Of note, energy among studies was reported in different units of measurement (i.e., calorie; oxygen). When both units were reported in a study, the unit “calorie” was selected because it considers differences in substrate use and is more sensitive to changes in speed [21]. In addition, when the respiratory exchange ratio (RER) is less than one, oxidative metabolism is the main metabolic pathway; thus, when the RER is greater than one, and blood lactate values were presented, the energy value was corrected with the energy values of blood lactate [30]. RE values were collected for all speeds assessed in the studies and for methodological purposes, different variables were generated from this data. In RE at absolute speed (km/h), the absolute speed was collected and, when data were presented in relation to a physiological value [e.g., anaerobic threshold or velocity at VO2max (vVO2max)] or a race pace (e.g., 3000 m race pace), we calculated the speed from the average baseline values of both groups (i.e., experimental and control groups). Categorical speeds (≤ 12.00 km/h or > 12.00 km/h) were generated from the mean value of all speeds reported in the included studies. On the other hand, when RE is assessed as absolute speed, the difference in substrate energy relative to anaerobic threshold and VO2max is not considered [21]. Therefore, two categories were generated relative to anaerobic threshold (i.e., second lactate threshold, onset of blood lactate accumulation, maximal lactate steady state, lactate turn point, second ventilatory threshold or critical speed) and VO2max. For RE relative to the anaerobic threshold, speed values were classified: speeds > anaerobic threshold and speeds ≤ anaerobic threshold. If speed values were given as an absolute value and anaerobic threshold values were reported, then the average baseline values of anaerobic threshold of both groups was used to determine the corresponding category. For RE relative to VO2max, the speed was presented as percentage of vVO2max or VO2max (%VO2max), but when the speed values were presented as an absolute value and vVO2max was provided, we then calculated the mean baseline vVO2max of both groups and calculated the percentage corresponding to vVO2max. In addition, we created a category of the U-shaped RE–speed relationship (< 11.50 km/h, 11.50–14.50 km/h or > 14.50 km/h) [23]. Where the study reported multiple time points (i.e., more than two data points), the first record and the last record immediately after the intervention were recorded.

Risk of Bias, Publication Bias and Certainty Assessment

The PEDro (Physiotherapy Evidence Database) scale was used to assess the risk of bias of the studies [31, 32]. Of note, in the context of this systematic review, items five to seven from the PEDro scale were removed from the scale because subjects, assessors and researchers are rarely blinded in supervised exercise interventions [31, 33]. Following previous criteria [33], the studies were categorized as follows: ≥ 6 points = “low risk”, 4–5 points = “moderate risk”, and ≤ 3 points = “high risk”. A funnel plot was performed to assess the publication bias of the studies examining each method of strength training. It was considered to have publication bias if an asymmetry was observed in the funnel plot. The funnel plots were built following the R code provided by Fernández-Castilla et al. [34].

The GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach was conducted for rate the certainty of evidence of this systematic review [3537]. For each of the analyses, we started with a high level of certainty of evidence, which decreases according to the following criteria: risk of bias, downgraded by one level if the median PEDro scale score was moderate risk (< 6 points), or by two levels if it was high risk (< 4 points); inconsistency, downgraded by one level if the Q-test for heterogeneity was significant (i.e., p < 0.05); indirectness, it was considered low risk because the PICO criteria were assured by default; imprecision, downgraded by one level if the number of participants in the control group with the strength training group was < 800 or if the confidence interval was crossed by a small effect size (i.e., ES = − 0.15 to 0.15); publication bias, downgraded by one level if an asymmetry was observed in the funnel plot.

Effect Measures

The between-group (i.e., control-experimental) standardized mean difference was calculated as previously recommended [38] and expressed as Hedges’ g effect size (ES) [39], which helps to cope with small sample sizes [40], common to sport science literature [41]. When only the mean and standard error (SE) were presented, the standard deviation (SD) was calculated from the SE as follows:

SD=SE×N

where N is the sample size. Thresholds for the magnitude of ESs were set as 0.15, 0.45 and 0.80 for a small, moderate, and large effect, respectively [42].

Statistical Analyses

A meta-analysis was performed for each strength training method (i.e., HL, SL, PL, ISO, or combined methods) and its effect on RE when at least three studies provided an outcome measure [43]. If a study had two or more comparison groups in the same analysis, the sample size of the control group was divided by the number of intervention groups [44]. In several studies, different speeds were selected to assess RE. In these cases, the procedure is usually to select a representative ES, to synthesise separately the ES for each outcome across all studies, or to average the sizes of the dependent effects within the study [45]. However, in the first two approaches the sample size is reduced decreasing the statistical power [45], while in the third approach it may negatively impact the validity of the results due to overestimation of standard errors [46]. In addition, these procedures cannot assess the potential differences between ES within studies [47, 48]. Therefore, we used a three-level meta-analysis model [47, 48], which is an extension of the random effect meta-analysis model [40], that considers sampling (level 1), within study (level 2) and between study (level 3) variation.

Due to multiple sources of variation between studies (e.g., training and participant characteristics), a randomized effect model with restricted maximum likelihood estimation method was conducted for estimating the parameters model (τ2) recommended over the traditional DerSimonian and Laird method for continuous data [49]. We based the test statistic and CI in t-distribution with Knapp and Husting adjustment [50].

For each of the strength training methods, the heterogeneity of all ES in the data set was analysed using the test for heterogeneity (Q-test) [51]. Additionally, the one-side log-likelihood-ratio test (LRT) was performed to determine whether the within-study variance (LRTlevel2) and between-study variance (LRTlevel3) are significant [52]. Outliers were defined as ES in which the upper limit of the 95% confidence interval (95% CI) was lower than the lower limit of the pooled effect confidence interval or the lower limit of the 95% CI higher than the upper limit of the pooled effect confidence interval [53]. A sensitivity analysis was then performed with and without the outlier ES to assess their impact on the analysis [53] (i.e., p value from Q-test).

The omnibus test (QM-test) was used to perform a meta-regression (for continuous data), or subgroup analysis (for categorical data), if at least eight studies were pooled. For all analysis alpha was set as 0.05. The three-level meta-analysis were conducted in R (version 4.2.1) with the metafor package [51], following the syntax by Assink and Wibbelink [52]. The forest plot for the three-level meta-analysis was performed using the R code provided by Fernández-Castilla et al. [34], and meta-regression and subgroup analysis plots were built with GraphPad Prism 9 (version 9.2.0).

Results

Study Selection

A total of 1749 records were identified through the search strategy (Fig. 1). Once duplicate records, records not retrieved and articles excluded after review of titles and/or abstracts were excluded, 73 studies were assessed for eligibility. After reading the full text of each document, 42 studies were excluded due to: participants being under 16 years old [5459] being injured before intervention [6062]; studies having no comparator outcomes [6372]; the strength training method was considered ineligible for inclusion (e.g., core, isokinetic eccentric training and body weight training) [7378]; RE was not measured [7989]; outcome results were repeated [9093] or study was cross-sectional by design [94, 95]. Therefore, 31 studies were included in the final meta-analyses.

Fig. 1.

Fig. 1

Flow diagram of the study selection process. *Studies found from notifications of new studies found in the search strategy in the different databases. **Studies found in the reference lists of articles, reviews, systematic reviews, and meta-analyses retrieved from our search strategy

Study Characteristics

A summary of participants’ characteristics and analysis of the studies included in the meta-analysis are presented in Tables 2 and 3, respectively. Thirty-one studies were included in at least one analysis: 11 studies implemented HL, providing 19 ESs [19, 20, 96104]. Of note, the greater number of ES values (i.e., 19) compared to the number of studies (i.e., 11) indicates that some studies assessed RE at two or more running speeds. Eleven studies implemented PL interventions, providing 28 ESs in total [12, 105114]. Three studies implemented SL interventions, providing seven ESs [19, 114, 115]. Three studies implemented ISO interventions, providing 7 ESs [112, 116, 117], and nine studies implemented combined methods, providing 20 ESs [8, 20, 102, 115, 118, 119]. The studies included 652 participants [472 males (204 control and 268 treatments) and 180 females (79 control and 101 treatments)], aged between 17 and 45 years old, mean body mass and height of 68.5 kg and 174.3 cm, respectively. Participants were moderately trained (n = 195), well trained (n = 272), and highly trained (n = 185). The strength training programmes were between 6 and 24 weeks’ duration, with one to four sessions per week.

Table 2.

Participants and strength training intervention characteristics of included studies

