Abstract
微RNA(miRNA)是一类通过不完全碱基互补配对实现后转录调控作用的小分子非编码RNA,其往往在癌症患者的病灶和外周血中表达失调。近年来,基于人工智能算法如机器学习和深度学习的模型逐渐应用于miRNA生物信息学研究。与传统的生物信息学工具比较,基于人工智能算法的miRNA靶点预测工具准确度更高,并实现了miRNA亚细胞定位和亚细胞重分布的预测,进一步深化了科研人员对miRNA的认识。此外,人工智能算法在临床模型构建的应用也显著提升了miRNA生物标志物的挖掘效率。本文总结了近年来人工智能算法在miRNA靶点预测、亚细胞定位和生物标志物挖掘的应用,并探讨了机器学习和深度学习对癌症相关miRNA研究的潜在价值。
Keywords: 微RNA, 机器学习, 深度学习, 靶点预测, 亚细胞分布, 临床预测模型, 综述
Abstract
MiRNAs are a class of small non-coding RNAs, which regulate gene expression post-transcriptionally by partial complementary base pairing. Aberrant miRNA expressions have been reported in tumor tissues and peripheral blood of cancer patients. In recent years, artificial intelligence algorithms such as machine learning and deep learning have been widely used in bioinformatic research. Compared to traditional bioinformatic tools, miRNA target prediction tools based on artificial intelligence algorithms have higher accuracy, and can successfully predict subcellular localization and redistribution of miRNAs to deepen our understanding. Additionally, the construction of clinical models based on artificial intelligence algorithms could significantly improve the mining efficiency of miRNA used as biomarkers. In this article, we summarize recent development of bioinformatic miRNA tools based on artificial intelligence algorithms, focusing on the potential of machine learning and deep learning in cancer-related miRNA research.
Keywords: MicroRNA, Machine learning, Deep learning, Target prediction, Subcellular distribution, Clinical prediction model, Review
miRNA是一类长度为18~22 nt的非编码RNA。在经典miRNA生成途径中,miRNA先被转录为初级miRNA,在细胞核内经微处理器剪切为前体miRNA,经exportin-5进入细胞质,前体miRNA经过DICER和TRBP处理生成成熟miRNA。成熟miRNA在细胞质内与AGO家族蛋白形成RNA诱导沉默复合物,抑制mRNA的翻译活性[1]。miRNA通常以5 端2~8 nt高度保守的种子序列结合于3 -UTR实现对mRNA的后转录调控。哺乳动物体内约50%的编码基因受到miRNA调控[2]。miRNA广泛参与如肿瘤[3]、神经退行性疾病[4]、排斥反应[5]等疾病的发展,具有作为药物靶点[6]和生物标志物[4]的潜力。随着测序技术的开发应用和计算机科学的进步,各类miRNA的生物信息学工具取得了长足发展。为了探究miRNA的分子机制,研究人员开发了大量miRNA靶点预测工具,如TargetScan[7]、miRDB[8]、PicTar[9]等。当前miRNA生物信息学研究主要聚焦于miRNA靶点预测、miRNA时空分布、基于miRNA表达数据的临床预测模型和miRNA相关生物分子网络。然而,尽管miRNA相关生物信息学工具已经取得了长足进展,现有的miRNA生物信息学工具仍有待进一步的发展,如传统miRNA靶点预测工具存在准确度不足的问题,miRNA亚细胞定位预测工具存在记录较少和无法预测miRNA重分布的缺陷。基于人工智能算法和新一代测序技术的生物信息学工具开发将有助于缓解这些问题。
随着计算机科学的发展,“人工智能”的概念越发普及。广义的人工智能算法包括机器学习、强化学习和深度学习。机器学习旨在根据数据集间的关联开发预测模型[10],常用于生物信息学的机器学习算法包括线性回归、逻辑回归、SVM、随机森林和深度神经网络[11],其中深度神经网络近年来已逐渐成为独立于机器学习模型的热门研究领域。深度学习是一类仍在发展中的机器学习算法[10]。生物信息学中常用的深度学习算法分为监督学习、非监督学习和半监督学习。常见的监督学习模型包括ANN、CNN和RNN,常用于回归和分类工作。ANN难以捕捉序列等数据中的顺序信息,且处理多维数据时易出现可训练参数过多的问题,因此更适合处理表格等向量数据;CNN常用于处理包括图像信息在内的多维数据;RNN可以处理文本、序列等一维数据[12-13]。非监督学习模型常用于聚类和异常事件检测,常用模型为生成对抗网络和自动编码器[14]等。半监督学习是一类近年来新兴的深度学习算法,常用于处理基于节点和边的图数据[15],常用的模型为GNN、GCN和GAT等。图1总结了监督学习、非监督学习和半监督学习的工作流程。深度学习模型的常用评价指标为准确度、灵敏度、特异度、AUROC和AUPRC等[16],这些参数是基于模型预测结果真阳性、真阴性、假阳性和假阴性四个值的计算结果。其中,AUROC反映了分类器模型区分样本的总体能力,是最常用的衡量监督学习模型性能的参数之一。相较于传统的miRNA生物信息学工具,基于机器学习和深度学习的生物信息学工具能够通过提取原始数据中的抽象特征对数据进行预测和分类,使预测结果更接近数据的实际分布,从而获得更精确的预测结果。
图1. 深度学习流程示意图.
A:监督学习;B:非监督学习;C:半监督学习.
本文主要总结机器学习和深度学习模型在miRNA靶点识别、miRNA亚细胞分布、miRNA生物标志物挖掘等领域中的应用,并探讨新一代测序技术在miRNA生物信息学研究中的应用前景,以期为基于机器学习和深度学习的miRNA生物信息学工具进一步开发和应用提供参考。
1. 机器学习和深度学习模型用于微RNA靶点识别和预测
miRNA通过高度保守的种子序列识别靶点,科研人员基于这一分子机制开发了多种工具预测miRNA的CTS。传统的靶点预测算法基于miRNA∶CTS的互补配对、miRNA∶CTS的吉布斯自由能、序列保守性这三条原则[17],这一类预测算法也称为基于配对原则的预测算法。常见的机器学习和深度学习miRNA靶点预测模型基于对训练数据集中的miRNA阳性靶点和阴性靶点进行学习,获取隐藏在靶点参数中的抽象特征,从而实现对miRNA靶点进行分类和预测[18-19]。
近年来,机器学习模型在miRNA靶点预测领域体现出较传统预测算法更高的精确性。miRDB的最新更新中提出了名为MirTarget的靶点预测算法,基于CLIP测序和过表达对应miRNA的测序数据,采用SVM模型预测miRNA靶点[8]。基于核函数构建的miRNA靶点预测模型mintRULS,通过提取miRNA∶CTS的自由能、miRNA靶点可及性、miRNA靶点序列的AU含量和miRNA靶点的简单重复序列等参数,通过最小二乘法预测miRNA靶点。与miRDB、TargetScan、MBSTAR、RPmirDIP和STarMir等现有miRNA预测工具比较,mintRULS有着更优的精确性和特异性[18]。尽管机器学习体现出了预测miRNA靶点的优越性,但仍需要人为选取靶点特征参数,易引入主观因素导致的误差[20]。这一局限性限制了机器学习模型的性能。
深度学习模型既可采用人为选取的靶点参数,也可直接提取序列信息,后者由深度神经网络分析原始数据下的规律,可以在一定程度上避免主观误差[12]。采用深度学习模型的miRNA靶点预测算法流程如图2所示。miRTDL是一种采用了CNN的miRNA靶点预测模型,选取了9个种子配对特征、3个进化保守性特征和8个靶点可及性特征为学习样本。研究人员以1606个经实验证明的miRNA靶点作为测试数据集,发现miRTDL具有极高的准确度、灵敏度和特异度[19]。然而,miRTDL的学习样本仍需要人为提取特征,其精确性依旧有限。
图2. 基于深度神经网络的微RNA靶点预测模型构建流程图.