Study G Subject characteristics Strength training intervention
n Age BM H VO2max PLv ST Exp D Fq TS Exercises Load Set × repetition Rest Exercise sequence
Ache-Dias et al. [110] PL 9 (M = 4; F = 5) 24 63 160 50 MT NR 8 2 16 PL: Continuous jump BW 4–6 × 30 s 5 min Traditional
C 9 (M = 4; F = 5) 31 66 170 49 MT NR
Albracht and Arampatzis [116] ISO 13 (M) 27 76 180 NR MT NR 14 4 56 ISO: Isometric ankle plantarflexion 90% MVC 5 × 4 × 3 s 3 s Traditional
C 13 (M) 25 75 178 NR MT NR
Berryman et al.[114] SL 12 (M) 31 76 176 58 WT No 8 1 8 SL: Half squat Power peak load 3–6 × 8 3 min Traditional
PL 11 (M) 29 75 178 58 WT No 8 1 8 PL: Drop jump (20–60 cm) BW 3–6 × 8 3 min Traditional
C 5 (M) 29 76 180 56 WT No
Blagrove et al. [9] SL + PL 9 (M = 4; F = 5) 17 58 170 59 HT No 10 2 20 PL: Box jump, a-skip, hurdle jump and land, single leg box jump, high-knees, depth jump SL: Back squat, Romanian deadlift, single leg press, calf raises, rack pull, deadlift, step-up PL: BW. SL: Moderate load PL: 3–4 × 6–8. SL: 2–3 × 6–12 PL: 1.5 min. SL: 3 min Traditional
C 9 (M = 4; F = 5) 18 59 172 62 HT No
Damasceno et al. [101] HL 9 (M) 34 68 174 54 MT NR 8 2 16 HL: Half squat, leg press, plantar flexion, knee extension 2wk: 75–80% 1RM; 2wk: 80–85%1RM; 2wk: 85–90% 1RM; 2wk: 87–93% 1RM 2–3 × 3–10 3 min Traditional
C 9 (M) 33 71 174 56 WT NR
do Carmo et al. [108] PL 15 (M) 33 70 172 55 WT No 8 2 16 PL: Squat jump, split scissor jump, double leg bound, alternate leg bound, single leg forward hop, depth jump, double leg hurdle jump, single leg hurdle hop BW 2–5 × 6
C 13 (M) 33 70 172 57 WT No Traditional
Ferrauti et al. [97] HL 11 (M = 9; F = 2) 40 77 NR 52 WT No 8 2 16 HL: Leg press, knee extension, knee flexion, hip extension, ankle extension 87–93% 1RM 4 × 3–5 3 min Traditional
C 11 (M = 7; F = 4) 40 70 NR 51 WT No
Fletcher et al. [117] ISO 6 (M) 22 68 180 67 HT No 8 3 24 ISO: Isometric ankle plantarflexion 80% MVC 3 × 4 × 20 s 1 min Traditional
C 6 (M) 26 64 176 68 HT No
Johnston et al. [136] HL + SL 6 (F) 30 57 163 51 WT No 10 3 30 SL: Bent-leg, heel raise, straight-leg heel raise HL: Knee flexion, knee extension, squat, hammer curl, lunge SL: 60–67% 1RM. HL: 80–85% 1RM SL: 2 × 12–20. HL: 3 × 6–8 2 min Traditional
C 6 (F) 30 52 164 52 WT No
Kelly et al. [100] HL 7 (F) 21 66 162 40 MT No 10 3 30 HL: Squat, calf raises, hip extension, hip flexion, hamstring curl 1wk: 60–70% 1RM; 1wk: 70–80% 1RM; 8wk: ≥ 85% 1RM 3 × 5 3–4 min Traditional
C 9 (F) 20 60 166 40 MT No
Li et al. [20] HL + PL 10 (M) 20 58 178 66 HT NR 8 3 24 HL: Back squat, Bulgarian squat, Romanian deadlifts PL: Double leg hurdle hop, single leg hop, drop jump HL: 80–85% 1RM. PL: BW HL: 3 × 5 PL: 3 × 6 4 min Complex
HL 9 (M) 21 58 175 66 HT NR 8 3 24 HL: Back squat, Bulgarian squat, Romanian deadlift 80–85% 1RM 5 × 5 3 min Traditional
C 9 (M) 21 61 179 66 HT NR 8 3 24 LL: Back squat, Bulgarian squat, Romanian deadlift 40% 1RM 5 × 20–30 1 min Traditional
Luckin-Baldwin et al. [135] SL + HL 14 (M = 10; F = 4) 39 76 177 55 WT No 24 2 48 SL + HL: Half squat, glute hamstring raises, hip thrusts, single leg press, single leg seated calf raise, hip flexion, hip abduction 12wk: ≥ 75% 1RM; 12wk: ≥ 85% 1RM 1–5 × 1–12 Traditional
C 11 (M = 9; F = 2) 36 76 176 53 WT No
Lum et al. [105] PL 7 (M) 29 66 171 54 MT NR 6 2 12 PL: Alternate leg bounding, double leg and single leg hurdle hop, depth jump BW 3–4 × 5–40 3 min Traditional
C 7 (M) 29 66 171 54 MT NR
Lum et al. [112] PL 9 (M = 6; F = 3) 38 65 170 51 WT Yes 6 2 12 PL: Depth jump, single leg bounding, split jump BW 2–4 × 4–5 3 min Traditional
ISO 9 (M = 6; F = 3) 37 63 173 52 WT Yes 6 2 12 ISO: Isometric ankle plantarflexion Maximal isometric force 3 × 3 × 3 s 3 min Traditional
C 8 (M = 6; F = 2) 32 62 168 50 WT Yes 6 2 12 LL: Squat, lunge with knee lift, arabesque BW 3 × 30 s 30 s Traditional
Lundstrom et al. [109] PL 11 (M = 7; F = 4) 21 66 NR 51 WT NR 12 1 12 PL: Horizontal jump, vertical jump, frog hop, alternate leg bound, single leg forward hop, lateral cone jump, forward/backward cone jump, squat jump, lunge jump, depth jump, box jump BW 1–2 × 8–20 1 min Traditional
C 11 (M = 6; F = 5) 20 74 NR 54 WT NR 12 1 12 BW 1–3 × 10–30 1 min
Mikkola et al. [137] SL + PL 13 (M = 9; F = 4) 17 63 177 62 HT NR 8 3 24 PL: Alternate jump, calf jump, squat jump, hurdle jump SL: Half squats, knee extensions, knee flexions, calf raises Low–load or BW 2–3 × 6–10 Traditional
C 12 (M = 9; F = 3) 17 60 172 62 HT NR
Mikkola et al. [102] HL 11 (M) 36 78 179 51 MT Yes 8 2 16 HL: Squat, seated leg press 85–90% 1RM 3 × 4–6 2–3 min Traditional
SL + PL 10 (M) 36 79 181 51 MT Yes 8 2 16 SL: Squat, seated leg press PL: Squat jump, scissor jump 0–40% 1RM SL: 3 × 6. PL: 2 × 5–10 2–3 min Complex
C 6 (M) 34 84 181 48 MT Yes 8 2 16 LL: Squat, lunges BW 3 × 40–50 s 10–20 s Traditional
Millet et al. [103] HL 7 (M) 24 67 175 70 HT NR 14 2 28 HL: Hamstring curl, leg press, seated press, squat, leg extension, heel raises 87–93% 1RM 3–5 × 3–5 Traditional
C 8 (M) 21 65 175 68 HT NR
Paavolainen et al. [8] PL + SL 10 (M) 23 72 179 68 HT NR 9 2.5 22.5 PL: Alternate jump, bilateral countermovement jump, drop jump, hurdle jump, one-legged SL: Leg press, knee extensor-flexor PL: BW or barbell. SL: 0–40% 1RM Traditional
C 8 (M) 24 70 182 68 HT NR LL: Leg exercises BW 1 × 12
Pellegrino et al. [12] PL 11 (M = 7; F = 4) 33 68 172 48 MT No 6 2.5 15 PL: Squat jump, split scissor jump, double leg bound, alternate leg bound, single leg forward hop, deep knee bend box jump landing, double leg hurdle jump, single leg hurdle hop BW 2–3 × 8–15 Traditional
C 11 (M = 7; F = 4) 34 71 171 48 MT No
Piacentini et al. [19] SL 5 (M = 3; F = 2) 45 68 170 NR MT NR 6 2 12 SL: Half squat with arm weights, calf exercise (leg press), lunges with arm weights, leg press, eccentric quadriceps contractions, seated calf raises 70% 1RM 3 × 10 2–3 min Traditional
HL 6 (M = 4; F = 2) 44 72 170 NR MT NR 6 2 12 HL: Half squat with arm weights, calf exercise (leg press), lunges with arm weights, eccentric quadriceps contractions, leg press 85–90% 1RM 4 × 3–4 3–4 min Traditional
C 5 (M) 43 71 175 NR MT NR
Saunders et al. [113] PL 7 (M) 23 68 NR 68 HT Yes 9 2.5 26 PL: Countermovement jump, knee lift, ankle jump, hamstring curls, alternate leg bound, skip for height, single leg ankle jump, continuous hurdle jump, scissor jump for height SL: Leg pressa 60% 1RM + BW 1–5 × 6–20 Complex
C 8 (M) 25 68 NR 70 HT Yes
Sedano et al. [115] SL + PL 6 (M) 24 69 181 69 HT Yes 12 2 24 SL: Barbell squat, lying leg curl, seated calf raises, leg extension PL: Vertical jump over hurdles, horizontal jump SL: 70% 1RM. PL: BW SL: 3 × 7. PL: 10 5 min Complex
SL 6 (M) 24 66 179 71 HT Yes 12 2 24 SL: Barbell squat, lying leg curl, seated calf raises, leg extension 40% 1RM 3 × 20 1 min Traditional
C 6 (M) 24 70 185 69 HT Yes 12 2 24 LL: Squat with band, lying leg curl with band, calf raises with band, leg extension with band Resistance band 1 × 25 5 min
Skovgaard et al. [104] HL 12 (M) 31 77 180 61 WT No 8 4 32 HL: Squat, deadlift, leg press 2wk 65–67% 1RM; 6wk: HL: 80–90% 1RM HL: 3 × 8–4 3 min Traditional
C 9 (M) 31 77 180 59 WT No
Spurrs et al. [107] PL 8 (M) 25 74.7 178 58 WT No 6 2.5 15 PL: Squat jump, split scissor jump, double leg bound, alternate leg bound, single leg forward hop, depth jump, double leg hurdle jump, single leg hurdle hop BW 2–3 × 8–15 Traditional
C 9 (M) 25 70.2 178 58 WT No
Štohanzl et al. [111] PL 9 (F) 32 69 169 39 MT No 10 2 20 PL: Calf jump, low skater jump, half squat jump BW 3–4 × 12–3 2 min Traditional
PL 11 (F) 32 71 169 34 MT No 10 1 10 PL: Calf jump, low skater jump, half squat jump BW 3–4 × 12–3 2 min Traditional
C 11 (F) 32 69 169 37 MT No
Støren et al. [99] HL 8 (M = 4; F = 4) 29 60 171 61 HT No 8 3 24 HL: Half squat 90% 1RM 4 × 4 3 min Traditional
C 9 (M = 5; F = 4) 30 71 179 57 WT No
Trowell et al. [119] SL + PL 14 (M = 8; F = 6) 33 73 173 61 HT No 10 2 20 PL: Ankle bouncing, hurdle jump (40 cm), high-knee drill or a-skip drill, split squat jump, countermovement jump or drop jump (45 cm) SL: Back squat, single leg deadlift SL: 70% 1RM. PL: 0–30% BW SL: 2–5 × 10. PL: 2–5 × many 3 min Complex
C 14 (M = 9; F = 5) 34 70 175 66 HT No 10 2 20 LL: Sit-up, lunge, among others BW
Turner et al. [106] PL 10 (M = 4; F = 6) 31 65 170 50 WT NR 6 3 18 PL: Vertical jump, one-legged vertical jump, vertical springing jump, split-squat jump, incline jump BW 1 × 5–15 Traditional
C 8 (M = 4; F = 4) 27 72 174 54 WT NR
Vikmoen et al. [98] HL 11 (F) 35 62 169 52 WT No 11 2 22 HL: Half squat, one-legged leg press, standing one-legged hip flexion, ankle plantarflexion 3wk: 75–85% 1RM; 3wk: 80–87% 1RM; 5wk: 85–90% 1RM 3 × 4–10 Traditional
C 8 (F) 32 66 170 54 WT No
Vorup et al. [96] HL 9 (M) 39 75 181 60 WT NR 8 2 16 HL: Half squat, leg press, deadlift 1wk: 75% 1RM; 1wk: 80% 1RM; 2wk: 85% 1RM; 4wk: 90% 1RM 1–4 × 10–4 3 min Traditional
C 7 (M) 37 74 184 60 WT NR

Age (years), BM body mass (kg), C control, D duration (weeks), Fq frequency (session/week), F female, G group, H height (cm), HL high load training, HT highly trained, ISO isometric training, M male, min minute/s, MT moderately trained, MVC maximal voluntary contraction, n sample size, NR not reported, LL low load, PL plyometric training, PLv performance level, s seconds, SL submaximal training, ST exp strength training experience, TS total sessions, VO2max (ml/kg/min), wk week/s, WL well trained, 1 RM one repetition maximum

aSL training was not considered relevant to the training

Table 3.

Analysis of the studies included in the meta-analysis of running economy

Study G n Running economy
Intensity Mean pre (SD) Mean post (SD)
Measurement Speed reported U-shaped RE-speed relationship Relative to AT Relative to VO2max (%)
Ache-Dias et al. [110] PL 9 (M = 4; F = 5) kcal/min 9.00 km/h < 11.50 km/h ≤ AT 65.03 12.84 (1.61) 12.57 (1.99)
C 9 (M = 4; F = 5) kcal/min 9.00 km/h < 11.50 km/h ≤ AT 65.03 12.63 (2.28) 12.31 (2.23)
Albracht & Arampatzis [116] ISO 13 (M) J/m/kg 10.80 km/h < 11.50 km/h ≤ AT 4.25 (0.34) 4.05 (0.32)
J/m/kg 12.60 km/h 11.50–14.50 km/h ≤ AT 4.27 (0.32) 4.12 (0.31)
C 13 (M) J/m/kg 10.80 km/h < 11.50 km/h ≤ AT 4.11 (0.32) 4.11 (0.28)
J/m/kg 12.60 km/h 11.50–14.50 km/h ≤ AT 4.18 (0.34) 4.19 (0.30)
Berryman et al. [114] SL 12 (M) ml/kg/km 12.00 km/h 11.50–14.50 km/h 73.11 207.00 (15.00) 199.00 (12.00)
PL 11 (M) ml/kg/km 12.00 km/h 11.50–14.50 km/h 73.11 218.00 (16.00) 203.00 (13.00)
C 5 (M) ml/kg/km 12.00 km/h 11.50–14.50 km/h 73.11 199.00 (18.00) 199.00 (20.00)
Blagrove et al. [118] SL + PL 9 (M = 4; F = 5) kJ/kg0.67/km sLTP 11.50–14.50 km/h ≤ AT 83.53 18.70 (1.30) 18.10 (1.40)
kJ/kg0.67/km sLTP—1.00 km/h 11.50–14.50 km/h ≤ AT 77.75 18.50 (1.30) 18.30 (0.90)
kJ/kg0.67/km sLTP—2.00 km/h 11.50–14.50 km/h ≤ AT 71.97 18.80 (1.20) 18.10 (1.50)
C 9 (M = 4; F = 5) kJ/kg0.67/km sLTP 11.50–14.50 km/h ≤ AT 83.53 18.50 (1.30) 18.30 (0.80)
kJ/kg0.67/km sLTP—1.00 km/h 11.50–14.50 km/h ≤ AT 77.75 19.20 (1.40) 18.50 (1.60)
kJ/kg0.67/km sLTP—2.00 km/h 11.50–14.50 km/h ≤ AT 71.97 18.80 (1.30) 18.70 (1.20)
Damasceno et al. [101] HL 9 (M) ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 76.57 42.50 (3.10) 41.90 (4.00)
C 9 (M) ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 76.57 41.80 (4.60) 41.00 (4.20)
do Carmo et al. [108] PL 15 (M) ml/kg/min Avg 11.00 to 12.00 km/h 11.50–14.50 km/h ≤ AT 73.95 226.05 (18.40) 215.90 (17.70)
C 13 (M) ml/kg/min Avg 11.00 to 12.00 km/h 11.50–14.50 km/h ≤ AT 73.95 224.90 (18.00) 224.90 (19.90)
Ferrauti et al. [97] HL 11 (M = 9; F = 2) ml/kg/min 10.08 km/h  < 11.50 km/h ≤ AT 71.77 36.90 (2.10) 37.70 (2.90)
ml/kg/min 8.64 km/h  < 11.50 km/h ≤ AT 62.56 31.70 (1.90) 33.30 (3.10)
C 11 (M = 7; F = 4) ml/kg/min 10.08 km/h  < 11.50 km/h ≤ AT 71.77 37.10 (3.10) 38.80 (2.80)
ml/kg/min 8.64 km/h  < 11.50 km/h ≤ AT 62.56 32.80 (4.30) 34.1 (3.00)
Fletcher et al. [117] ISO 6 (M) kJ/kg/km 95% sLT 11.50–14.50 km/h ≤ AT 4.46 (0.16) 4.44 (0.21)
75% sLT 11.50–14.50 km/h ≤ AT 4.17 (0.33) 4.21 (0.27)
85% sLT 11.50–14.50 km/h ≤ AT 4.27 (0.18) 4.26 (0.28)
C 6 (M) kJ/kg/km 95% sLT 11.50–14.50 km/h ≤ AT 4.64 (0.16) 4.63 (0.16)
75% sLT 11.50–14.50 km/h ≤ AT 4.49 (0.22) 4.50 (0.21)
85% sLT 11.50–14.50 km/h ≤ AT 4.64 (0.16) 4.63 (0.16)
Johnston et al. [136] HL + SL 6 (F) ml/kg/min 13.80 km/h 11.50–14.50 km/h 85.59 44.50 (1.00) 42.80 (1.10)
12.84 km/h 11.50–14.50 km/h 79.80 41.60 (1.10) 39.90 (0.80)
C 6 (F) ml/kg/min 13.80 km/h 11.50–14.50 km/h 85.59 42.80 (0.70) 43.20 (0.70)
12.84 km/h 11.50–14.50 km/h 79.80 39.80 (0.50) 40.00 (0.70)
Kelly et al. [100] HL 7 (F) ml/kg/min 3 km race pace < 11.50 km/h 71.91 27.50 (3.60) 29.30 (2.60)
C 9 (F) ml/kg/min 3 km race pace < 11.50 km/h 71.91 29.60 (4.60) 30.20 (7.00)
Li et al. [20] HL + PL 10 (M) ml/kg/min 16.00 km/h > 14.50 km/h ≤ AT 91.67 60.77 (4.17) 56.09 (2.55)
ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 72.08 46.62 (3.2) 44.20 (2.32)
ml/kg/min 14.00 km/h 11.50–14.50 km/h ≤ AT 81.61 54.45 (3.18) 50.17 (3.04)
HL 9 (M) ml/kg/min 16.00 km/h > 14.50 km/h ≤ AT 91.67 59.60 (3.04) 57.88 (4.11)
ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 72.08 47.01 (3.14) 45.06 (3.82)
ml/kg/min 14.00 km/h 11.50–14.50 km/h ≤ AT 81.61 53.41 (3.26) 50.78 (4.07)
C 9 (M) ml/kg/min 16.00 km/h > 14.50 km/h ≤ AT 91.67 61.00 (3.00) 61.35 (1.79)
ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 72.08 47.81 (3.24) 45.71 (3.05)
ml/kg/min 14.00 km/h 11.50–14.50 km/h ≤ AT 81.61 53.95 (2.27) 52.33 (2.31)
Luckin-Baldwin et al. [135] SL + HL 14 (M = 10; F = 4) ml/kg0.75/min Different speeds 665.48 (53.81) 633.14 (59.37)
C 11 (M = 9; F = 2) ml/kg0.75/min Different speeds 685.84 (45.18) 670.42 (65.78)
Lum et al. [105] PL 7 (M) ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 83.47 45.30 (1.80) 44.60 (2.30)
ml/kg/min 10.00 km/h < 11.50 km/h ≤ AT 70.54 37.90 (2.10) 36.80 (1.70)
C 7 (M) ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 83.47 45.10 (3.40) 44.70 (4.10)
ml/kg/min 10.00 km/h ≤ AT 70.54 38.50 (3.30) 37.30 (3.10)
Lum et al. [112] PL 9 (M = 6; F = 3) J/kg/km F: 10.00 km/h; M: 12.00 km/h 11.50–14.50 km/h 69.40 1.08 (0.06) 1.07 (0.06)
J/kg/km F: 12.00 km/h; M: 14.00 km/h 11.50–14.50 km/h 82.02 1.09 (0.07) 1.08 (0.07)
ISO 9 (M = 6; F = 3) J/kg/km F: 10.00 km/h; M: 12.00 km/h 11.50–14.50 km/h 69.40 1.06 (0.06) 1.04 (0.08)
J/kg/km F: 12.00 km/h; M: 14.00 km/h 11.50–14.50 km/h 82.02 1.08 (0.10) 1.04 (0.09)
C 8 (M = 6; F = 2) J/kg/km F: 10.00 km/h; M: 12.00 km/h 11.50–14.50 km/h 69.40 1.13 (0.12) 1.11 (0.07)
J/kg/km F: 12.00 km/h; M: 14.00 km/h 11.50–14.50 km/h 82.02 1.12 (0.12) 1.10 (0.06)
Lundstrom et al. [109] PL 11 (M = 7; F = 4) ml/kg/min Avg values over incremental test 216.30 (17.90) 200.20 (29.50)
C 11 (M = 6; F = 5) ml/kg/min Avg values over incremental test 218.60 (19.40) 192.90 (37.00)
Mikkola et al. [137] SL + PL 13 (M = 9; F = 4) ml/kg/min 14.00 km/h 11.50–14.50 km/h 83.01 52.10 (3.10) 50.60 (3.60)
ml/kg/min 10.00 km/h < 11.50 km/h 61.43 38.20 (2.80) 38.70 (3.00)
ml/kg/min 12.00 km/h 11.50–14.50 km/h 72.54 45.00 (3.10) 44.10 (3.30)
ml/kg/min 13.00 km/h 11.50–14.50 km/h 77.05 48.10 (3.20) 47.40 (3.30)
C 12 (M = 9; F = 3) ml/kg/min 14.00 km/h 11.50–14.50 km/h 83.01 51.00 (4.30) 52.30 (3.90)
ml/kg/min 10.00 km/h < 11.50 km/h 61.43 38.10 (3.10) 38.90 (3.00)
ml/kg/min 12.00 km/h 11.50–14.50 km/h 72.54 45.10 (3.70) 45.90 (3.90)
ml/kg/min 13.00 km/h 11.50–14.50 km/h 77.05 47.60 (4.10) 49.00 (3.40)
Mikkola et al. [102] HL 11 (M) ml/kg/min 12.00 km/h 11.50–14.50 km/h > AT 86.06 218.00 (10.00) 219.00 (11.00)
ml/kg/min 10.00 km/h < 11.50 km/h ≤ AT 74.07 224.00 (10.00) 225.00 (11.00)
SL + PL 10 (M) ml/kg/min 12.00 km/h 11.50–14.50 km/h > AT 86.06 212.00 (17.00) 210.00 (16.00)
ml/kg/min 10.00 km/h < 11.50 km/h ≤ AT 74.07 217.00 (18.00) 217.00 (20.00)
C 6 (M) ml/kg/min 12.00 km/h 11.50–14.50 km/h > AT 86.06 208.00 (15.00) 206.00 (18.00)
ml/kg/min 10.00 km/h < 11.50 km/h ≤ AT 74.07 216.00 (14.00) 217.00 (22.00)
Millet et al. [103] HL 7 (M) ml/kg/km 75% sVO2max > 14.50 km/h ≤ AT 75.00 193.60 (4.30) 180.30 (20.00)
ml/kg/km 92% sVO2max > 14.50 km/h > AT 92.00 196.40 (5.50) 185.40 (16.30)
C 8 (M) ml/kg/km 75% sVO2max > 14.50 km/h ≤ AT 75.00 189.80 (13.10) 203.20 (20.20)
ml/kg/km 92% sVO2max > 14.50 km/h > AT 92.00 194.60 (22.30) 205.20 (18.10)
Paavolainen et al. [8] PL + SL 10 (M) ml/kg/min 15.01 km/h > 14.50 km/h > AT 78.17 51.80 (1.20) 47.60 (1.30)
C 8 (M) ml/kg/min 15.01 km/h > 14.50 km/h > AT 78.17 50.70 (1.50) 51.40 (2.10)
Pellegrino et al. [12] PL 11 (M = 7; F = 4) J/kg/min 12.10 km/h 11.50–14.50 km/h ≤ AT 927.00 (28.00) 920.00 (29.00)
J/kg/min 7.74 km/h < 11.50 km/h ≤ AT 646.00 (17.00) 643.00 (20.00)
J/kg/min 9.18 km/h < 11.50 km/h ≤ AT 703.00 (17.00) 696.00 (18.00)
J/kg/min 10.62 km/h < 11.50 km/h ≤ AT 789.00 (19.00) 779.00 (28.00)
J/kg/min 13.53 km/h 11.50–14.50 km/h > AT 1070.00 (39.00) 1095.00 (35.00)
J/kg/min 14.97 km/h > 14.50 km/h > AT 1220.00 (50.00) 1217.00 (34.00)
J/kg/min 16.41 km/h > 14.50 km/h > AT 1337.00 (84.00) 1415.00 (52.00)
C 11 (M = 7; F = 4) J/kg/min 12.10 km/h 11.50–14.50 km/h ≤ AT 998.00 (30.00) 991.00 (31.00)
J/kg/min 7.74 km/h < 11.50 km/h ≤ AT 673.00 (17.00) 685.00 (20.00)
J/kg/min 9.18 km/h < 11.50 km/h ≤ AT 746.00 (17.00) 763.00 (18.00)
J/kg/min 10.62 km/h < 11.50 km/h ≤ AT 857.00 (19.00) 882.00 (28.00)
J/kg/min 13.53 km/h 11.50–14.50 km/h > AT 1163.00 (41.00) 1131.00 (37.00)
J/kg/min 14.97 km/h > 14.50 km/h > AT 1383.00 (59.00) 1340.00 (41.00)
J/kg/min 16.41 km/h > 14.50 km/h > AT 1518.00 (168.00) 1451.00 (105.00)
Piacentini et al. [19] SL 5 (M = 3; F = 2) ml/kg/min Avg 11.75 km/h 11.50–14.50 km/h 42.30 (7.40) 42.20 (8.20)
ml/kg/min Avg 9.75 km/h < 11.50 km/h ≤ AT 35.30 (6.20) 34.90 (7.00)
ml/kg/min Avg 10.75 km/h < 11.50 km/h ≤ AT 39.20 (6.90) 38.00 (7.10)
HL 6 (M = 4; F = 2) ml/kg/min Avg 11.75 km/h 11.50–14.50 km/h 42.80 (5.00) 44.20 (4.00)
ml/kg/min Avg 9.75 km/h < 11.50 km/h ≤ AT 37.00 (5.20) 36.20 (4.20)
ml/kg/min Avg 10.75 km/h < 11.50 km/h ≤ AT 42.10 (4.00) 39.50 (3.50)
C 5 (M) ml/kg/min Avg 11.75 km/h 11.50–14.50 km/h 43.40 (3.60) 42.90 (40)
ml/kg/min Avg 9.75 km/h < 11.50 km/h ≤ AT 34.70 (2.40) 34.60 (2.30)
ml/kg/min Avg 10.75 km/h < 11.50 km/h ≤ AT 39.50 (2.80) 39.20 (0.80)
Saunders et al. [113] PL 7 (M) J/kg/min 16.00 km/h > 14.50 km/h ≤ AT 81.04 1190.80 (87.20) 1162.80 (116.10)
J/kg/min 18.00 km/h > 14.50 km/h > AT 90.96 1539.20 (292.20) 1481.40 (216.60)
C 8 (M) J/kg/min 16.00 km/h > 14.50 km/h ≤ AT 81.04 1209.40 (41.90) 1138.60 (133.60)
J/kg/min 18.00 km/h > 14.50 km/h > AT 90.96 1528.20 (256.60) 1435.70 (176.90)
Sedano et al. [115] SL + PL 6 (M) ml/kg/min 16.00 km/h > 14.50 km/h 74.64 50.92 (0.89) 49.37 (1.03)
ml/kg/min 12.00 km/h 11.50–14.50 km/h 55.98 38.69 (1.05) 37.25 (0.75)
ml/kg/min 14.00 km/h > 14.50 km/h 65.31 44.80 (1.11) 42.48 (1.05)
SL 6 (M) ml/kg/min 16.00 km/h > 14.50 km/h 74.64 50.60 (1.27) 49.84 (1.53)
ml/kg/min 12.00 km/h 11.50–14.50 km/h 55.98 38.92 (1.41) 37.92 (1.50)
ml/kg/min 14.00 km/h > 14.50 km/h 65.31 45.40 (1.09) 44.30 (1.19)
C 6 (M) ml/kg/min 16.00 km/h > 14.50 km/h 74.64 50.67 (0.95) 50.69 (0.94)
ml/kg/min 12.00 km/h 11.50–14.50 km/h 55.98 38.66 (1.22) 38.59 (1.02)
ml/kg/min 14.00 km/h > 14.50 km/h 65.31 46.95 (2.82) 46.88 (2.14)
Skovgaard et al. [104] HL 12 (M) ml/kg/km 12.00 km/h 11.50–14.50 km/h 62.71 195.00 (4.00) 189.00 (4.00)
C 9 (M) ml/kg/km 12.00 km/h 11.50–14.50 km/h 62.71 180.00 (4.00) 178.00 (6.00)
Spurrs et al. [107] PL 8 (M) ml/kg/min 14.00 km/h 11.50–14.50 km/h ≤ AT 55.43 33.35 (5.15) 32.23 (4.27)
ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 43.44 26.05 (4.11) 24.30 (3.68)
ml/kg/min 16.00 km/h > 14.50 km/h > AT 69.84 41.96 (6.14) 40.22 (5.43)
C 9 (M) ml/kg/min 14.00 km/h 11.50–14.50 km/h ≤ AT 55.43 30.62 (3.29) 30.46 (3.98)
ml/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 43.44 24.08 (2.87) 24.21 (3.37)
ml/kg/min 16.00 km/h > 14.50 km/h > AT 69.84 38.64 (4.95) 38.85 (5.33)
Štohanzl et al. [111] PL 9 (F) ml/kg/min sVT2 < 11.50 km/h ≤ AT 80.74 28.90 (2.70) 28.40 (2.60)
ml/kg/min 7.00 km/h < 11.50 km/h ≤ AT 73.77 28.10 (2.50) 26.80 (3.10)
ml/kg/min 9.00 km/h < 11.50 km/h > AT 87.30 33.10 (2.70) 32.10 (3.10)
PL 11 (F) ml/kg/min sVT2 < 11.50 km/h ≤ AT 83.88 31.20 (3.50) 30.80 (3.50)
ml/kg/min 7.00 km/h < 11.50 km/h ≤ AT 68.99 24.60 (4.20) 23.60 (4.90)
ml/kg/min 9.00 km/h < 11.50 km/h ≤ AT 81.69 29.00 (5.00) 28.60 (5.30)
C 11 (F) ml/kg/min sVT2 < 11.50 km/h ≤ AT 83.88 30.20 (3.40) 31.60 (3.80)
ml/kg/min 7.00 km/h < 11.50 km/h ≤ AT 68.99 25.90 (1.90) 25.30 (2.40)
ml/kg/min 9.00 km/h < 11.50 km/h ≤ AT 81.69 30.80 (2.20) 30.50 (1.90)
Støren et al. [99] HL 8 (M = 4; F = 4) ml/kg0.75/min 70% sVO2max ≤ AT 70.00 0.68 (0.04) 0.65 (0.03)
C 9 (M = 5; F = 4) ml/kg0.75/min 70% sVO2max ≤ AT 70.00 0.68 (0.05) 0.69 (0.05)
Trowell et al. [119] SL + PL 14 (M = 8; F = 6) kJ/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 66.23 4.51 (0.40) 4.50 (0.33)
C 14 (M = 9; F = 5) kJ/kg/min 12.00 km/h 11.50–14.50 km/h ≤ AT 66.23 4.43 (0.41) 4.35 (0.37)
Turner et al. [106] PL 10 (M = 4; F = 6) m/ml/kg 11.27 km/h < 11.50 km/h 5.20 (0.34) 5.32 (0.39)
m/ml/kg 9.65 km/h < 11.50 km/h 5.14 (0.36) 5.30 (0.36)
C 8 (M = 4; F = 4) m/ml/kg 11.27 km/h < 11.50 km/h 5.07 (0.42) 5.04 (0.45)
m/ml/kg 9.65 km/h < 11.50 km/h 5.21 (0.37) 5.12 (0.28)
Vikmoen et al. [98] HL 11 (F) ml/kg/min 10.00 km/h < 11.50 km/h ≤ AT 85.74 45.83 (1.65) 46.13 (1.73)
C 8 (F) ml/kg/min 10.00 km/h < 11.50 km/h ≤ AT 85.74 45.39 (1.48) 45.35 (1.40)
Vorup et al. [96] HL 9 (M) ml/kg/min Avg 15.00 km/h > 14.50 km/h > AT 81.74 54.70 (6.00) 52.50 (4.60)
ml/kg/min Avg 11.00 km/h < 11.50 km/h ≤ AT 59.95 42.40 (4.80) 40.30 (2.70)
C 7 (M) ml/kg/min Avg 15.00 km/h > 14.50 km/h > AT 81.74 53.10 (4.20) 53.60 (6.10)
ml/kg/min Avg 11.00 km/h < 11.50 km/h ≤ AT 59.95 42.30 (1.90) 42.30 (3.70)

avg average, AT anaerobic threshold, C control, F female, G group, HL high load training, ISO isometric training, M male, n sample size, PL plyometric training, SD standard deviation, SL submaximal load training, sLT speed at lactate threshold, sLTP speed at lactate turn point, sVT2 speed at VT2, sVO2max speed at VO2max

Risk of Bias, Publication Bias and Certainty Assessment

The median of risk of bias was 6 of 7 [ranging from 5 to 7; moderate to low risk of bias; Table S2 (OSM)]. No publication bias was found in any of the analyses [Fig. S1 (OSM)]. We found a moderate and low level of certainty of evidence, due to an analysis with moderate risk of bias in the combined methods group, and low number of participants included in the analyses and/or the confidence interval crossed the small effect size in all main analyses (Table 4).

Table 4.