编码序列信息的深度学习模型普遍具备更高的精确性。基于序列的深度学习miRNA靶点预测模型需要将核苷酸序列从文本编码为数字向量。常用的编码手段为独热编码和k-mer法。独热编码的原理为将序列或碱基匹配信息转化为数字向量输入神经网络[7, 12-13]。k-mer法的原理是将RNA序列打断成不同长度的序列,并将其转化为二进制向量[21-22]。miRAW通过ANN提取了来自CLIP测序、CLASH和iPAR-CLIP数据集近20 000条经验证的miRNA靶点序列特征[12]。miRAW的编码策略是通过独热编码将碱基和空白配对转化为0和1构成的向量。然而,由于CLASH等数据集中的靶点主要位于3 -UTR,miRAW和DeepMirTar[23]等算法未将位于3 -UTR以外的靶点纳入学习样本,导致预测结果不够全面。miTAR采用RNN和CNN读取miRNA及其靶点序列以提取miRNA靶点特征[13]。miTAR采用嵌入层将碱基编码为五维向量,缓解了独热编码导致的资源占用问题。TargetScan开发者在对miRNA靶点结合模式的探索中,以miRNA序列中的1~10 nt序列、CTS序列、miRNA∶CTS的自由能、miRNA靶点下调倍数为学习样本,采用了CNN预测miRNA的靶点亲和力和靶点抑制效率[7]。不同于传统的独热编码,此模型将miRNA的1~10 nt序列、CTS序列和碱基的16种组合构建为10×12矩阵输入CNN。这使统计模型能够获取miRNA∶CTS中全部碱基的位置信息,为处理多维数据提供了新颖的思路。
lncRNA、circRNA等非编码RNA与miRNA的交互作用近年来受到广泛研究[24-25]。基于深度学习的miRNA靶点预测模型在预测miRNA∶lncRNA和miRNA∶circRNA交互中也取得了进展。ncRNAInter基于GNN,以lncRNASNP2中miRNA∶lncRNA交互的密码子特征、开放阅读框特征、碱基含量占比、转录本序列特征、理化性质和二级结构6类共191种特征参数为学习样本,构建了精确度高达93.1%的预测模型[26]。值得注意的是,lncMirNet与ncRNAInter的学习样本来源相同,但采用CNN的lncMirNet在精确度、灵敏度、特异度、F1值、MCC和AUROC几个指标均低于ncRNAInter[21]。KGDCMI采用k-mer编码,通过图嵌入提取miRNA∶circRNA交互的特征,经过主成分分析进一步提取特征向量,导入深度神经网络进行预测[22]。上述研究表明,在采用相同学习样本时,不同的算法模型、不同的数据预处理策略都将影响模型的最终性能。
因为模型参数过多和训练样本规模不足的原因,深度学习模型常存在过拟合问题。为了避免过拟合,有的深度学习模型会采用Dropout算法,即在迭代过程中随机丢弃一部分神经节点。miRAW[12]和miTAR[13]均采用了20%的丢弃率。此外,K折交叉验证也是常用策略[21]。总之,miRNA靶点预测模型的优化主要依赖于数据集的来源、数据预处理方式、数据集的划分以及统计模型的优化。
值得注意的是,上述靶点预测模型大多采用监督学习模型。监督学习模型需要标记学习样本,在miRNA靶点预测模型中表现为标记阳性靶点和阴性靶点。miRNA靶点预测模型的学习样本多来源于CLIP测序、CLASH等阳性样本,阴性样本的匮乏导致正负样本分布不均匀,限制了监督学习模型的功能。随机生成模拟序列作为阴性样本常导致假阳性问题。非监督学习模型常用于聚类,更适合正负样本不均匀的数据集。DeepMirTar采用了来自miRMark和CLASH的miRNA靶点,基于堆叠去噪自动编码器,以种子配对、自由能、序列组成、靶点位置、保守性、序列编码信息七个类别共750个特征参数为学习样本[23],其真阳性率达到0.9235(AUROC:0.9793),较真阳性率仅为0.8701的二维CNN模型(AUROC:0.9410)性能更强。然而,DeepMirTar的学习样本仍依赖人为提取特征,采用原始序列的非监督学习模型亟待开发。除了非监督学习,采用半监督学习的ncRNAInter在准确度和灵敏度上也呈现了较监督学习模型更强的靶点预测性能[21, 26]。表1、2比较了几种miRNA靶点预测模型的特征及其参数。
表1.
微RNA靶点预测模型一览
模型名称 | 算 法 | 靶点类型 | 适用种属 | 参考文献 |
---|---|---|---|---|
TargetScan 7.0 | 线性回归 | mRNA | 现代智人、小鼠、果蝇、线虫、斑马鱼 | [27] |
miranda | SVM | mRNA | 现代智人、小鼠、大鼠、果蝇、线虫 | [28] |
miRDB | SVM | mRNA | 现代智人、小鼠、大鼠、家犬、鸡 | [8] |
mintRULS | 核函数 | mRNA | 现代智人、小鼠 | [18] |
miRTDL | CNN | mRNA | 现代智人 | [19] |
miRAW | ANN | mRNA | 现代智人 | [12] |
DeepMirTar | SDA | mRNA | 现代智人 | [23] |
miTAR | CNN、RNN | mRNA | 现代智人 | [13] |
ncRNAInter | GNN | lncRNA | 现代智人、植物、病毒 | [26] |
lncMirNet | CNN | lncRNA | 现代智人 | [21] |
KGDCMI | GNN | circRNA | 现代智人 | [22] |
SVM:支持向量机;CNN:卷积神经网络;ANN:人工神经网络;SDA:堆叠去噪自动编码器;RNN:循环神经网络;GNN:图神经网络;mRNA:信使RNA;lncRNA:长链非编码RNA;circRNA:环状RNA.
表2.
基于深度学习的微RNA靶点预测模型数据集信息及特征参数
模型名称 | 学习样本来源 | 训练集规模 | 测试集规模 | 准确度 | 灵敏度 | 特异度 |
---|---|---|---|---|---|---|
miRTDL | TargetScanS、TarBase、miRBase | 19 000 | 2915 | 0.8998 | 0.8843 | 0.9644 |
miRAW | CLASH、iPAR-CLIP | 14 000 | 3500 | 0.9200 | 0.9200 | 0.9400 |
DeepMirTar | mirMark、CLASH | 4408 | 1469 | 0.9348 | 0.9235 | 0.9479 |
miTAR | DeepMirTar、miRAW | 17 740 | 5544 | 0.9627 | 0.9591 | 0.9663 |
ncRNAInter | lncRNASNP2 | 24 840 | 2760 | 0.9309 | 0.9272 | 0.9346 |
lncMirNet | lncRNASNP2 | 24 617 | 6154 | 0.8534 | 0.9158 | 0.7910 |
KGDCMI | circbank、circR2Cancer | 6933 | 990 | 0.8265 | 0.8019 | 0.8510 |
模型名称 | 精确率 | F1值 | MCC | AUROC | AUPRC | 参考文献 |
miRTDL | — | — | — | — | — | [19] |
miRAW | — | 0.9200 | — | 0.9600 | — | [12] |
DeepMirTar | — | 0.9348 | 0.8699 | 0.9793 | — | [23] |
miTAR | 0.9664 | 0.9627 | — | — | — | [13] |
ncRNAInter | 0.9342 | 0.9307 | 0.8619 | 0.9715 | 0.9741 | [26] |
lncMirNet | — | 0.8620 | 0.7124 | 0.9381 | — | [21] |
KGDCMI | 0.8435 | — | 0.6538 | 0.8930 | 0.9767 | [22] |
—:无相关数据. 表中用于评价深度学习模型的指标均基于真阳性(TP)、真阴性(TN)、假阳性(FP)和假阴性(FN)计算,计算公式:准确度=(TP+TN)/(TP+TN+FP+FN),灵敏度=TP/(TP+FN),特异度=TN/(TN+FP),精确率=TP/(TP+FP),F1值=2TP/(2TP+FP+FN),MCC=(TP×TN-FP×FN)/sqrt[(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)]. MCC:马修斯相关系数;AUROC:接受者操作特征曲线下面积;AUPRC:精确性-召回率曲线下面积.