GRADE assessment for the certainty of evidence

Certainty assessment No. of participants Certainty
No. of studies Risk of bias Inconsistency Indirectness Imprecision Publication bias Strength training Control group
High load training (follow-up: mean 8.6 weeks)
 11 Not serious Not serious Not serious Seriousa Undetected 108 98

⨁⨁⨁◯

Moderate

Submaximal training (follow-up: mean 8.7 weeks)
 3 Not serious Not serious Not serious Seriousa Undetected 23 16

⨁⨁⨁◯

Moderate

Plyometric training (follow-up: mean 7.9 weeks)
 11 Not serious Not serious Not serious Seriousa Undetected 118 100

⨁⨁⨁◯

Moderate

Isometric training (follow-up: mean 9.3 weeks)
 3 Not serious Not serious Not serious Seriousa Undetected 28 27

⨁⨁⨁◯

Moderate

Combined methods training (follow-up: mean 11.5 weeks)
 9 Seriousb Not serious Not serious Seriousa Undetected 82 73

⨁⨁◯◯

Low

aDowngraded by one level because n < 800 and/or the 95% confidence interval crossed the small effect size

bDowngraded by one level because the median PEDro scale score was < 6

Main Effects

Thirty-one studies (involving 37 experimental-control comparisons) measured RE at speeds between 7.00 and 18.00 km/h, providing a total of 80 ES for analysis.

Compared to the control group, the HL exerted a small significant effect on RE at speeds ranging from 8.64 to 17.85 km/h (ES [95% CI] = − 0.266 [− 0.516 to − 0.015], p = 0.039; Q(18) = 16.816, p = 0.536, LRTlevel2 = 0, p = 1, LRTlevel3 = 0.089, p = 0.765, Fig. 2). Combined methods group induced a moderate significant effect, although with significant heterogeneity (ES [95% CI] = − 0.647 [− 1.140 to − 0.154], p = 0.013; Q(19) = 40.696, p = 0.003, LRTlevel2 = 0.033, p = 0.855, LRTlevel3 = 2.569, p = 0.109). After removing outlier groups (i.e., Paavolainen et al. [8] and the 16.00 km/h group in Li et al. [20]), the main effect remained moderate significant on RE (i.e., from 10.00 to 14.45 km/h), although without significant heterogeneity (ES [95% CI] = − 0.426 [− 0.768 to − 0.083], p = 0.018, Q(17) = 19.3, p = 0.312, LRTlevel2 = 0, p = 1, LRTlevel3 = 1.671, p = 0.196, Fig. 3).

Fig. 2.

Fig. 2

Forest plots of the included studies for high load training and its effect on running economy. The black squares represent the mean observed effect size of the study, the size of square represent the weight of the study and the black lines represent the 95% confidence interval. The grey line represents a 95% confidence interval based on the sampling variance of individual observed effect sizes in a study, and its thickness is proportional to the number of effect sizes reported within studies. J number of effect sizes within studies

Fig. 3.

Fig. 3

Forest plots of the included studies for combined methods training and its effect on running economy. The black squares represent the mean observed effect size of the study, the size of square represent the weight of the study and the black lines represent the 95% confidence interval. The grey line represents a 95% confidence interval based on the sampling variance of individual observed effect sizes in a study, and its thickness is proportional to the number of effect sizes reported within studies. J number of effect sizes within studies

Compared to the control condition, no significant effect was found for SL at speeds between 9.75 to 16.00 km/h (ES [95% CI] = − 0.365 [− 0.875 to 0.146], p = 0.131, Q(6) = 1.607, p = 0.952, LRTlevel2 = 0, p = 1, LRTlevel3 = 0, p = 1, Fig. 4), for PL at speeds ranging from 7.00 to 18.00 km/h (ES [95% CI] = − 0.122 [− 0.299 to 0.054], p = 0.167, Q(27) = 16.855, p = 0.935, LRTlevel2 = 0, p = 1, LRTlevel3 < 0.001, p = 0.999, Fig. 5) and for ISO at speed between 10.00 to 15.28 km/h. ES [95% CI] = − 0.269 [− 0.79 to 0.252], p = 0.253, Q (6) = 3.276, p = 0.774, LRTlevel2 = 0, p = 1, LRTlevel3 = 0.211, p = 0.646, Fig. 6).

Fig. 4.

Fig. 4

Forest plots of the included studies for submaximal load training and its effect on running economy. The black squares represent the mean observed effect size of the study, the size of square represent the weight of the study and the black lines represent the 95% confidence interval. The grey line represents a 95% confidence interval based on the sampling variance of individual observed effect sizes in a study, and its thickness is proportional to the number of effect sizes reported within studies. J number of effect sizes within studies

Fig. 5.

Fig. 5

Forest plots of the included studies for plyometric training and its effect on running economy. The black squares represent the mean observed effect size of the study, the size of square represent the weight of the study and the black lines represent the 95% confidence interval. The grey line represents a 95% confidence interval based on the sampling variance of individual observed effect sizes in a study, and its thickness is proportional to the number of effect sizes reported within studies. J number of effect sizes within studies

Fig. 6.

Fig. 6

Forest plots of the included studies for isometric training and its effect on running economy. The black squares represent the mean observed effect size of the study, the size of square represent the weight of the study and the black lines represent the 95% confidence interval. The grey line represents a 95% confidence interval based on the sampling variance of individual observed effect sizes in a study, and its thickness is proportional to the number of effect sizes reported within studies. J number of effect sizes within studies

Sub-group and Meta-regression Analysis

A beneficial moderation for the effect of HL on RE was noted for continuous absolute speed (β1 = − 0.177, p = 0.027, Table 5 and Fig. 7), categorical speed (β1 = − 0.653, p = 0.021, Table 5) and initial (before intervention) VO2max (β1 = − 0.040, p = 0.020, Table 5 and Fig. 8). In PL, moderator analysis showed significant detrimental moderation in categorical speed (β1 = 0.470, p = 0.017, Table 6 and Fig. 9). In combined methods group, significant beneficial moderation was observed for continuous absolute speed (β1 = − 0.263, p = 0.003), categorical speed (β1 = − 0.679, p = 0.020) and U-shaped RE-speed relationship (β1 = − 0.385, β2 = − 2.008, p = 0.001). However, when outliers were removed, no moderating effects were observed [all p > 0.059, Table S3 (OSM)]. An analysis of possible moderators for SL and ISO was not performed because the minimum number of studies (i.e., eight studies) to perform the analysis was not reached.

Table 5.

Results of meta-regression and subgroup analyses in search of possible moderators of high load training on running economy

High load training n groups J β0 Hedges' g (SE) 95% CI t0(df), p value β1 Hedges' g (SE) 95% CI t1(df), p value F(df1, df2), p value
Subject characteristics
 Sex 11 19 F(2,16) = 1.076, p = 0.364
  Male 6 11 − 0.360 (0.162) − 0.703 to − 0.170 t(16) = − 2.226, p = 0.041
  Female 2 2 0.203 (0.349) − 0.536 to 0.943 t(16) = − 1.465, p = 0.162 0.563 (0.384) − 0.252 to 1.378 t(16) = 1.465, p = 0.162
  Male–female 3 6 − 0.280 (0.226) − 0.758 to 0.198 t(16) = − 0.289, p = 0.777 0.080 (0.278) − 0.508 to 0.668 t(16) = 0.289, p = 0.777
 Age 11 19 − 0.724 (0.519) − 1.818 to 0.371 t(17) = − 1.395, p = 0.181 0.014 (0.016) − 0.019 to 0.047 t(17) = 0.908, p = 0.377 F(1,17) = 0.824, p = 0.377
 Body mass 11 19 − 0.973 (1.259) − 3.629 to 1.682 t(17) = − 0.773, p = 0.450 0.010 (0.018) − 0.028 to 0.048 t(17) = 0.565, p = 0.58 F(1,17) = 0.319, p = 0.580
 Height 10 17 4.845 (5.159) − 6.15 to 15.841 t(15) = 0.939, p = 0.362 − 0.029 (0.029) − 0.092 to 0.033 t(15) = − 0.996, p = 0.335 F(1,15) = 0.992, p = 0.335
 VO2max 10 16 1.991 (0.873) 0.117 to 3.864 t(14) = 2.279, p = 0.039 − 0.040 (0.015) − 0.072 to − 0.007 t(14) = − 2.619, p = 0.02 F(1,14) = 6.862, p = 0.020
 Performance level 11 19 F(2,16) = 2.837, p = 0.088
  Moderately trained 5 8 0.018 (0.198) − 0.401 to 0.437 t(16) = 0.089, p = 0.930
  Well trained 3 5 − 0.201 (0.187) − 0.597 to 0.195 t(16) = − 1.076, p = 0.298 − 0.219 (0.272) − 0.796 to 0.358 t(16) = − 0.804, p = 0.433
  Highly trained 3 6 − 0.651 (0.206) − 1.089 to − 0.214 t(16) = − 3.159, p = 0.006 − 0.669 (0.286) − 1.275 to − 0.064 t(16) = − 2.343, p = 0.032
 Strength training experience 7 10 F(1,8) = 0.795, p = 0.399
  No 6 8 − 0.232 (0.159) − 0.599 to 0.135 t(8) = − 1.459, p = 0.183
  Yes 1 2 0.103 (0.341) − 0.683 to 0.890 t(8) = 0.303, p = 0.770 0.336 (0.376) − 0.532 to 1.204 t(8) = 0.892, p = 0.399
Strength training intervention
 Weeks 11 19 0.533 (0.487) − 0.494 to 1.560 t(17) = 1.095, p = 0.289 − 0.093 (0.055) − 0.21 to 0.024 t(17) = − 1.682, p = 0.111 F(1,17) = 2.828, p = 0.111
 Sessions per week 11 19 − 0.214 (0.512) − 1.295 to 0.868 t(17) = − 0.417, p = 0.682 − 0.022 (0.206) − 0.456 to 0.415 t(17) = − 0.106, p = 0.917 F(1,17) = 0.011, p = 0.917
 Total sessions 11 19 0.139 (0.406) − 0.716 to 0.995 t(17) = 0.344, p = 0.735 − 0.020 (0.019) − 0.060 to 0.020 t(17) = − 1.042, p = 0.312 F(1,17) = 1.086, p = 0.312
Speed assessed
 Absolute speed (continuous) 10 18 1.178 (0.588) − 0.069 to 2.424 t(16) = 2.003, p = 0.062 − 0.117 (0.048) − 0.219 to − 0.015 t(16) = − 2.440, p = 0.027 F(1,16) = 5.955, p = 0.027
 Absolute speed (category) 10 18 F(1,16) = 6.573, p = 0.021
  ≤ 12.00 km/h 9 13 − 0.060 (0.130) − 0.336 to 0.216 t(16) = − 0.460, p = 0.652
  > 12.00 km/h 3 5 − 0.713 (0.219) − 1.177 to − 0.249 t(16) = − 3.258, p = 0.005 − 0.653 (0.255) − 1.193 to − 0.113 t(16) = − 2.564, p = 0.021
 U-shaped RE-speed relationship (category) 10 18 F(2,15) = 3.552, p = 0.055
  < 11.50 km/h 6 8 − 0.136 (0.167) − 0.491 to 0.220 t(15) = − 0.814, p = 0.429
  11.50–14.50 km/h 5 5 0.059 (0.209) − 0.386 to 0.504 t(15) = 0.282, p = 0.782 0.195 (0.267) − 0.375 to 0.764 t(15) = 0.728, p = 0.478
  > 14.50 km/h 3 5 − 0.713 (0.219) − 1.18 to − 0.247 t(15) = − 3.258, p = 0.005 − 0.577 (0.275) − 1.164 to 0.009 t(15) = − 2.098, p = 0.053
 Speed relative to AT 9 16 F(1,14) = 0.057, p = 0.815
  ≤ AT 9 13 − 0.322 (0.156) − 0.658 to 0.013 t(14) = − 2.060, p = 0.059
  > AT 3 3 − 0.403 (0.314) − 1.077 to 0.271 t(14) = − 1.282, p = 0.221 − 0.081 (0.338) − 0.806 to 0.645 t(14) = − 0.238, p = 0.815
 Speed relative to VO2max 10 16 0.189 (1.019) − 1.996 to 2.374 t(14) = 0.186, p = 0.855 − 0.006 (0.013) − 0.035 to 0.023 t(14) = − 0.464, p = 0.650 F(1,14) = 14.15, p = 0.439

In the subgroup analysis (categorical variables), the first variable of the category was considered as the reference

AT anaerobic threshold, CI confidence interval, df degrees of freedom, n groups number of experimental groups, J number of effect sizes, SE standard error

Results in bold represent a significant effect (α = 0.05)

Fig. 7.

Fig. 7

Meta-regression analysis for the effect of absolute speed (continuous) on running economy effect size in high load training. ES effect size, J number of effect sizes within studies

Fig. 8.

Fig. 8

Meta-regression analysis for the effect of initial VO2max on running economy effect size in high load training. ES effect size, J number of effect sizes within studies

Table 6.

Results of meta-regression and subgroup analyses in search of possible moderators of plyometric training on running economy

Plyometric training n groups J β0 Hedges' g (SE) 95% CI t0(df), p value β1 Hedges' g (SE) 95% CI t1(df), p value F(df1, df2), p value
Subject characteristics
 Sex 12 28 F(2,25) = 1.068, p = 0.359
  Male 5 9 − 0.247 (0.157) − 0.569 to 0.076 t(25) = − 1.574, p = 0.128
  Female 2 6 − 0.266 (0.206) − 0.690 to 0.157 t(25) = − 1.295, p = 0.207 − 0.020 (0.258) − 0.552 to 0.513 t(25) = − 0.076, p = 0.940
  Male–female 5 13 − 0.002 (0.119) − 0.247 to 0.243 t(25) = − 0.018, p = 0.986 0.244 (0.197) − 0.161 to 0.650 t(25) = 1.242, p = 0.226
 Age 12 28 − 0.016 (0.708) − 1.472 to 1.440 t(26) = − 0.023, p = 0.982 − 0.004 (0.023) − 0.052 to 0.044 t(26) = − 0.165, p = 0.870 F(1,26) = 0.027, p = 0.870
 Body mass 12 28 3.834 (2.463) − 1.229 to 8.897 t(26) = 1.557, p = 0.132 − 0.057 (0.036) − 0.131 to 0.016 t(26) = − 1.609, p = 0.120 F(1,26) = 2.588, p = 0.120
 Height 10 25 7.055 (5.049) − 3.390 to 17.50 t(23) = 1.397, p = 0.176 − 0.042 (0.029) − 0.103 to 0.019 t(23) = − 1.432, p = 0.166 F(1,23) = 2.052, p = 0.166
 VO2max 12 28 − 0.289 (0.556) − 1.433 to 0.854 t(26) = − 0.520, p = 0.607 0.003 (0.011) − 0.019 to 0.026 t(26) = 0.291, p = 0.773 F(1,26) = 0.085, p = 0.773
 Performance level 12 28
  Moderately trained 5 16 − 0.06 (0.114) − 0.294 to 0.174 t(25) = − 0.528, p = 0.602 F(1,25) = 1.342, p = 0.280
  Well trained 6 10 − 0.283 (0.143) − 0.577 to 0.110 t(25) = − 1.982, p = 0.059 − 0.223 (0.182) − 0.598 to 0.153 t(25) = − 1.222, p = 0.233
  Highly trained 1 2 0.244 (0.346) − 0.469 to 0.956 t(25) = 0.704, p = 0.488 0.304 (0.364) − 0.446 to 1.054 t(25) = 0.834, p = 0.412
 Strength training experience 8 22 F(1,20) = 2.176, p = 0.156
  No 6 18 − 0.221 (0.122) − 0.476 to 0.033 t(20) = − 1.815, p = 0.085
  Yes 2 4 0.192 (0.252) − 0.334 to 0.718 t(20) = 0.761, p = 0.455 0.413 (0.280) − 0.171 to 0.998 t(20) = 1.475, p = 0.156
Strength training intervention
 Weeks 12 28 − 0.158 (0.373) − 0.925 to 0.608 t(26) = − 0.425, p = 0.674 0.004 (0.048) − 0.096 to 0.103 t(26) = 0.076, p = 0.940 F(1,26) = 0.006, p = 0.940
 Sessions per week 12 28 − 0.152 (0.344) − 0.858 to 0.554 t(26) = − 0.442, p = 0.662 0.011 (0.156) − 0.310 to 0.331 t(26) = 0.069, p = 0.945 F(1,26) = 0.005, p = 0.945
 Total sessions 12 28 − 0.238 (0.354) − 0.966 to 0.490 t(26) = − 0.672, p = 0.507 0.007 (0.022) − 0.039 to 0.053 t(26) = 0.320, p = 0.751 F(1,26) = 0.103, p = 0.751
Speed assessed
 Absolute speed (continuous) 11 25 − 0.755 (0.378) − 1.538 to 0.028 t(23) = − 1.995, p = 0.058 0.055 (0.031) − 0.010 to 0.119 t(23) = 1.737, p = 0.096 F(1,23) = 3.016, p = 0.096
 Absolute speed (category) 11 27 F(1,25) = 6.526, p = 0.017
  ≤ 12.00 km/h 10 18 − 0.307 (0.110) − 0.532 to 0.081 t(25) = − 2.802, p = 0.010
  > 12.00 km/h 5 9 0.163 (0.148) − 0.141 to 0.468 t(25) = 1.104, p = 0.280 0.470 (0.184) 0.091 to 0.849 t(25) = 2.555, p = 0.017
 U-shaped RE-speed relationship (category) 11 27 F(1,24) = 2.187, p = 0.134
  < 11.50 km/h 8 15 − 0.276 (0.118) − 0.521 to − 0.032 t(24) = − 2.335, p = 0.028
  11.50–14.50 km/h 5 7 − 0.108 (0.174) − 0.467 to 0.251 t(24) = − 0.620, p = 0.541 0.169 (0.210) − 0.265 to 0.603 t(24) = 0.802, p = 0.431
  > 14.50 km/h 3 5 0.210 (0.202) − 0.206 to 0.626 t(24) = 1.042, p = 0.308 0.486 (0.234) 0.004 to 0.969 t(24) = 2.080, p = 0.048
 Speed relative to AT 8 22 F(1,20) = 2.722, p = 0.115
  ≤ AT 8 16 − 0.246 (0.114) − 0.484 to 0.008 t(20) = − 2.155, p = 0.044
  > AT 4 6 0.109 (0.183) − 0.804 to 0.094 t(20) = − 1.650, p = 0.115 0.355 (0.215) − 0.094 to 0.804 t(20) = 1.650, p = 0.115
 Speed relative to VO2max 9 18 − 0.349 (0.741) − 1.920 to 1.222 t(16) = − 0.471, p = 0.644 0.001 (0.010) − 0.020 to 0.023 t(16) = 0.144, p = 0.887 F(1,16) = 0.021, p = 0.887

In the subgroup analysis (categorical variables), the first variable of the category was considered as the reference

AT anaerobic threshold, CI confidence interval, df degrees of freedom, n groups number of experimental groups, J number of effect sizes, SE standard error

Results in bold represent a significant effect (α = 0.05)

Fig. 9.

Fig. 9

Sub-group analysis for the effect of absolute speed (categorical) on running economy effect size in plyometric training. ES effect size, J number of effect sizes within studies

Discussion

The purpose of this systematic review with meta-analysis was to evaluate the effect of different formats of strength training methods (i.e., HL, SL, PL, ISO, and combined methods) on RE in middle- and long-distance runners and to examine the effect of strength training on RE as a function of assessed running speed. The main findings indicate that HL and combined methods formats induced a small improvement in RE, whereas no significant main effect was found after SL or ISO. Moderator analyses revealed that when HL was adjusted for absolute categorical speed (i.e., ≤ 12.00 km/h and > 12.00 km/h) or absolute continuous speed (i.e., 8.64 km/h to 17.85 km/h), or VO2max, the higher the speed or VO2max, the greater the beneficial effect on RE. In contrast, when PL was adjusted for absolute categorical speed, it induced an improvement in RE at speeds ≤ 12.00 km/h. These results suggest that HL, PL, and combined methods can improve RE, although the beneficial effect can be moderated by factors such as RE speed selected for assessment and athletes’ fitness level (i.e., VO2max levels). These results and their implications are discussed in the sections below.

Main Analysis

High Load Training

HL is characterised by low-speed exercises and high force requirements (≥ 80% 1 RM or ≤ 7 RM) which aim to improve the development of maximal strength [15]. The main analysis revealed that HL induced a small improvement on RE (ES = − 0.266, p = 0.039), a result that is in line with other meta-analyses on this topic [4, 5, 24, 120]. These improvements were observed in interventions of between 6 and 14 weeks’ duration with a training frequency of 2–4 days per week. There appeared to be no moderating effect of duration in weeks, sessions per week or total sessions on RE (all p > 0.111). These results are contrary to those of a recent meta-analysis [120] which found that the implementation of HL over a period of ten weeks or more had a greater effect on RE compared to shorter programmes. This is possibly because the authors of that study included ISO in the analysis, adding two further studies [116, 121] that incorporated 14-week programmes. In contrast, in the current analysis, just one study [103] included a training programme of 14 weeks’ duration. However, despite finding no significant moderating effect of training duration, the slope of the curve in the conducted meta-regression was negative (i.e., the longer the duration of the study, the better the RE; β1 = − 0.09, p = 0.111). It is therefore possible that studies of longer intervention duration may induce an effect of HL on RE.

The improvement of RE following HL may be due to different mechanisms. It is known that HL may induce neuromuscular changes, such as altered recruitment and firing frequency of motor units and changes in fibre type, resulting in increased rate of force development (RFD) [99, 122]. The early-phase RFD (e.g., isometric mid-thigh pull; 90° squat) has been correlated with RE at 10.00 km/h [123], 12.00 km/h [124], and speed corresponding at 70% VO2max [99]. For example, in a study by Støren et al. [99] it was found that eight weeks of HL improved RFD by 26% in the 90° squat and that this correlated with improvements in RE pre- and post-intervention. Furthermore, this increase occurred independent of changes in body weight, and thus the reported increase in RFD may have been due to neuromuscular adaptations [122]. A greater RFD after HL interventions would allow athletes to generate higher levels of force in short periods of time, allowing a rapid transition from the braking phase to the propulsion phase of the gait cycle, promoting favourable muscular conditions [123] that maximise the force–velocity relationship [125] and, thus, RE. On the other hand, HL may improve RE due to changes in lower limb stiffness [123, 126, 127], which would result in more efficient energy storage and release from the lower limbs, thus reducing the energy cost of running [128]. For example, a study by Millet et al. [103] reported significant increases in RE after 14 weeks of HL and this was accompanied by an increase in leg stiffness.

Submaximal Load Training

Only three studies included SL (Fig. 4). The main analysis found no significant effect of this strength training method on RE at speeds between 9.75 to 16.00 km/h (p = 0.131), which could be attributed to several reasons. It has been found that SL training is not as intense a stimulus as HL for the generation of adaptations in muscle–tendon stiffness [129]. For instance, in a study by Piacentini et al. [19], a significant improvement in RE was found after HL whereas no significant improvement was observed after SL. On the other hand, it seems that SL is not as effective a stimulus for improving stretch-shortening cycle function as PL [130]. For example, Berryman et al. [114] found that both PL and SL improved RE but the percentage improvement was greater after PL (7% vs 4%). In another study [115], PL combined with SL and isolated SL improved RE at 12.00 km/h, whilst improvement in RE at 16.00 km/h was only found in PL combined with SL and not SL as a singular training method.

However, these results should be interpreted with caution, as only three studies were included in the analysis meaning that the conclusion could be undermined by low statistical power. Moreover, an analysis of possible moderators was not possible in this case.

Plyometric Training

The main analysis found no significant effect of PL on RE (p = 0.167). This result does not align with recent systematic reviews with meta-analysis related to the effect of strength training on RE in endurance runners [5, 43, 120]. For example, it has been suggested that PL may have a greater effect in athletes with higher performance levels [43, 120] or in training programmes of longer duration in endurance athletes [120] and healthy adults (i.e., longer than 7 weeks) [131]. However, we found no moderating effect of participant characteristics or intervention duration (all p > 0.120, Table 6). From the studies included in the analysis, improvements in RE were found in moderately trained athletes [12] and in 6-week intervention programmes [12, 106, 107]. The lack of any significant effect of PL in the main analysis is possibly due to methodological differences with other meta-analyses that have been carried out on this topic. For example, two meta-analyses [5, 43] included PL with resistance training within the same analysis while only one meta-analysis [120] included isolated PL interventions, as in the current study. This may be relevant given that PL combined with other strength training methods may have a greater effect on RE (see Sect. 4.1.5). Furthermore, the difference in the speeds used to evaluate RE could also have given rise to the discrepancies observed between various different studies [9]. Contrary to the results of other meta-analyses [5, 43, 120], we included all effect sizes that were documented within each study (i.e., different speeds at which RE was assessed). Interestingly, after performing sub-group analysis, we found that PL had a beneficial effect when the speeds are less or equal to 12.00 km/h compared to when the speed is higher than 12.00 km/h (β1 = 0.47, p = 0.017, Fig. 9). Therefore, from these results it is possible that the improvement in RE is primarily influenced by running speed, rather than performance level and/or duration of training programmes.

Isometric Training

ISO is characterised by exercises that require muscle contraction without external movement. ISO can improve RFD [17] and tendon stiffness (i.e., Achilles tendon) [116, 117] without changes in joint stiffness [132, 133], adaptations that could be related to improved RE [117, 123]. However, the main analysis found no significant effect of ISO on RE (p = 0.253). A possible explanation for this result may be due to the difference in muscle action times that were evaluated in the various different studies. For example, of the three studies [112, 116, 117] included in this analysis, just one [117] showed no improvement in RE. Although all three studies performed the same exercise (i.e., isometric ankle plantarflexion) at intensities equal to or greater than 80% of the maximal voluntary contraction, they differed in muscle action times. While two studies [112, 116] used muscle action times of 3 s, in the study by Fletcher et al. [117] the action time was 20 s. This could be relevant because it is known that improvement in RFD is determined by neuromuscular adaptations, muscle size and tendon stiffness [134] and isometric efforts of 1–5 s have been suggested to generate such neuromuscular adaptations [17]. Given that improvements in tendon stiffness were found in both short duration (i.e., 3 s) [116] and long duration (i.e., 20 s) [117] isometric efforts, it is possible that the failure to improve RE was due to an inadequate stimulus to the neuromuscular system in the way that short duration efforts at maximal speed do. However, these interpretations need to be made with caution given the small number of studies in the analysis and the small sample sizes of those studies. In addition, in the three included studies [112, 116, 117], participants performed the same single-joint exercise (i.e., ankle plantarflexion), while the other strength training methods included multi-joint exercises (e.g., squat or jump squat). Therefore, additional investigations are needed to elucidate the effects of ISO on RE including multi-joint exercises (e.g., specific hip or knee run exercises).

Combined Methods Training

Various different studies implemented more than one strength training method, such as SL with PL [8, 102, 115, 118, 119], HL with SL [135, 136] and HL with PL [20]. From the main analysis, we found that combined methods group had a significant small effect on RE (ES = − 0.426, p = 0.018), which was superior to that found in HL and PL after adjusting for categorical speed. One possible explanation for this is that all studies included in the analysis included PL and/or HL. Therefore, it could be hypothesised that the different adaptations induced by these strength training methods could complement each other when included in the same programme, generating a greater effect on RE [20]. However, it is important to mention that most studies included SL [102, 115, 118, 119, 135137] and given that in the individual analysis of this strength training method we found no significant effect on RE (see Sect. 4.1.2), it is possible that this type training, executed in isolation, may not be enough of a stimulus to generate changes in RE. However, combined with other types of strength training it may be [20, 114, 115].

On the other hand, these strength training methods used were either combined within the same training session [20, 102, 115, 118, 119, 137] or performed in a different part of the programme [135, 136]. In the first case, we found different types of exercise sequences within training sessions, such as traditional and complex training (Table 2). A recent meta-analysis found that different exercise sequences can improve the force- and velocity-producing capabilities of an athlete [18]. For example, a complex sequence can be used combining heavy exercises (e.g., HL and/or SL exercises) followed by light exercises (e.g., PL and/or SL exercises), thus inducing post-activation performance enhancement by improving the speed at which PL exercises are executed [18]. This concept refers to the phenomenon in which maximal strength, power and speed are increased after a conditioned contraction [138]. Traditional training employs light exercises followed by heavy exercises which can enhance strength development [18]. The moderator analysis of exercise sequence in this meta-analysis showed no significant moderating effect on this variable (p = 0.956). This may be because the strength training method is more influential than the sequence of exercises within a prescribed training session. Also, it is important to mention that complex training also has different sequences within it (e.g., ascending, descending, French contrast and contrast) that can generate different adaptations [139]. Therefore, future research could investigate the effect of different strength training methods and with different complex training strategies on RE.

Strength Training and Running Economy Speed

Absolute Speed (Continuous and Categorical)

Absolute and categorical speed acted as beneficial moderators on the effect of HL on RE (β1 = − 0.177, p = 0.027, Fig. 7; β1 = − 0.653, p = 0.021, respectively). Since the increase in energy cost as speed increases could be the result of an increase in muscle energy cost to generate higher levels of force in short periods of time [125], an increase in RFD may be reflected particularly at higher running speeds. Additionally, we found a significant moderator effect of VO2max on RE in HL (β1 = − 0.05, p = 0.02, Fig. 8). Indeed, it has been observed that the correlation between leg stiffness and RE increases with VO2max [127]. Given that more highly trained athletes make more efficient use of elastic energy (i.e., the Achilles tendon) to minimise muscle energy cost [140], coupled with a possible increase in tendon stiffness generated by HL [133], it is possible that athletes with higher levels of performance (i.e., higher initial VO2max) may be better able to transfer these adaptations to running at a lower energy cost. However, it is possible that the speeds chosen to assess RE were in line with the performance level of the runners, with lower speeds for lower-level runners and higher speeds for higher level runners.