随着大数据等技术的发展,单细胞测序已成为分子医学领域的研究热点。由于测序深度不足,单细胞miRNA测序仍处于探索阶段[29-30],而基于单细胞测序数据预测单细胞miRNA丰度成为备选方案。Nielsen等[31]基于TCGA中3 -UTR富集程度和基因表达丰度的关联构建了基于种子配对的miRNA活性预测算法miReact,并根据肝组织单细胞测序的miR-122靶基因丰度预测了细胞特异性的miR-122活性。考虑到miRNA功能和分子机制的复杂性,这一预测算法有明显的局限性。此外,由于单细胞测序常存在特征值缺失和数据稀疏的问题,优化单细胞miRNA预测模型有赖于更高精度的单细胞测序技术开发。
2. 机器学习模型用于解析亚细胞定位
miRNA呈时空异质性分布,除了在细胞内发挥功能,miRNA也可从RNA诱导沉默复合物解离,与hnRNP家族蛋白结合并被分选入外泌体[32]。近年来,miRNA在细胞核[33]、线粒体[34]以及细胞外[35]的功能越来越得到重视,其可为肿瘤、神经退行性疾病等难治性疾病新型治疗方案的开发提供思路[34, 36-38]。以miRNA为靶点的疗法已在临床试验中取得了进展。用锁核酸药物LNA-i-miR-221治疗17例结肠癌患者,结果显示其具有一定安全性和治疗效果[39];小分子药物ABX464能够选择性上调免疫细胞miR-124表达水平,目前处于结肠炎治疗的Ⅲ期临床试验阶段[40]。在累及血管的川崎病病灶中,内皮细胞微囊中的miRNA特异性表达[41],提示外泌体miRNA有作为治疗靶点的潜力。外泌体等细胞外囊泡在抗癌疗法开发[42]和标志物挖掘[4]等领域也展现出潜力。目前,采用外泌体治疗病毒感染[43]、伤口愈合[44]等治疗方案已经处于临床试验阶段。miRNA在细胞内外分布的影响因素也引起了科研人员的广泛兴趣。除了探究miRNA与其靶点的交互模式,解析miRNA的亚细胞分布也能够深入理解miRNA功能及其分子机制,并为开发新型药物靶点提供指导。
近年来的研究表明,miRNA的细胞内外分布和外泌体分选存在序列特异性[32],提示miRNA的亚细胞分布可能同样存在序列特异性。miRNALoc基于miRNA的热力学、结构特性和双核苷酸的主成分得分,采用SVM构建了miRNA的亚细胞分布预测算法,预测miRNA在循环血、外泌体、细胞外囊泡、细胞质、微粒体、线粒体和细胞核的分布[45]。MirLocPredictor采用k-mer法编码miRBase中miRNA的序列,以RNALocate数据库中的miRNA位置信息为标签,采用RNN和CNN预测miRNA的亚细胞分布[46]。然而,由于miRNA的序列长度较短,k-mer法编码miRNA序列误差较大,而这在mRNA中鲜有出现。此外,研究发现调控线粒体功能的mRNA定位于线粒体[37, 47],调控线粒体mRNA的miRNA同样定位于线粒体,提示基于miRNA靶点构建miRNA亚细胞分布预测模型具有可行性。miRLoc采用重启随机游走算法和消息传递算法,整合了miRNA-mRNA交互网络、miRNA功能相似性网络和mRNA的亚细胞定位信息以预测miRNA的亚细胞分布[48]。这提示生物分子网络预测亚细胞分布的潜力,GNN、GCN等半监督学习算法常用于构建生物分子网络。DAmiRLocGNet利用自动编码器提取miRNA序列特征,采用GCN构建了基于miRNA功能相似性网络和miRNA-疾病网络的异质性网络,这两者结合得到的亚细胞分布预测模型具有最强的预测性能(AUROC:0.8049)[49]。表3比较了几种常见miRNA亚细胞分布预测算法的特点及其参数。值得注意的是,这些算法均采用了K折交叉验证以避免深度学习模型的过拟合。
表3.
微RNA亚细胞分布预测模型一览
模型名称 | 算法 | 亚细胞分布 | 数据库 |
数据集划分和 验证方法 |
||||||
---|---|---|---|---|---|---|---|---|---|---|
MiRNALoc | SVM | 轴突、循环系统、细胞质、外泌体、细胞核、胞外微囊、微囊、线粒体 | RNALocate v1.0、miRBase | 五折交叉验证 | ||||||
MirLocPredictor | CNN、RNN | 细胞质、外泌体、细胞核、微囊、线粒体 | RNALocate v1.0 | 十折交叉验证 | ||||||
MiRLoc | RWR、mPAT | 细胞质、外泌体、细胞核、核仁、胞外微囊、微囊、线粒体 | RNALocate v2.0、miRBase、HMDD v3. 0、MISIM v2.0 | 十折交叉验证 | ||||||
DAmiRLocGNet | GCN、自动编码器 | 细胞质、外泌体、细胞核、胞外微囊、微囊、线粒体 | RNALocate v2.0、miRBase、HMDD v3.2 | 十折交叉验证 | ||||||
模型名称 | 灵敏度 | 特异度 | 精确率 | F1值 | MCC | AUROC | AUPRC | 参考文献 | ||
MiRNALoc | 0.6949 | 0.7619 | — | 0.7238 | 0.6588 | 0.7197 | 0.7562 | [45] | ||
MirLocPredictor | 0.6784 | — | 0.6878 | 0.6178 | — | 0.6098 | 0.4990 | [46] | ||
MiRLoc | — | — | — | — | — | 0.7270 | 0.6280 | [48] | ||
DAmiRLocGNet | — | — | — | — | — | 0.8049 | 0.7281 | [49] |
—:无相关数据. 表中用于评价深度学习模型的指标均基于真阳性(TP)、真阴性(TN)、假阳性(FP)和假阴性(FN)计算,计算公式:灵敏度=TP/(TP+FN),特异度=TN/(TN+FP),精确率=TP/(TP+FP),F1值=2TP/(2TP+FP+FN),MCC=(TP×TN-FP×FN)/sqrt[(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)]. SVM:支持向量机;CNN:卷积神经网络;RNN:循环神经网络;RWR:重启随机游走算法;mPAT:消息传递算法;GCN:图卷积网络;MCC:马修斯相关系数;AUROC:接受者操作特征曲线下面积;AUPRC:精确性-召回率曲线下面积.