Aside from HL, we found that in PL categorical speed has a positive moderating (i.e., detrimental) effect on RE (β1 = 0.47, p = 0.017, Fig. 9). It has been observed that PL can improve joint stiffness in runners [107] and healthy individuals [141], which may be due to an increase in tendon elongation (i.e., Achilles tendon) and a decrease in fascicle length (i.e., medial gastrocnemius) [141]. A more compliant tendon could store and release more elastic energy, decreasing muscle energy cost, in situations where substantial pre-stretching occurs [125], as at low running speeds. Conversely, it has been found that in plantar flexors, as speed increases, tendon energy storage and release become prioritised over muscle work [142], and thus a more compliant tendon could be detrimental. In fact, in the study by Pellegrino et al. [12] it was found that after 6 weeks of PL, RE improved at speeds ranging from 7.74 to 10.62 km/h, while no improvement or detriment was observed at speeds between 12.10 and 16.42 km/h. Taken together, it appears that HL and PL may improve RE but with varied effects depending on running speed. However, future research is required to elucidate the possible mechanisms of RE improvement.

U-Shaped RE–Speed Relationship

Several studies have found a U-shaped relationship between the energy cost of running and speed (from 8.00 to 18.00 km/h) [23, 143], with elastic energy being independent of running speed [23]. This higher energy cost at low speeds (i.e., < 11.50 km/h) may be due to greater muscle activation for greater neuromotor control [144], whereas at high speeds (i.e., > 14.50 km/h) it may be due to the muscle being in a less favourable contractile condition as a priority for storage and release of elastic energy from the tendon [142]. When we performed the moderator analysis with the variable U-shaped RE–speed relationship, we did not find a significant moderating effect for HL, PL or combined methods. However, we did find a near-significant moderating effect for HL (p = 0.055). Indeed, the almost significant regression coefficient showed a beneficial effect at higher speed (β2 = − 0.557, p = 0.053) compared to the regression coefficient at moderate speed (β1 = − 0.195, p = 0.478). This could suggest a role of HL in improving RE at high speeds, covering the higher muscle energy cost at high speeds. A possible explanation for finding a moderating effect on absolute speed and not on U-shaped RE–speed relationship may be due to the wide range of athletes that were included in this analysis. It was reported that recreational athletes had a curvilinear energy cost relationship at a range of speeds lower than those observed in highly trained athletes [143]. Therefore, future research could analyse the impact of HL on RE at higher speeds where muscle energy cost is higher, as well as consider the difference between athletes of different performance levels.

Speed Relative to Anaerobic Threshold

The assessment of RE at speeds relative to the anaerobic threshold has been suggested [22] as this allows consideration of the differences in energy substrates and anaerobic threshold [21] or running at a race pace (e.g., at marathon pace), with the intention of equalising the metabolic conditions of the runners [22]. For example, Piacentini et al. [19] found that HL improved RE only at marathon running pace speed, whereas at 1.00 km/h below or above marathon pace no improvement was found. On the other hand, when the speed is above the anaerobic threshold, anaerobic metabolism starts to become relevant, and it is recommended to correct the values by adding blood lactate energy values [30, 145]. When anaerobic metabolism is added to the energy cost, it has a linear relationship with running speed [30, 145]. However, among the studies that included groups with values above the anaerobic threshold, only one study [113] reported blood lactate concentration values, and thus only one study would allow the application of correction procedures to adjust for anaerobic metabolism contribution. Surprisingly, this study [113] found that PL improved RE at 18.00 km/h (measured in LO2/min); however, a detrimental effect was noted after adjusting for blood lactate values. In the moderator analysis performed with the categorical speed relative to anaerobic threshold we did not find a moderating effect for this variable (all p > 0.115), possibly because the number of groups with speeds less than or equal to the anaerobic threshold was considerably higher than the number of groups with speeds greater than the anaerobic threshold. It is therefore recommended that future research should include the contribution of anaerobic metabolism when assessing RE at speeds above the anaerobic threshold, allowing the effect of strength training on RE at higher speeds to be assessed.

Speed Relative to VO2max

It has been found that athletes are more economical at the speeds at which they compete (i.e., at middle- or long-distance speeds) and that differences in RE between men and women are not significant when assessed at relative running intensity (i.e., as a percentage of VO2max) [146]. Therefore, we created a new variable whereby speeds were estimated as speed relative to VO2max. However, we found no moderating effect of this variable in HL, PL, or combined methods (all p > 0.419). This may be because only two studies [99, 103] assessed running economy at speeds relative to VO2max, while the other values were estimated. On the other hand, it is possible that speed relative to VO2max may not consider differences in energy substrates as speed relative to anaerobic threshold would.

Strengths and Limitations

Some limitations of this meta-analysis should be mentioned. Firstly, we performed analyses separately for each strength training method due to their different compositions and this limited the number of studies (i.e., < 8) for which a moderator analysis for the effects of SL and ISO could be performed. Secondly, in terms of speeds assessed in RE, all but six studies [99, 100, 103, 111, 117, 118] used absolute speeds; however this does not consider the difference in energy substrates and anaerobic threshold [21], so it is recommended to use speeds relative to anaerobic threshold or relative to race pace [22]. The strengths of this meta-analysis should also be acknowledged. To our knowledge, this is the first meta-analysis to investigate the moderation of assessed speed on the effect of strength training on RE by including all assessed speeds from each study, allowing the effect of different strength training methods on RE at different running speeds to be elucidated.

Conclusions

Based on these results, HL, PL, and combined methods can improve RE. Furthermore, PL improves RE at speeds of ≤ 12.00 km/h, combined methods group at 10.00 to 14.45 km/h and, HL at 8.64 to 17.85 km/h (particularly at higher speeds), and as a function of athletes VO2max level. No RE improvement was noted after SL or ISO. Therefore, athletes and coaches might consider including different strength training methods (HL, PL and/or combined methods) in traditional endurance training to improve running economy at different speed ranges in middle- and long-distance runners. Future experimental research is needed to understand the potential effects, and underlying mechanisms, of different strength training methods on RE assessed at different speeds in middle- and long-distance runners, particularly among under-researched populations (e.g., females; highly trained athletes).

Supplementary Information

Below is the link to the electronic supplementary material.

Funding

Funding for open access publishing: Universidad Pablo de Olavide/CBUA.

Declarations

Conflict of interest

All authors declare that they have no conflicts of interest relevant to the content of this review.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Data Availability

All data generated or analysed during this systematic review and meta-analysis are included in the article as table(s), figure(s), and/or Online Supplementary Material(s). Any other data requirement can be directed to the corresponding author upon reasonable request.

Funding

No financial support was received for the conduct of this systematic review and meta-analysis, or for the preparation or publication of the manuscript.

Author Contributions

LL and SV conceived the idea and design for the article, LL, RRC and SV performed the literature search, data acquisition, analysis, and/or interpretation. LL, RRC, JM and SV drafted and/or critically revised the work. All authors have read, and approved the manuscript, and have agreed both to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even those in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature. All authors read and approved the final version.