然而,这些算法未收录miRNA在所有细胞器的分布记录,如调控溶酶体的miRNA[50]。这主要因为数据来源匮乏,miRNA亚细胞定位数据库RNAlocate中相关记录极少[51]。这在RNAlocate v2.0的更新中并未得到改善[52]。值得注意的是,这些模型不能预测外部刺激导致的miRNA重分布[53]。结合miRNA-疾病网络的深度学习模型能够在一定程度上解决这个问题,并为挖掘生物标志物和后转录调控靶点提供思路。此外,近年来大量研究报道了miRNA与hnRNP家族等RNA结合蛋白的交互作用[54]。RNA结合蛋白在miRNA的外泌体分选[54]、线粒体转运[55]等生物过程中的作用越发受到关注,RNA结合蛋白免疫沉淀高通量测序和细胞器小RNA测序将有助于开发新的miRNA亚细胞分布预测算法。
近年来,空间转录组受到广泛关注。空间转录组主要分为基于测序的空间转录组和基于影像的空间转录组[56]。当前商业化的空间转录组主要基于对切片的原位杂交或高通量测序,活细胞空间转录组能更直观地研究RNA的细胞内外再分布。2014年,Lovatt等[57]首次标记了活组织中单个细胞的mRNA,开启了活细胞空间转录组的研究和开发工作。在miRNA检测方面,Wei等[58]在单细胞尺度实现了对乳腺癌中9个miRNA的活细胞成像。这一成果不仅在miRNA测序领域结合了空间转录组和单细胞测序,还能通过细胞器靶向技术直接观测miRNA亚细胞重分布。可以预见,空间转录组技术的应用和发展将一定程度缓解miRNA的亚细胞分布数据稀缺和研究不足的问题。
3. 机器学习模型用于挖掘微RNA生物标志物
血液、血清、尿液、胸腔积液以及外泌体miRNA可作为一类极具潜力的非侵入性生物标志物[4,59-62]。探究循环miRNA、外泌体miRNA和其他细胞外miRNA有助于深入理解相关疾病,并为开发新型miRNA分布预测算法提供支持[49]。
基于体液miRNA表达谱和临床数据的机器学习模型适用于挖掘生物标志物。Moisoiu等[63]基于尿液miRNA测序,采用逻辑回归、朴素贝叶斯和随机森林构建诊断模型,发现尿液中miR-34a-5p、miR-205-3p、miR-210-3p高表达与膀胱癌发生相关。除此之外,检测尿液中的miR-615-3p和miR-185-5p可区分管腔型与基底型膀胱癌,miR-615-3p在基底型膀胱癌中高表达,miR-185-5p在管腔型膀胱癌中高表达。Irlam-Jones等[64]在一项三期临床试验中发现,在接受放疗和缺氧修饰剂治疗后,miR-210高表达膀胱癌患者的5年生存期显著改善。Sathipati等[65]采用SVM和双目标组合遗传算法,基于TCGA的miRNA表达谱和临床数据发现,let-7f、miR-1237、miR-98、miR-933和miR-889的丰度与卵巢癌患者的生存期显著相关。其中,卵巢癌患者血浆let-7f表达水平较健康受试者低,且血浆let-7f丰度与上皮性卵巢癌预后相关[66]。Morokoff等[67]采用随机森林算法,在47例2级胶质瘤患者、44例4级胶质瘤患者和17名健康受试者的外周血miRNA测序中发现,血清miR-320e、mir-223和miR-21与肿瘤体积相关,为胶质瘤患者提供了一组预后标志物。Wong等[68]基于ANN、随机森林算法、梯度增强分类器和逻辑回归算法,在中期原发性肝癌患者、结直肠肝转移癌患者和健康志愿者的血浆miRNA表达谱中发现,与健康志愿者比较,中期原发性肝癌患者血浆miR-221-3p、miR-223-3p、miR-26a-5p和miR-30c-5p下调,而结直肠肝转移癌患者血浆miR-365a-3p和miR-423-3p上调,从而实现对原发性肝癌和结直肠癌肝转移的区分。Kim等[69]采用复合协变量模型、对角线性判别模型、最近质心模型和SVM,在108个胃癌标本的微阵列数据中发现miR-628-5p、miR-1587、miR-3175、miR-3620-5p、miR-4459、miR-4505、miR-4507、miR-4720-5p、miR-4742-5p、miR-6779-5p丰度上调或miR-106b-3p、miR-125a丰度下调可预测胃癌淋巴转移。Huang等[70]采用复合协变量、对角线性判别和SVM发现,血清高miR-21、低miR-22和低miR-29c可作为胃癌的诊断指标。Savareh等[71]组合粒子群优化、ANN和邻域成分分析算法发现,胰腺癌患者外周血高miR-1469、高miR-663a和低miR-532-5p丰度与预后不良显著相关。值得注意的是,由于算法和学习样本的差异,同类肿瘤的候选生物标志物常存在差异,基于机器学习的诊断模型精度有待进一步提升。
此外,基于肿瘤组织miRNA表达谱和临床数据的机器学习模型也能提高候选药物靶点的挖掘效率。Liu等[72]采用SVM在TCGA的miRNA表达谱和临床数据中发现,miR-383、miR-615和miR-877可作为头颈部鳞状细胞癌的诊断和预后标志物,其中miR-383[73]和miR-877[74]已证明能够调控头颈部鳞状细胞癌的进展。Ye等[75]采用SVM和主成分分析在TCGA数据库和GSE16025数据集中发现,miR-143、miR-100、miR-101-1、miR-101-2、miR-182、miR-183、miR-205、miR-21、miR-30a、miR-30d的表达可区分肺鳞状细胞癌与正常对照样本。在这些候选标志物中,miR-21靶向LZFTL1诱导肺鳞状细胞癌的耐药性[76];miR-30d能够促进肺鳞状细胞癌增殖[77]。此外,在一项随机对照试验中,Zhu等[78]发现血清低miR-21丰度可作为肺癌脑转移患者的预后标志物。Zhang等[79]采用随机森林算法,在肺癌患者的外周血miRNA表达谱中发现,miR-92a、miR-140-5p、miR-331-3p、miR-223、miR-374a表现出作为预后标志物的潜力。其中,miR-92a可靶向Sprouty4促进肺癌的上皮间质转化[80],也可诱导肺癌的耐药性[81];miR-140-5p可靶向FGF9抑制肺癌进展[82],也可靶向WEE1抑制肺癌的耐药性[83];miR-331-3p[84]、miR-223[85]和miR-374a[86]均能够抑制肺小细胞肺癌的迁移。在一项针对烟民的临床研究中发现,与无肺癌烟民比较,发生肺癌的烟民支气管上皮中miR-223表达较低[87]。Zhao等[88]通过多变量逻辑回归,在77例肺癌患者的肿瘤组织微阵列中发现,miR-210、miR-214和miR-15a的表达数据可预测肺癌患者的脑转移。提示机器学习模型能够对细胞表型和肿瘤类型进一步分类[89],并针对肿瘤异质性问题开发新型靶点。
4. 结语
近年来,多组学联合分析成为生物学研究的热门领域。miRNA测序与代谢组学、mRNA测序、lncRNA测序、circRNA测序和DNA甲基化测序等高通量数据的结合将帮助科研人员更加系统地了解生物过程。Olgun等[90]开发了基于极致梯度提升算法的miRSCAPE,以TCGA、基因型-组织表达和癌细胞系百科全书数据库中的miRNA表达谱和mRNA表达谱为训练数据,成功基于单细胞测序数据预测了单细胞miRNA丰度,并在乳腺癌和胰腺癌的单细胞测序数据中预测了发生上皮间质转化细胞的miRNA表达谱。Kutlay等[91]整合了TCGA黑色素瘤的转录组数据、miRNA表达谱和DNA甲基化数据,采用多种机器学习模型精确预测了黑色素瘤转移的相关通路。Moisoiu等[63]构建的膀胱癌诊断模型结合了尿液miRNA表达数据和尿液的表面增强拉曼光谱,实现了对膀胱癌分子亚型的精确预测。上述研究表明,机器学习和深度学习将为科研人员提供更加高效的生物信息学工具。
miRNA常在不同肿瘤中共同表达,但功能不尽相同,如miR-381可促进肾癌获得耐药性[92]并抑制乳腺癌的上皮间质转化[93];miR-155可促进肺癌进展[94]并提升三阴性乳腺癌干性[95];miR-125b-5p可促进胶质母细胞瘤侵袭[96]和结直肠癌迁移侵袭[97];miR-378可提升白血病细胞干性[98]并促进胰腺癌进展[99]。miRNA-疾病网络[100]从统计学角度为这一现象提供了解释,被聚类的疾病往往存在共同表达的miRNA。网络医学的发展为研究人员系统了解发病机制提供了机会[101],也为挖掘广谱抗肿瘤靶点和生物标志物提供了依据。生物分子网络的构建基于生物分子间的关系,除了分子交互作用[102],发病过程中出现的相似表达水平变化同样可以作为构建生物分子网络的数据来源。MuCoMiD采用GCN提取miRNA相关网络、编码基因相关网络和疾病相关网络的特征,构建了miRNA-编码基因-疾病相关网络,首次提出了预测基因与疾病的相关性的多任务学习方法[103]。采用GNN的模型NGCICM整合了miRNA∶circRNA交互、miRNA-疾病网络和circRNA-疾病网络以探究疾病中的circRNA-miRNA轴[104]。除了生物分子-疾病交互,同一信号通路和生物过程中常有不同的miRNA参与[105-106]并调控不同疾病的进展[107-108],提示miRNA-生物过程-疾病网络挖掘潜在药物靶点的潜力,也为非编码RNA的功能注释提供了思路。此外,近年来中药活性单体的药理作用研究也取得了长足进展[109-112],中药单体对同一疾病的后转录调控呈多靶点特征[113-114]。中药网络药理学[115-117]的广泛应用也提示构建中药活性单体-miRNA-mRNA-疾病网络的可能。总之,基于深度学习算法的miRNA靶点预测模型、亚细胞分布预测模型与miRNA相关网络等生物分子网络结合[118],将会更加系统地为miRNA分子机制、miRNA生物功能、后转录调控药物开发、miRNA生物标志物挖掘等研究工作提供依据。
Acknowledgments
研究受到国家重点研发计划(2022TFE0205100)、中央本级重大增减支项目(2060302-2004-09)、镇江市重点研发计划(社会发展)(SH2020036)、江苏大学高级人才科研启动基金(21JDG022)、江苏省研究生科研与实践创新计划(KYCX23_3752)、江苏大学大学生创新创业训练计划(202310299479X)支持. 江苏大学药学院王星艳、白荣裕、赵玚、朱俊同学参与资料查询和收集工作
Acknowledgments
This work was supported by the National Key R&D Program of China (2022TFE0205100), Central-level Major Increases and Decreases in Expenditure Project (2060302-2004-09), Social Development Project of Zhenjiang City (SH2020036), Scientific Research Foundation for the Senior Personnel of Jiangsu University (21JDG022), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_3752), College Student Innovation Program of Jiangsu University (202310299479X). WANG Xingyan, BAI Rongyu, ZHAO Chang and ZHU Jun from School of pharmacy, Jiangsu University participated in data searching and collection
[缩略语]
微RNA(microRNA,miRNA,miR);信使RNA(messenger RNA,mRNA);3 -非翻译区(3 -untranslated regions,3 -UTR);支持向量机(support vector machine,SVM);人工神经网络(artificial neural network,ANN);卷积神经网络(convolutional neural network,CNN);循环神经网络(recurrent neural network,RNN);图神经网络(graph neural network,GNN);图卷积网络(graph convolutional network,GCN);图注意网络(graph attention network,GAT);接受者操作特征曲线下面积(area under receiver operating characteristic curve,AUROC);精确性-召回率曲线下面积(area under the precision-recall curve,AUPRC);候选靶标结合位点(candidate target site,CTS);交联免疫共沉淀(crosslinking immunoprecipitation,CLIP);长链非编码RNA(long non coding RNA,lncRNA);环状RNA(circle RNA,circRNA);马修斯相关系数(matthews correlation coefficient,MCC);癌症基因组图谱(The Cancer Genome Atlas Program,TCGA);核内不均一核糖核蛋白(heterogeneous nuclear ribonucleo-protein,hnRNP);成纤维细胞生长因子(fibroblast growth factor,FGF)
利益冲突声明
所有作者均声明不存在利益冲突
Conflict of Interests
The authors declare that there is no conflict of interests
参考文献(References)
- 1.GALLACH S, CALABUIG-FARIÑAS S, JANTUS-LEWINTRE E, et al. MicroRNAs: promising new antiangiogenic targets in cancer[J]. Biomed Res Int, 2014, 2014: 878450. 10.1155/2014/878450 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.KROL J, LOEDIGE I, FILIPOWICZ W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9): 597-610. 10.1038/nrg2843 [DOI] [PubMed] [Google Scholar]
- 3.LIN X, PING J, WEN Y, et al. The mechanism of ferroptosis and applications in tumor treatment[J]. Front Pharmacol, 2020, 11: 1061. 10.3389/fphar.2020.01061 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.WEI H, XU Y, XU W, et al. Serum exosomal miR-223 serves as a potential diagnostic and prognostic biomarker for dementia[J]. Neuroscience, 2018, 379: 167-176. 10.1016/j.neuroscience.2018.03.016 [DOI] [PubMed] [Google Scholar]
- 5.WANG H, FAN H, TAO J, et al. MicroRNA-21 silencing prolongs islet allograft survival by inhibiting Th17 cells[J]. Int Immunopharmacol, 2019, 66: 274-281. 10.1016/j.intimp.2018.11.022 [DOI] [PubMed] [Google Scholar]
- 6.RUI M, QU Y, GAO T, et al. Simultaneous delivery of anti-miR21 with doxorubicin prodrug by mimetic lipoprotein nanoparticles for synergistic effect against drug resistance in cancer cells[J]. Int J Nanomedicine, 2017, 12: 217-237. 10.2147/ijn.s122171 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.MCGEARY S E, LIN K S, SHI C Y, et al. The biochemical basis of microRNA targeting efficacy[J]. Science, 2019, 366(6472): eaav1741. 10.1126/science.aav1741 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.CHEN Y, WANG X. MiRDB: an online database for prediction of functional microrna targets[J]. Nucleic Acids Res, 2020, 48(D1): D127-D131. 10.1093/nar/gkz757 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.LALL S, GRÜN D, KREK A, et al. A genome-wide map of conserved microRNA targets in C.elegans[J]. Curr Biol, 2006, 16(5): 460-471. 10.1016/j.cub.2006.01.050 [DOI] [PubMed] [Google Scholar]
- 10.CAMACHO D M, COLLINS K M, POWERS R K, et al. Next-generation machine learning for biological networks[J]. Cell, 2018, 173(7): 1581-1592. 10.1016/j.cell.2018.05.015 [DOI] [PubMed] [Google Scholar]
- 11.SCHÄFER M, CIAUDO C. Prediction of the miRNA interactome—established methods and upcoming per-spectives[J]. Comput Struct Biotechnol J, 2020, 18: 548-557. 10.1016/j.csbj.2020.02.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.GU T, ZHAO X, BARBAZUK W B, et al. MiTAR: a hybrid deep learning-based approach for predicting miRNA targets[J]. BMC Bioinformatics, 2021, 22(1): 96. 10.1186/s12859-021-04026-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.SAPOVAL N, AGHAZADEH A, NUTE M G, et al. Current progress and open challenges for applying deep learning across the biosciences[J]. Nat Commun, 2022, 13(1): 1728. 10.1038/s41467-022-29268-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.ZHOU Z H. A brief introduction to weakly supervised learning[J]. Natl Sci Rev, 2018, 5(1): 44-53. 10.1093/nsr/nwx106 [DOI] [Google Scholar]
- 15.JIANG T, GRADUS J L, ROSELLINI A J. Supervised machine learning: a brief primer[J]. Behav Ther, 2020, 51(5): 675-687. 10.1016/j.beth.2020.05.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.MIN H, YOON S. Got target? Computational methods for microRNA target prediction and their extension[J]. Exp Mol Med, 2010, 42(4): 233-244. 10.3858/emm.2010.42.4.032 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.SHAKYAWAR S, SOUTHEKAL S, GUDA C. MintRULS: prediction of miRNA-mRNA target site interactions using regularized least square method[J]. Genes (Basel), 2022, 13(9): 1528. 10.3390/genes13091528 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.CHENG S, GUO M, WANG C, et al. MiRTDL: a deep learning approach for miRNA target prediction[J]. IEEE/ACM Trans Comput Biol Bioinform, 2016, 13(6): 1161-1169. 10.1109/tcbb.2015.2510002 [DOI] [PubMed] [Google Scholar]
- 19.MIN S, LEE B, YOON S. Targetnet: functional microrna target prediction with deep neural networks[J]. Bioinfor-matics, 2022, 38(3): 671-677. 10.1093/bioinformatics/btab733 [DOI] [PubMed] [Google Scholar]
- 20.PLA A, ZHONG X, RAYNER S. MiRAW: a deep learning-based approach to predict microRNA targets by analyzing whole microRNA transcripts[J/OL]. PLoS Comput Biol, 2018, 14(7): e1006185. 10.1371/journal.pcbi.1006185 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.YANG S, WANG Y, LIN Y, et al. LncMirNet: predicting lncRNA-miRNA interaction based on deep learning of ribonucleic acid sequences[J]. Molecules, 2020, 25(19): 4372. 10.3390/molecules25194372 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.WANG X F, YU C Q, LI L P, et al. KGDCMI: a new approach for predicting circRNA-miRNA interactions from multi-source information extraction and deep learning[J]. Front Genet, 2022, 13: 958096. 10.3389/fgene.2022.958096 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.WEN M, CONG P, ZHANG Z, et al. DeepMirTar: a deep-learning approach for predicting human miRNA targets[J]. Bioinformatics, 2018, 34(22): 3781-3787. 10.1093/bioinformatics/bty424 [DOI] [PubMed] [Google Scholar]
- 24.YANG L, LI T. LncRNA TUG1 regulates ApoM to promote atherosclerosis progression through mir-92a/FXR1 axis[J]. J Cell Mol Med, 2020, 24(15): 8836-8848. 10.1111/jcmm.15521 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.LIANG Y, CEN J, HUANG Y, et al. CircNTNG1 inhibits renal cell carcinoma progression via HOXA5-mediated epigenetic silencing of Slug[J]. Mol Cancer, 2022, 21(1): 224. 10.1186/s12943-022-01694-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.ZHANG H, WANG Y, PAN Z, et al. ncRNAInter: a novel strategy based on graph neural network to discover interactions between lncRNA and miRNA[J]. Brief Bioinform, 2022, 23(6): bbac411. 10.1093/bib/bbac411 [DOI] [PubMed] [Google Scholar]