References

  • 1.Wilson JM, Marin PJ, Rhea MR, et al. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26:2293–2307. doi: 10.1519/JSC.0b013e31823a3e2d. [DOI] [PubMed] [Google Scholar]
  • 2.Alcaraz-Ibañez M, Rodríguez-Pérez M. Effects of resistance training on performance in previously trained endurance runners: a systematic review. J Sports Sci. 2018;36:613–629. doi: 10.1080/02640414.2017.1326618. [DOI] [PubMed] [Google Scholar]
  • 3.Barrie B. Concurrent resistance training enhances performance in competitive distance runners: a review and programming implementation. Strength Cond J. 2020;42:97–106. doi: 10.1519/SSC.0000000000000528. [DOI] [Google Scholar]
  • 4.Balsalobre-Fernández C, Santos-Concejero J, Grivas GV. Effects of strength training on running economy in highly trained runners: a systematic review with meta-analysis of controlled trials. J Strength Cond Res. 2016;30:2361–2368. doi: 10.1519/JSC.0000000000001316. [DOI] [PubMed] [Google Scholar]
  • 5.Denadai BS, de Aguiar RA, de Lima LCR, et al. Explosive training and heavy weight training are effective for improving running economy in endurance athletes: a systematic review and meta-analysis. Sports Med. 2017;47:545–554. doi: 10.1007/s40279-016-0604-z. [DOI] [PubMed] [Google Scholar]
  • 6.Barnes KR, Kilding AE. Running economy: measurement, norms, and determining factors. Sports Med Open. 2015;1:1–15. doi: 10.1186/s40798-015-0007-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:35–44. doi: 10.1113/jphysiol.2007.143834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Paavolainen L, Häkkinen K, Hämäläinen I, et al. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86:1527–1533. doi: 10.1152/jappl.1999.86.5.1527. [DOI] [PubMed] [Google Scholar]
  • 9.Blagrove RC, Howatson G, Hayes PR. Effects of strength training on the physiological determinants of middle- and long-distance running performance: a systematic review. Sports Med. 2018;48:1117–1149. doi: 10.1007/s40279-017-0835-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Tanji F, Shirai Y, Tsuji T, et al. Relation between 1,500-m running performance and running economy during high-intensity running in well-trained distance runners. J Phys Fit Sports Med. 2017;6:41–48. doi: 10.7600/jpfsm.6.41. [DOI] [Google Scholar]
  • 11.Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980;12:357–360. doi: 10.1249/00005768-198025000-00010. [DOI] [PubMed] [Google Scholar]
  • 12.Pellegrino J, Ruby BC, Dumke CL. Effect of plyometrics on the energy cost of running and MHC and titin isoforms. Med Sci Sports Exerc. 2016;48:49–56. doi: 10.1249/MSS.0000000000000747. [DOI] [PubMed] [Google Scholar]
  • 13.Bransford DR, Howley ET. Oxygen cost of running in trained and untrained men and women. Med Sci Sports. 1977;9:41–44. [PubMed] [Google Scholar]
  • 14.Barnes KR, Mcguigan MR, Kilding AE. Lower-body determinants of running economy in male and female distance runners. J Strength Cond Res. 2014;28:1289–1297. doi: 10.1519/JSC.0000000000000267. [DOI] [PubMed] [Google Scholar]
  • 15.Beattie K, Kenny IC, Lyons M, et al. The effect of strength training on performance in endurance athletes. Sports Med. 2014;44:845–865. doi: 10.1007/s40279-014-0157-y. [DOI] [PubMed] [Google Scholar]
  • 16.Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36:674–688. doi: 10.1249/01.mss.0000121945.36635.61. [DOI] [PubMed] [Google Scholar]
  • 17.Lum D, Barbosa TM. Brief review: effects of isometric strength training on strength and dynamic performance. Int J Sports Med. 2019;40:363–375. doi: 10.1055/a-0863-4539. [DOI] [PubMed] [Google Scholar]
  • 18.Marshall J, Bishop C, Turner A, et al. Optimal training sequences to develop lower body force, velocity, power, and jump height: a systematic review with meta-analysis. Sports Med. 2021;51:1245–1271. doi: 10.1007/s40279-021-01430-z. [DOI] [PubMed] [Google Scholar]
  • 19.Piacentini MF, de Ioannon G, Comotto S, et al. Concurrent strength and endurance training effects on running economy in master endurance runners. J Strength Cond Res. 2013;27:2295–2303. doi: 10.1519/JSC.0b013e3182794485. [DOI] [PubMed] [Google Scholar]
  • 20.Li F, Wang R, Newton RU, et al. Effects of complex training versus heavy resistance training on neuromuscular adaptation, running economy and 5-km performance in well-trained distance runners. PeerJ. 2019;7:1–21. doi: 10.7717/peerj.6787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Fletcher JR, Esau SP, MacIntosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009;107:1918–1922. doi: 10.1152/japplphysiol.00307.2009. [DOI] [PubMed] [Google Scholar]
  • 22.Fletcher JR, Pfister TR, MacIntosh BR. Energy cost of running and Achilles tendon stiffness in man and woman trained runners. Physiol Rep. 2013;1:1–9. doi: 10.1002/phy2.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Carrard A, Fontana E, Malatesta D. Mechanical determinants of the U-shaped speed-energy cost of running relationship. Front Physiol. 2018;9:1–13. doi: 10.3389/fphys.2018.01790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Berryman N, Mujika I, Arvisais D, et al. Strength training for middle- and long-distance performance: a meta-analysis. Int J Sports Physiol Perform. 2018;13:57–64. doi: 10.1123/ijspp.2017-0032. [DOI] [PubMed] [Google Scholar]
  • 25.Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Drevon D, Fursa SR, Malcolm AL. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif. 2017;41:323–339. doi: 10.1177/0145445516673998. [DOI] [PubMed] [Google Scholar]
  • 27.Goswami B, Singha Roy A, Dalui R, et al. Impact of pubertal growth on physical fitness. Am J Sports Sci Med. 2014;2:34–39. doi: 10.12691/ajssm-2-5A-8. [DOI] [Google Scholar]
  • 28.Jones AM. Middle-and long-distance running. In: Sport and exercise physiology testing guidelines: volume I—Sport testing. Routledge; 2006. p. 167–74.
  • 29.Moritani T, deVries HA. Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med. 1979;58:115–130. [PubMed] [Google Scholar]
  • 30.Di Prampero PE, Capelli C, Pagliaro P, et al. Energetics of best performances in middle-distance running. J Appl Physiol. 1993;74:2318–2324. doi: 10.1152/jappl.1993.74.5.2318. [DOI] [PubMed] [Google Scholar]
  • 31.de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55:129–133. doi: 10.1016/S0004-9514(09)70043-1. [DOI] [PubMed] [Google Scholar]
  • 32.Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–721. doi: 10.1093/ptj/83.8.713. [DOI] [PubMed] [Google Scholar]
  • 33.González-Mohíno F, Santos-Concejero J, Yustres I, et al. The effects of interval and continuous training on the oxygen cost of running in recreational runners: a systematic review and meta-analysis. Sports Med. 2020;50:283–294. doi: 10.1007/s40279-019-01201-x. [DOI] [PubMed] [Google Scholar]
  • 34.Fernández-Castilla B, Declercq L, Jamshidi L, et al. Visual representations of meta-analyses of multiple outcomes: extensions to forest plots, funnel plots, and caterpillar plots. Methodology. 2020;16:299–315. doi: 10.5964/meth.4013. [DOI] [Google Scholar]
  • 35.Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. 2011;64:383–394. doi: 10.1016/j.jclinepi.2010.04.026. [DOI] [PubMed] [Google Scholar]
  • 36.Zhang Y, Alonso-Coello P, Guyatt GH, et al. GRADE Guidelines: 19. Assessing the certainty of evidence in the importance of outcomes or values and preferences—risk of bias and indirectness. J Clin Epidemiol. 2019;111:94–104. doi: 10.1016/j.jclinepi.2018.01.013. [DOI] [PubMed] [Google Scholar]
  • 37.Zhang Y, Coello PA, Guyatt GH, et al. GRADE guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values and preferences—inconsistency, imprecision, and other domains. J Clin Epidemiol. 2019;111:83–93. doi: 10.1016/j.jclinepi.2018.05.011. [DOI] [PubMed] [Google Scholar]
  • 38.Cuijpers P, Weitz E, Cristea IA, et al. Pre-post effect sizes should be avoided in meta-analyses. Epidemiol Psychiatr Sci. 2017;26:364–368. doi: 10.1017/S2045796016000809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Hedges LV, Olkin I. Statistical methods for meta-analysis. New York: Academic Press; 1985. [Google Scholar]
  • 40.Borenstein M, Hedges LV, Higgins JPT, et al. Introduction to meta-analysis. Chichester: Wiley; 2009. [Google Scholar]
  • 41.Abt G, Boreham C, Davison G, et al. Power, precision, and sample size estimation in sport and exercise science research. J Sports Sci. 2020;38:1933–1935. doi: 10.1080/02640414.2020.1776002. [DOI] [PubMed] [Google Scholar]
  • 42.Swinton PA, Burgess K, Hall A, et al. Interpreting magnitude of change in strength and conditioning: effect size selection, threshold values and Bayesian updating. J Sports Sci. 2022;40:2047–2054. doi: 10.1080/02640414.2022.2128548. [DOI] [PubMed] [Google Scholar]
  • 43.Ramirez-Campillo R, Andrade DC, García-Pinillos F, et al. Effects of jump training on physical fitness and athletic performance in endurance runners: a meta-analysis. J Sports Sci. 2021;39:2030–2050. doi: 10.1080/02640414.2021.1916261. [DOI] [PubMed] [Google Scholar]
  • 44.Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic reviews of interventions. New York: Wiley; 2019. [Google Scholar]
  • 45.Park S, Beretvas SN. Synthesizing effects for multiple outcomes per study using robust variance estimation versus the three-level model. Behav Res Methods. 2019;51:152–171. doi: 10.3758/s13428-018-1156-y. [DOI] [PubMed] [Google Scholar]
  • 46.Moeyaert M, Ugille M, Natasha Beretvas S, et al. Methods for dealing with multiple outcomes in meta-analysis: a comparison between averaging effect sizes, robust variance estimation and multilevel meta-analysis. Int J Soc Res Methodol. 2017;20:559–572. doi: 10.1080/13645579.2016.1252189. [DOI] [Google Scholar]
  • 47.Van den Noortgate W, López-López JA, Marín-Martínez F, et al. Three-level meta-analysis of dependent effect sizes. Behav Res Methods. 2013;45:576–594. doi: 10.3758/s13428-012-0261-6. [DOI] [PubMed] [Google Scholar]
  • 48.Cheung MW-L. Modeling dependent effect sizes with three-level meta-analyses: a structural equation modeling approach. Psychol Methods. 2014;19:211–229. doi: 10.1037/a0032968. [DOI] [PubMed] [Google Scholar]
  • 49.Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;7:55–79. doi: 10.1002/jrsm.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Knapp G, Hartung J. Improved tests for a random effects meta-regression with a single covariate. Stat Med. 2003;22:2693–2710. doi: 10.1002/sim.1482. [DOI] [PubMed] [Google Scholar]
  • 51.Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. [DOI] [Google Scholar]
  • 52.Assink M, Wibbelink CJM. Fitting three-level meta-analytic models in R: a step-by-step tutorial. Quant Method Psychol. 2016;12:154–174. doi: 10.20982/tqmp.12.3.p154. [DOI] [Google Scholar]
  • 53.Harrer M, Cuijpers P, Furukawa TA, et al. Doing meta-analysis with R: a hands-on guide. Boca Raton: Chapman and Hall/CRC; 2021. [Google Scholar]
  • 54.Bluett KA, Croix MBADS, Lloyd RS. A preliminary investigation into concurrent aerobic and resistance training in youth runners. Isokinet Exerc Sci. 2015;23:77–85. doi: 10.3233/IES-150567. [DOI] [Google Scholar]
  • 55.Clark AW, Goedeke MK, Cunningham SR, et al. Effects of pelvic and core strength training on high school cross-country race times. J Strength Cond Res. 2017;31:2289–2295. doi: 10.1519/JSC.0000000000001729. [DOI] [PubMed] [Google Scholar]
  • 56.Chelly MS, Hermassi S, Shephard RJ. Effects of in-season short-term plyometric training program on sprint and jump performance of young male track athletes. J Strength Cond Res. 2015;29:2128–2136. doi: 10.1519/JSC.0000000000000860. [DOI] [PubMed] [Google Scholar]
  • 57.Elgushy H. The impact of concurrent training on certain pulmonary, physical variables and record level of middle distances for young athletics. Sci Mov Health. 2016;16:454–461. [Google Scholar]
  • 58.Häkkinen K, Mero A, Kauhanen H. Specificity of endurance, sprint and strength training on physical performance capacity in young athletes. J Sports Med Phys Fit. 1989;29:27–35. [PubMed] [Google Scholar]
  • 59.Saud AA, Nabia GM. Effect of concurrent training on certain pulmonary, physical variables and record level of middle distances for young athletics. Ovidius Univ Ann Ser Phys Educ Sport/Sci Mov Health. 2016;16:247–254. [Google Scholar]
  • 60.Hutson MJ, O’Donnell E, Petherick E, et al. Incidence of bone stress injury is greater in competitive female distance runners with menstrual disturbances independent of participation in plyometric training. J Sports Sci. 2021;39:2558–2566. doi: 10.1080/02640414.2021.1945184. [DOI] [PubMed] [Google Scholar]
  • 61.Taipale RS, Mikkola J, Vesterinen V, et al. Neuromuscular adaptations during combined strength and endurance training in endurance runners: maximal versus explosive strength training or a mix of both. Eur J Appl Physiol. 2013;113:325–335. doi: 10.1007/s00421-012-2440-7. [DOI] [PubMed] [Google Scholar]
  • 62.Willy RW, Davis IS. The effect of a hip-strengthening program on mechanics during running and during a single-leg squat. J Orthop Sports Phys Ther. 2011;41:625–632. doi: 10.2519/jospt.2011.3470. [DOI] [PubMed] [Google Scholar]
  • 63.Andrade DC, Beltrán AR, Labarca-Valenzuela C, et al. Effects of plyometric training on explosive and endurance performance at sea level and at high altitude. Front Physiol. 2018;9:1–9. doi: 10.3389/fphys.2018.01415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Hickson RC, Dvorak BA, Gorostiaga EM, et al. Potential for strength and endurance training to amplify endurance performance. J Appl Physiol. 1988;65:2285–2290. doi: 10.1152/jappl.1988.65.5.2285. [DOI] [PubMed] [Google Scholar]
  • 65.Yamanaka R, Wakasawa S, Yamashiro K, et al. Effect of resistance training of psoas major in combination with regular running training on performance in long-distance runners. Int J Sports Physiol Perform. 2021;16:906–909. doi: 10.1123/ijspp.2020-0206. [DOI] [PubMed] [Google Scholar]
  • 66.Barnes KR, Hopkins WG, McGuigan MR, et al. Effects of resistance training on running economy and cross-country performance. Med Sci Sports Exerc. 2013;45:2322–2331. doi: 10.1249/MSS.0b013e31829af603. [DOI] [PubMed] [Google Scholar]
  • 67.Berryman N, Mujika I, Bosquet L. Effects of short-term concurrent training cessation on the energy cost of running and neuromuscular performances in middle-distance runners. Sports. 2020;9:1. doi: 10.3390/sports9010001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Lännerström J, Nilsson L, Cardinale D, et al. Effects of plyometric training on soft and hard surfaces for improving running economy. J Hum Kinet. 2021;79:187–196. doi: 10.2478/hukin-2021-0071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Roschel H, Barroso R, Tricoli V, et al. Effects of strength training associated with whole-body vibration training on running economy and vertical stiffness. J Strength Cond Res. 2015;29:2215–2220. doi: 10.1519/JSC.0000000000000857. [DOI] [PubMed] [Google Scholar]
  • 70.Guglielmo L, Greco C, Denadai B. Effects of strength training on running economy. Int J Sports Med. 2009;30:27–32. doi: 10.1055/s-2008-1038792. [DOI] [PubMed] [Google Scholar]
  • 71.Patoz A, Breine B, Thouvenot A, et al. Does characterizing global running pattern help to prescribe individualized strength training in recreational runners? Front Physiol. 2021;12:1–9. doi: 10.3389/fphys.2021.631637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Taipale RS, Forssell J, Ihalainen JK, et al. A 10-Week block of combined high-intensity endurance and strength training produced similar changes in dynamic strength, body composition, and serum hormones in women and men. Front Sports Act Living. 2020;2:1–14. doi: 10.3389/fspor.2020.581305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Day EM, Hahn ME. Increased toe-flexor muscle strength does not alter metatarsophalangeal and ankle joint mechanics or running economy. J Sports Sci. 2019;37:2702–2710. doi: 10.1080/02640414.2019.1661562. [DOI] [PubMed] [Google Scholar]
  • 74.Festa L, Tarperi C, Skroce K, et al. Effects of flywheel strength training on the running economy of recreational endurance runners. J Strength Cond Res. 2019;33:684–690. doi: 10.1519/JSC.0000000000002973. [DOI] [PubMed] [Google Scholar]
  • 75.Finatto P, Da Silva ES, Okamura AB, et al. Pilates training improves 5-km run performance by changing metabolic cost and muscle activity in trained runners. PLoS One. 2018;13:1–19. doi: 10.1371/journal.pone.0194057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Gottschall JS, Hastings B. An integrated core training program improves joint symmetry and metabolic economy in trained runners. J Sports Med Phys Fit. 2020;59:2003–2008. doi: 10.23736/S0022-4707.19.09619-1. [DOI] [PubMed] [Google Scholar]
  • 77.Sato K, Mokha M. Does core strength training influence running kinetics, lower-extremity stability, and 5000-m performance in runners? J Strength Cond Res. 2009;23:133–140. doi: 10.1519/JSC.0b013e31818eb0c5. [DOI] [PubMed] [Google Scholar]
  • 78.Paschalis V, Baltzopoulos V, Mougios V, et al. Isokinetic eccentric exercise of quadriceps femoris does not affect running economy. J Strength Cond Res. 2008;22:1222–1227. doi: 10.1519/JSC.0b013e318173da21. [DOI] [PubMed] [Google Scholar]