- 27.AGARWAL V, BELL G W, NAM J W, et al. Predicting effective microRNA target sites in mammalian mRNAs[J/OL]. Elife, 2015, 4: e05005. 10.7554/elife.05005 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.JOHN B, ENRIGHT A J, ARAVIN A, et al. Human microrna targets[J/OL]. PLoS Biol, 2004, 2(11): e363. 10.1371/journal.pbio.0020363 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.WU C C, HSIEH K T, YEH S Y, et al. Simultaneous detection of miRNA and mRNA at the single-cell level in plant tissues[J]. Plant Biotechnol J, 2023, 21(1): 136-149. 10.1111/pbi.13931 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.ALBERTI C, MANZENREITHER R A, SOWEMIMO I, et al. Cell-type specific sequencing of microRNAs from complex animal tissues[J]. Nat Methods, 2018, 15(4): 283-289. 10.1038/nmeth.4610 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.NIELSEN M M, PEDERSEN J S. MiRNA activity inferred from single cell mRNA expression[J]. Sci Rep, 2021, 11(1): 9170. 10.1038/s41598-021-88480-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.GARCIA-MARTIN R, WANG G, BRANDÃO B B, et al. MicroRNA sequence codes for small extracellular vesicle release and cellular retention[J]. Nature, 2022, 601(7893): 446-451. 10.1038/s41586-021-04234-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.ROBERTS T C. The microRNA biology of the mam-malian nucleus[J/OL]. Mol Ther Nucleic Acids, 2014, 3(8): e188. 10.1038/mtna.2014.40 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.YE Y, FANG Y, XU W, et al. 3, 3 -Diindolylmethane induces anti-human gastric cancer cells by the miR-30e-ATG5 modulating autophagy[J]. Biochem Phar-macol, 2016, 115: 77-84. 10.1016/j.bcp.2016.06.018 [DOI] [PubMed] [Google Scholar]
- 35.WEI H, XU Y, CHEN Q, et al. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis[J]. Cell Death Dis, 2020, 11(4): 290. 10.1038/s41419-020-2490-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.WANG Q, DU X, ZHOU B, et al. Mitochondrial dysfunction is responsible for fatty acid synthase inhibition-induced apoptosis in breast cancer cells by PdpaMn[J]. Biomed Pharmacother, 2017, 96: 396-403. 10.1016/j.biopha.2017.10.008 [DOI] [PubMed] [Google Scholar]
- 37.DU X, ZHANG P, FU H, et al. Smart mitochondrial-targeted cancer therapy: subcellular distribution, selective TrxR2 inhibition accompany with declined antioxidant capacity[J]. Int J Pharm, 2019, 555: 346-355. 10.1016/j.ijpharm.2018.11.057 [DOI] [PubMed] [Google Scholar]
- 38.CHEN D, ZHANG X Y, SUN J, et al. Asiatic acid protects dopaminergic neurons from neuroinflammation by suppressing mitochondrial ros production[J]. Biomol Ther (Seoul), 2019, 27(5): 442-449. 10.4062/biomolther.2018.188 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.TASSONE P, DI MARTINO M T, ARBITRIO M, et al. Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study[J]. J Hematol Oncol, 2023, 16(1): 68. 10.1186/s13045-023-01468-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.VERMEIRE S, SANDS B E, TILG H, et al. ABX464 (obefazimod) for moderate-to-severe, active ulcerative colitis: a phase 2b, double-blind, randomised, placebo-controlled induction trial and 48 week, open-label extension[J]. Lancet Gastroenterol Hepatol, 2022, 7(11): 1024-1035. 10.1016/s2468-1253(22)00233-3 [DOI] [PubMed] [Google Scholar]
- 41.NAKAOKA H, HIRONO K, YAMAMOTO S, et al. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the pro-gression of vasculitis in acute Kawasaki disease[J]. Sci Rep, 2018, 8(1): 1016. 10.1038/s41598-018-19310-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.LI T, ZHOU X, WANG J, et al. Adipose-derived mesenchymal stem cells and extracellular vesicles confer antitumor activity in preclinical treatment of breast cancer[J]. Pharmacol Res, 2020, 157: 104843. 10.1016/j.phrs.2020.104843 [DOI] [PubMed] [Google Scholar]
- 43.CHU M, WANG H, BIAN L, et al. Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia[J]. Stem Cell Rev Rep, 2022, 18(6): 2152-2163. 10.1007/s12015-022-10398-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.JOHNSON J, LAW S, SHOJAEE M, et al. First-in-human clinical trial of allogeneic, platelet-derived extracellular vesicles as a potential therapeutic for delayed wound healing[J/OL]. J Extracell Vesicles, 2023, 12(7): e12332. 10.1002/jev2.12332 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.MEHER P K, SATPATHY S, RAO A R. MiRNALoc: predicting miRNA subcellular localizations based on principal component scores of physico-chemical pro-perties and pseudo compositions of di-nucleotides[J]. Sci Rep, 2020, 10(1): 14557. 10.1038/s41598-020-71381-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.ASIM M N, MALIK M I, ZEHE C, et al. MirLoc-Predictor: a ConvNet-based multi-label microRNA subcellular localization predictor by incorporating k-Mer positional information[J]. Genes (Basel), 2020, 11(12): 1475. 10.3390/genes11121475 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.JOHN A, KUBOSUMI A, REDDY P H. Mitochondrial microRNAs in aging and neurodegenerative diseases[J]. Cells, 2020, 9(6): 1345. 10.3390/cells9061345 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.XU M, CHEN Y, XU Z, et al. MiRLoc: predicting miRNA subcellular localization by incorporating miRNA-mRNA interactions and mRNA subcellular localization[J]. Brief Bioinform, 2022, 23(2): bbac044. 10.1093/bib/bbac044 [DOI] [PubMed] [Google Scholar]
- 49.BAI T, YAN K, LIU B. DAmiRLocGNet: miRNA subcellular localization prediction by combining miRNA-disease associations and graph convolutional networks[J]. Brief Bioinform, 2023, 24(4): bbad212. 10.1093/bib/bbad212 [DOI] [PubMed] [Google Scholar]
- 50.LONG J, HE Q, YIN Y, et al. The effect of miRNA and autophagy on colorectal cancer[J/OL]. Cell Prolif, 2020, 53(10): e12900. 10.1111/cpr.12900 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.ZHANG T, TAN P, WANG L, et al. RNALocate: a resource for RNA subcellular localizations[J]. Nucleic Acids Res, 2017, 45(D1): D135-D138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.CUI T, DOU Y, TAN P, et al. RNALocate v2.0: an updated resource for RNA subcellular localization with increased coverage and annotation[J]. Nucleic Acids Res, 2022, 50(D1): D333-D339. 10.1093/nar/gkab825 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.TURUNEN T A, ROBERTS T C, LAITINEN P, et al. Changes in nuclear and cytoplasmic microRNA dis-tribution in response to hypoxic stress[J]. Sci Rep, 2019, 9(1): 10332. 10.1038/s41598-019-46841-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.O’GRADY T, NJOCK M S, LION M, et al. Sorting and packaging of RNA into extracellular vesicles shape intracellular transcript levels[J]. BMC Biol, 2022, 20(1): 72. 10.1186/s12915-022-01277-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.GUO Q Q, GAO J, WANG X W, et al. RNA-binding protein MSI2 binds to miR-301a-3p and facilitates its distribution in mitochondria of endothelial cells[J]. Front Mol Biosci, 2020, 7: 609828. 10.3389/fmolb.2020.609828 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.TIAN L, CHEN F, MACOSKO E Z. The expanding vistas of spatial transcriptomics[J]. Nat Biotechnol, 2023, 41(6): 773-782. 10.1038/s41587-022-01448-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.LOVATT D, RUBLE B K, LEE J, et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue[J]. Nat Methods, 2014, 11(2): 190-196. 10.1038/nmeth.2804 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.WEI W, DAI W, YANG F, et al. Spatially resolved, error-robust multiplexed microRNA profiling in single living cells[J/OL]. Angew Chem Int Ed Engl, 2022, 61(20): e202116909. 10.1002/anie.202116909 [DOI] [PubMed] [Google Scholar]
- 59.WU J, LI G, YAO Y, et al. MicroRNA-421 is a new potential diagnosis biomarker with higher sensitivity and specificity than carcinoembryonic antigen and cancer antigen 125 in gastric cancer[J]. Biomarkers, 2015, 20(1): 58-63. 10.3109/1354750x.2014.992812 [DOI] [PubMed] [Google Scholar]
- 60.AFTAB M, POOJARY S S, SESHAN V, et al. Urine miRNA signature as a potential non-invasive diagnostic and prognostic biomarker in cervical cancer[J]. Sci Rep, 2021, 11(1): 10323. 10.1038/s41598-021-89388-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.ZHU L R, YUAN R X, XIA X B, et al. Assessment of a panel of miRNAs in serum and pleural fluid for the differential diagnosis of malignant and benign pleural effusion[J]. Cancer Biomark, 2022, 33(1): 71-82. 10.3233/cbm-210090 [DOI] [PubMed] [Google Scholar]
- 62.ZHU Y, WANG S, XI X, et al. Integrative analysis of long extracellular RNAs reveals a detection panel of noncoding RNAs for liver cancer[J]. Theranostics, 2021, 11(1): 181-193. 10.7150/thno.48206 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.MOISOIU T, DRAGOMIR M P, IANCU S D, et al. Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer[J]. Mol Med, 2022, 28(1): 39. 10.1186/s10020-022-00462-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.IRLAM-JONES J J, EUSTACE A, DENLEY H, et al. Expression of miR-210 in relation to other measures of hypoxia and prediction of benefit from hypoxia modification in patients with bladder cancer[J]. Br J Cancer, 2016, 115(5): 571-578. 10.1038/bjc.2016.218 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.SATHIPATI S Y, HO S Y. Identification of the miRNA signature associated with survival in patients with ovarian cancer[J]. Aging (Albany NY), 2021, 13(9): 12660-12690. 10.18632/aging.202940 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.ZHENG H, ZHANG L, ZHAO Y, et al. Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer[J/OL]. PLoS One, 2013, 8(11): e77853. 10.1371/journal.pone.0077853 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.MOROKOFF A, JONES J, NGUYEN H, et al. Serum microRNA is a biomarker for post-operative monitoring in glioma[J]. J Neurooncol, 2020, 149(3): 391-400. 10.1007/s11060-020-03566-w [DOI] [PubMed] [Google Scholar]
- 68.WONG V C, WONG M I, LAM C T, et al. Hallmark microRNA signature in liquid biopsy identifies hepato-cellular carcinoma and differentiates it from liver metastasis[J]. J Cancer, 2021, 12(15): 4585-4594. 10.7150/jca.59933 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.KIM S, BAE W J, AHN J M, et al. MicroRNA signatures associated with lymph node metastasis in intramucosal gastric cancer[J]. Mod Pathol, 2021, 34(3): 672-683. 10.1038/s41379-020-00681-x [DOI] [PubMed] [Google Scholar]
- 70.HUANG Y, ZHU J, LI W, et al. Serum microRNA panel excavated by machine learning as a potential biomarker for the detection of gastric cancer[J]. Oncol Rep, 2018, 39(3): 1338-1346. [DOI] [PubMed] [Google Scholar]
- 71.SAVAREH B A, AGHDAIE H A, BEHMANESH A, et al. A machine learning approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures[J]. Pancreatology, 2020, 20(6): 1195-1204. 10.1016/j.pan.2020.07.399 [DOI] [PubMed] [Google Scholar]
- 72.LIU C, YU Z, HUANG S, et al. Combined identification of three miRNAs in serum as effective diagnostic bio-markers for HNSCC[J]. EBioMedicine, 2019, 50: 135-143. 10.1016/j.ebiom.2019.11.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.GAO C, LU W, LOU W, et al. Long noncoding RNA HOXC13-AS positively affects cell proliferation and invasion in nasopharyngeal carcinoma via modulating miR-383-3p/HMGA2 axis[J]. J Cell Physiol, 2019, 234(8): 12809-12820. 10.1002/jcp.27915 [DOI] [PubMed] [Google Scholar]