  • 79.Ramírez-Campillo R, Álvarez C, Henríquez-Olguín C, et al. Effects of plyometric training on endurance and explosive strength performance in competitive middle- and long-distance runners. J Strength Cond Res. 2014;28:97–104. doi: 10.1519/JSC.0b013e3182a1f44c. [DOI] [PubMed] [Google Scholar]
  • 80.García-Pinillos F, Lago-Fuentes C, Latorre-Román PA, et al. Jump-rope training: improved 3-km time-trial performance in endurance runners via enhanced lower-limb reactivity and foot-arch stiffness. Int J Sports Physiol Perform. 2020;15:927–933. doi: 10.1123/ijspp.2019-0529. [DOI] [PubMed] [Google Scholar]
  • 81.Machado AF, De Castro JBP, Bocalini DS, et al. Effects of plyometric training on the performance of 5-km road runners. J Phys Educ Sport. 2019;19:691–695. doi: 10.7752/jpes.2019.01099. [DOI] [Google Scholar]
  • 82.Hamilton RJ, Paton CD, Hopkins WG. Effect of high-intensity resistance training on performance of competitive distance runners. Int J Sports Physiol Perform. 2006;1:40–49. doi: 10.1123/ijspp.1.1.40. [DOI] [PubMed] [Google Scholar]
  • 83.Bertuzzi R, Pasqua L, Bueno S, et al. Strength-training with whole-body vibration in long-distance runners: a randomized trial. Int J Sports Med. 2013;34:917–923. doi: 10.1055/s-0033-1333748. [DOI] [PubMed] [Google Scholar]
  • 84.Bachero-Mena B, Pareja-Blanco F, González-Badillo JJ. Effects of resistance training on physical performance in high-level 800-meter athletes. J Strength Cond Res. 2019;35:1905–1915. doi: 10.1519/JSC.0000000000003066. [DOI] [PubMed] [Google Scholar]
  • 85.Schumann M, Mykkänen O-P, Doma K, et al. Effects of endurance training only versus same-session combined endurance and strength training on physical performance and serum hormone concentrations in recreational endurance runners. Appl Physiol Nutr Metab. 2015;40:28–36. doi: 10.1139/apnm-2014-0262. [DOI] [PubMed] [Google Scholar]
  • 86.Filipas L, Bonato M, Maggio A, et al. Effects of plyometric training on different 8-week training intensity distributions in well-trained endurance runners. Scand J Med Sci Sports. 2023;33:200–212. doi: 10.1111/sms.14257. [DOI] [PubMed] [Google Scholar]
  • 87.Beattie K, Carson BP, Lyons M, et al. The effect of strength training on performance indicators in distance runners. J Strength Cond Res. 2017;31:9–23. doi: 10.1519/JSC.0000000000001464. [DOI] [PubMed] [Google Scholar]
  • 88.Taipale RS, Mikkola J, Salo T, et al. Mixed maximal and explosive strength training in recreational endurance runners. J Strength Cond Res. 2014;28:689–699. doi: 10.1519/JSC.0b013e3182a16d73. [DOI] [PubMed] [Google Scholar]
  • 89.Karsten B, Stevens L, Colpus M, et al. The effects of sport-specific maximal strength and conditioning training on critical velocity, anaerobic running distance, and 5-km race performance. Int J Sports Physiol Perform. 2016;11:80–85. doi: 10.1123/ijspp.2014-0559. [DOI] [PubMed] [Google Scholar]
  • 90.Damasceno M, Pasqua L, Gáspari A, et al. Effects of strength training on bioenergetics parameters determined at velocity corresponding to maximal oxygen uptake in endurance runners. Sci Sports. 2018;33:e263–e270. doi: 10.1016/j.scispo.2018.04.004. [DOI] [Google Scholar]
  • 91.Taipale R, Mikkola J, Nummela A, et al. Strength training in endurance runners. Int J Sports Med. 2010;31:468–476. doi: 10.1055/s-0029-1243639. [DOI] [PubMed] [Google Scholar]
  • 92.Vikmoen O, Rønnestad BR, Ellefsen S, et al. Heavy strength training improves running and cycling performance following prolonged submaximal work in well-trained female athletes. Physiol Rep. 2017;5:e13149. doi: 10.14814/phy2.13149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Schumann M, Pelttari P, Doma K, et al. Neuromuscular adaptations to same-session combined endurance and strength training in recreational endurance runners. Int J Sports Med. 2016;37:1136–1143. doi: 10.1055/s-0042-112592. [DOI] [PubMed] [Google Scholar]
  • 94.Doma K, Schumann M, Sinclair WH, et al. The repeated bout effect of typical lower body strength training sessions on sub-maximal running performance and hormonal response. Eur J Appl Physiol. 2015;115:1789–1799. doi: 10.1007/s00421-015-3159-z. [DOI] [PubMed] [Google Scholar]
  • 95.Guimarães MP, Campos YAC, de Souza HLR, et al. Effect of neuromuscular resistance training on the performance of 5-km runners. Kinesiology. 2020;52:64–71. doi: 10.26582/k.52.1.8. [DOI] [Google Scholar]
  • 96.Vorup J, Tybirk J, Gunnarsson TP, et al. Effect of speed endurance and strength training on performance, running economy and muscular adaptations in endurance-trained runners. Eur J Appl Physiol. 2016;116:1331–1341. doi: 10.1007/s00421-016-3356-4. [DOI] [PubMed] [Google Scholar]
  • 97.Ferrauti A, Bergermann M, Fernandez-Fernandez J. Effects of a concurrent strength and endurance training on running performance and running economy in recreational marathon runners. J Strength Cond Res. 2010;24:2770–2778. doi: 10.1519/JSC.0b013e3181d64e9c. [DOI] [PubMed] [Google Scholar]
  • 98.Vikmoen O, Raastad T, Seynnes O, et al. Effects of heavy strength training on running performance and determinants of running performance in female endurance athletes. PLoS One. 2016;11:e0150799. doi: 10.1371/journal.pone.0150799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Støren O, Helgerud J, Støa EM, et al. Maximal strength training improves running economy in distance runners. Med Sci Sports Exerc. 2008;40:1087–1092. doi: 10.1249/MSS.0b013e318168da2f. [DOI] [PubMed] [Google Scholar]
  • 100.Kelly CM, Burnett AF, Newton MJ. The effect of strength training on three-kilometer performance in recreational women endurance runners. J Strength Cond Res. 2008;22:396–403. doi: 10.1519/JSC.0b013e318163534a. [DOI] [PubMed] [Google Scholar]
  • 101.Damasceno MV, Lima-Silva AE, Pasqua LA, et al. Effects of resistance training on neuromuscular characteristics and pacing during 10-km running time trial. Eur J Appl Physiol. 2015;115:1513–1522. doi: 10.1007/s00421-015-3130-z. [DOI] [PubMed] [Google Scholar]
  • 102.Mikkola J, Vesterinen V, Taipale R, et al. Effect of resistance training regimens on treadmill running and neuromuscular performance in recreational endurance runners. J Sports Sci. 2011;29:1359–1371. doi: 10.1080/02640414.2011.589467. [DOI] [PubMed] [Google Scholar]
  • 103.Millet GP, Jaouen B, Borrani F, et al. Effects of concurrent endurance and strength training on running economy and VO2 kinetics. Med Sci Sports Exerc. 2002;34:1351–1359. doi: 10.1097/00005768-200208000-00018. [DOI] [PubMed] [Google Scholar]
  • 104.Skovgaard C, Christensen PM, Larsen S, et al. Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners. J Appl Physiol. 1985;2014(117):1097–1109. doi: 10.1152/japplphysiol.01226.2013. [DOI] [PubMed] [Google Scholar]
  • 105.Lum D, Tan F, Pang J, et al. Effects of intermittent sprint and plyometric training on endurance running performance. J Sport Health Sci. 2019;8:471–477. doi: 10.1016/j.jshs.2016.08.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Turner AM, Owings M, Schwane JA. Improvement in running economy after 6 weeks of plyometric training. J Strength Cond Res. 2003;17:60–67. doi: 10.1519/1533-4287(2003)017&#x0003c;0060:iireaw&#x0003e;2.0.co;2. [DOI] [PubMed] [Google Scholar]
  • 107.Spurrs RW, Murphy AJ, Watsford ML. The effect of plyometric training on distance running performance. Eur J Appl Physiol. 2003;89:1–7. doi: 10.1007/s00421-002-0741-y. [DOI] [PubMed] [Google Scholar]
  • 108.do Carmo EC, Barroso R, Gil S, et al. Can plyometric training change the pacing behaviour during 10-km running? Eur J Sport Sci. 2023;23:18–27. doi: 10.1080/17461391.2021.2013952. [DOI] [PubMed] [Google Scholar]
  • 109.Lundstrom CJ, Betker MR, Ingraham SJ. Effects of plyometric and explosive speed training on recreational marathoners. J Sports Sci. 2017;5:1–13. doi: 10.17265/2332-7839/2017.01.001. [DOI] [Google Scholar]
  • 110.Ache-Dias J, Dellagrana RA, Teixeira AS, et al. Effect of jumping interval training on neuromuscular and physiological parameters: a randomized controlled study. Appl Physiol Nutr Metab. 2016;41:20–25. doi: 10.1139/apnm-2015-0368. [DOI] [PubMed] [Google Scholar]
  • 111.Štohanzl M, Baláš J, Draper N. Effects of minimal dose of strength training on running performance in female recreational runners. J Sports Med Phys Fit. 2018;58:1211–1217. doi: 10.23736/S0022-4707.17.07124-9. [DOI] [PubMed] [Google Scholar]
  • 112.Lum D, Barbosa TM, Aziz AR, et al. Effects of isometric strength and plyometric training on running performance: a randomized controlled study. Res Q Exerc Sport. 2023;94:263–271. doi: 10.1080/02701367.2021.1969330. [DOI] [PubMed] [Google Scholar]
  • 113.Saunders PU, Telford RD, Pyne DB, et al. Short-Term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Cond Res. 2006;20:947. doi: 10.1519/R-18235.1. [DOI] [PubMed] [Google Scholar]
  • 114.Berryman N, Maurel D, Bosquet L. Effect of plyometric vs. dynamic weight training on the energy cost of running. J Strength Cond Res. 2010;24:1818–1825. doi: 10.1519/JSC.0b013e3181def1f5. [DOI] [PubMed] [Google Scholar]
  • 115.Sedano S, Marín PJ, Cuadrado G, et al. Concurrent training in elite male runners: the influence of strength versus muscular endurance training on performance outcomes. J Strength Cond Res. 2013;27:2433–2443. doi: 10.1519/JSC.0b013e318280cc26. [DOI] [PubMed] [Google Scholar]
  • 116.Albracht K, Arampatzis A. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur J Appl Physiol. 2013;113:1605–1615. doi: 10.1007/s00421-012-2585-4. [DOI] [PubMed] [Google Scholar]
  • 117.Fletcher JR, Esau SP, MacIntosh BR. Changes in tendon stiffness and running economy in highly trained distance runners. Eur J Appl Physiol. 2010;110:1037–1046. doi: 10.1007/s00421-010-1582-8. [DOI] [PubMed] [Google Scholar]
  • 118.Blagrove RC, Howe LP, Cushion EJ, et al. Effects of strength training on postpubertal adolescent distance runners. Med Sci Sports Exerc. 2018;50:1224–1232. doi: 10.1249/MSS.0000000000001543. [DOI] [PubMed] [Google Scholar]
  • 119.Trowell D, Fox A, Saunders N, et al. Effect of concurrent strength and endurance training on run performance and biomechanics: a randomized controlled trial. Scand J Med Sci Sports. 2021;32:543–558. doi: 10.1111/sms.14092. [DOI] [PubMed] [Google Scholar]
  • 120.Eihara Y, Takao K, Sugiyama T, et al. Heavy resistance training versus plyometric training for improving running economy and running time trial performance: a systematic review and meta-analysis. Sports Med Open. 2022;8:138. doi: 10.1186/s40798-022-00511-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Bohm S, Mersmann F, Santuz A, et al. Enthalpy efficiency of the soleus muscle contributes to improvements in running economy. Proc R Soc B Biol Sci. 2021;288:1–10. doi: 10.1098/rspb.2020.2784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Aagaard P, Simonsen EB, Andersen JL, et al. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93:1318–1326. doi: 10.1152/japplphysiol.00283.2002. [DOI] [PubMed] [Google Scholar]
  • 123.Zhang Q, Nassis GP, Chen S, et al. Not lower-limb joint strength and stiffness but vertical stiffness and isometric force-time characteristics correlate with running economy in recreational male runners. Front Physiol. 2022;13:1–12. doi: 10.3389/fphys.2022.940761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Lum D, Chua K, Rashid AA. Isometric mid-thigh pull force-time characteristics: a good indicator of running performance. J Trainol. 2020;9:54–59. doi: 10.17338/trainology.9.2_54. [DOI] [Google Scholar]
  • 125.Fletcher JR, MacIntosh BR. Running economy from a muscle energetics perspective. Front Physiol. 2017;8:1–15. doi: 10.3389/fphys.2017.00433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Li F, Newton RU, Shi Y, et al. Correlation of eccentric strength, reactive strength, and leg stiffness with running economy in well-trained distance runners. J Strength Cond Res. 2021;35:1491–1499. doi: 10.1519/JSC.0000000000003446. [DOI] [PubMed] [Google Scholar]
  • 127.Liu B, Wu J, Shi Q, et al. Running economy and lower extremity stiffness in endurance runners: a systematic review and meta-analysis. Front Physiol. 2022;13:1–13. doi: 10.3389/fphys.2022.1059221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Moore IS, Ashford KJ, Cross C, et al. Humans optimize ground contact time and leg stiffness to minimize the metabolic cost of running. Front Sports Act Living. 2019;1:1–10. doi: 10.3389/fspor.2019.00053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Lazarczuk SL, Maniar N, Opar DA, et al. Mechanical, material and morphological adaptations of healthy lower limb tendons to mechanical loading: a systematic review and meta-analysis. Sports Med. 2022;52:2405–2429. doi: 10.1007/s40279-022-01695-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.de Villarreal ES-S, Kellis E, Kraemer WJ, et al. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res. 2009;23:495–506. doi: 10.1519/JSC.0b013e318196b7c6. [DOI] [PubMed] [Google Scholar]
  • 131.Moran J, Liew B, Ramirez-Campillo R, et al. The effects of plyometric jump training on lower-limb stiffness in healthy individuals: a meta-analytical comparison. J Sport Health Sci. 2023;12:236–245. doi: 10.1016/j.jshs.2021.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Kubo K, Yata H, Kanehisa H, et al. Effects of isometric squat training on the tendon stiffness and jump performance. Eur J Appl Physiol. 2006;96:305–314. doi: 10.1007/s00421-005-0087-3. [DOI] [PubMed] [Google Scholar]
  • 133.Kubo K, Morimoto M, Komuro T, et al. Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc. 2007;39:1801–1810. doi: 10.1249/mss.0b013e31813e630a. [DOI] [PubMed] [Google Scholar]
  • 134.Maffiuletti NA, Aagaard P, Blazevich AJ, et al. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116:1091–1116. doi: 10.1007/s00421-016-3346-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Luckin-Baldwin KM, Badenhorst CE, Cripps AJ, et al. Strength training improves exercise economy in triathletes during a simulated triathlon. Int J Sports Physiol Perform. 2021;16:663–673. doi: 10.1123/ijspp.2020-0170. [DOI] [PubMed] [Google Scholar]
  • 136.Johnston RE, Quinn TJ, Kertzer R, et al. Strength training in female distance runners. J Strength Cond Res. 1997;11:224–229. doi: 10.1519/00124278-199711000-00004. [DOI] [Google Scholar]
  • 137.Mikkola J, Rusko H, Nummela A, et al. Concurrent endurance and explosive type strength training improves neuromuscular and anaerobic characteristics in young distance runners. Int J Sports Med. 2007;28:602–611. doi: 10.1055/s-2007-964849. [DOI] [PubMed] [Google Scholar]
  • 138.Prieske O, Behrens M, Chaabene H, et al. Time to differentiate postactivation “potentiation” from “performance enhancement” in the strength and conditioning community. Sports Med. 2020;50:1559–1565. doi: 10.1007/s40279-020-01300-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Cormier P, Freitas TT, Loturco I, et al. Within session exercise sequencing during programming for complex training: historical perspectives, terminology, and training considerations. Sports Med. 2022;52:2371–2389. doi: 10.1007/s40279-022-01715-x. [DOI] [PubMed] [Google Scholar]
  • 140.Fletcher JR, MacIntosh BR. Achilles tendon strain energy in distance running: consider the muscle energy cost. J Appl Physiol. 2015;118:193–199. doi: 10.1152/japplphysiol.00732.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Kubo K, Ishigaki T, Ikebukuro T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol Rep. 2017;5:1–13. doi: 10.14814/phy2.13374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 142.Lai A, Schache AG, Lin Y-C, et al. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed. J Exp Biol. 2014;217:3159–3168. doi: 10.1242/jeb.100826. [DOI] [PubMed] [Google Scholar]
  • 143.Black MI, Handsaker JC, Allen SJ, et al. Is There an optimal speed for economical running? Int J Sports Physiol Perform. 2018;13:75–81. doi: 10.1123/ijspp.2017-0015. [DOI] [PubMed] [Google Scholar]
  • 144.Sasaki K, Neptune RR. Muscle mechanical work and elastic energy utilization during walking and running near the preferred gait transition speed. Gait Posture. 2006;23:383–390. doi: 10.1016/j.gaitpost.2005.05.002. [DOI] [PubMed] [Google Scholar]
  • 145.Kyröläinen H, Belli A, Komi PV. Biomechanical factors affecting running economy. Med Sci Sports Exerc. 2001;33:1330–1337. doi: 10.1097/00005768-200108000-00014. [DOI] [PubMed] [Google Scholar]
  • 146.Daniels J, Daniels N. Running economy of elite male and elite female runners. Med Sci Sports Exerc. 1992;24:483–489. doi: 10.1249/00005768-199204000-00015. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

All data generated or analysed during this systematic review and meta-analysis are included in the article as table(s), figure(s), and/or Online Supplementary Material(s). Any other data requirement can be directed to the corresponding author upon reasonable request.


Articles from Sports Medicine (Auckland, N.z.) are provided here courtesy of Springer

RESOURCES