- 74.YU W, HE X, ZHANG C, et al. Circular RNA circSLC7A11 contributes to progression and stemness of laryngeal squamous cell carcinoma via sponging miR-877-5p from LASP1[J/OL]. Heliyon, 2023, 9(7): e18290. 10.1016/j.heliyon.2023.e18290 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.YE Z, SUN B, XIAO Z. Machine learning identifies 10 feature miRNAs for lung squamous cell carcinoma[J]. Gene, 2020, 749: 144669. 10.1016/j.gene.2020.144669 [DOI] [PubMed] [Google Scholar]
- 76.LIANG Z Y, ZHANG Z M, SUN G R, et al. LncRNA ASBEL and lncRNA Erbb4-IR reduce chemoresistance against gemcitabine and cisplatin in stage Ⅳ lung squamous cell carcinoma via the microRNA-21/LZTFL1 axis[J]. Am J Cancer Res, 2023, 13(6): 2732-2750. [PMC free article] [PubMed] [Google Scholar]
- 77.SHI J, LV X, ZENG L, et al. CircPVT1 promotes proliferation of lung squamous cell carcinoma by binding to miR-30d/e[J]. J Exp Clin Cancer Res, 2021, 40(1): 193. 10.1186/s13046-021-01976-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.ZHU Z, LI Q, XU M, et al. Effect of whole-brain and intensity-modulated radiotherapy on serum levels of miR-21 and prognosis for lung cancer metastatic to the brain[J/OL]. Med Sci Monit, 2020, 26: e924640. 10.12659/msm.924640 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.ZHANG Y H, JIN M, LI J, et al. Identifying circulating miRNA biomarkers for early diagnosis and monitoring of lung cancer[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(10): 165847. 10.1016/j.bbadis.2020.165847 [DOI] [PubMed] [Google Scholar]
- 80.ZHANG X, WANG X, CHAI B, et al. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4[J]. Bio-engineered, 2022, 13(4): 11281-11295. 10.1080/21655979.2022.2066755 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.LARRUE R, FELLAH S, BOUKROUT N, et al. MiR-92a-3p regulates cisplatin-induced cancer cell death[J]. Cell Death Dis, 2023, 14(9): 603. 10.1038/s41419-023-06125-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.LI X, LV F, LI F, et al. Long non-coding RNA H19 facilitates small cell lung cancer tumorigenesis through miR-140-5p/FGF9 axis[J]. Onco Targets Ther, 2020, 13: 3525-3534. 10.2147/ott.s245710 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.FU J, CAI H, WU Y, et al. Elevation of FGD5-AS1 contributes to cell progression by improving cisplatin resistance against non-small cell lung cancer cells through regulating miR-140-5p/WEE1 axis[J]. Gene, 2020, 755: 144886. 10.1016/j.gene.2020.144886 [DOI] [PubMed] [Google Scholar]
- 84.TIAN Q Q, XIA J, ZHANG X, et al. MiR-331-3p inhibits tumor cell proliferation, metastasis, invasion by targeting MLLT10 in non-small cell lung cancer[J]. Cancer Manag Res, 2020, 12: 5749-5758. 10.2147/cmar.s249686 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.ZHU S, KONG X, SONG M, et al. MiR-223-3p attenuates the migration and invasion of NSCLC cells by regulating NLRP3[J]. Front Oncol, 2022, 12: 985962. 10.3389/fonc.2022.985962 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.GUO Q, WANG H, XU Y, et al. MiR-374a-5p inhibits non-small cell lung cancer cell proliferation and migration via targeting NCK1[J]. Exp Ther Med, 2021, 22(3): 943. 10.3892/etm.2021.10375 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.PAVEL A B, CAMPBELL J D, LIU G, et al. Alterations in bronchial airway miRNA expression for lung cancer detection[J]. Cancer Prev Res (Phila), 2017, 10(11): 651-659. 10.1158/1940-6207.capr-17-0098 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.ZHAO S, YU J, WANG L. Machine learning based prediction of brain metastasis of patients with Ⅲa-n2 lung adenocarcinoma by a three-mirna signature[J]. Transl Oncol, 2018, 11(1): 157-167. 10.1016/j.tranon.2017.12.002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.KACZMAREK E, PYMAN B, NANAYAKKARA J, et al. Discriminating neoplastic from nonneoplastic tissues using an miRNA-based deep cancer classifier[J]. Am J Pathol, 2022, 192(2): 344-352. 10.1016/j.ajpath.2021.10.012 [DOI] [PubMed] [Google Scholar]
- 90.OLGUN G, GOPALAN V, HANNENHALLI S. MiRSCAPE-inferring miRNA expression from scRNA-seq data[J]. iScience, 2022, 25(9): 104962. 10.1016/j.isci.2022.104962 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.KUTLAY A, AYDIN SON Y. Integrative predictive modeling of metastasis in melanoma cancer based on MicroRNA, mRNA, and DNA methylation data[J]. Front Mol Biosci, 2021, 8: 637355. 10.3389/fmolb.2021.637355 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.CHEN B, DUAN L, YIN G, et al. MiR-381, a novel intrinsic WEE1 inhibitor, sensitizes renal cancer cells to 5-FU by up-regulation of Cdc2 activities in 786-O[J]. J Chemother, 2013, 25(4): 229-238. 10.1179/1973947813y.0000000092 [DOI] [PubMed] [Google Scholar]
- 93.YU Y Z, MU Q, REN Q, et al. MiR-381-3p suppresses breast cancer progression by inhibition of epithelial-mesenchymal transition[J]. World J Surg Oncol, 2021, 19(1): 230. 10.1186/s12957-021-02344-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.LI F, HU Q, PANG Z, et al. LncRNA MAGI2-AS3 upregulates cytokine signaling 1 by sponging miR-155 in non-small cell lung cancer[J]. Cancer Biother Radio-pharm, 2020, 35(1): 72-76. 10.1089/cbr.2019.2898 [DOI] [PubMed] [Google Scholar]
- 95.YANG L W, WU X J, LIANG Y, et al. MiR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5[J]. Mol Carcinog, 2020, 59(4): 447-461. 10.1002/mc.23167 [DOI] [PubMed] [Google Scholar]
- 96.SHI L, WAN Y, SUN G, et al. MiR-125b inhibitor may enhance the invasion-prevention activity of temozolo-mide in glioblastoma stem cells by targeting PIAS3[J]. BioDrugs, 2014, 28(1): 41-54. 10.1007/s40259-013-0053-2 [DOI] [PubMed] [Google Scholar]
- 97.ZHANG X, LI T, HAN Y N, et al. MiR-125b promotes colorectal cancer migration and invasion by dual-targeting CFTR and CGN[J]. Cancers (Basel), 2021, 13(22): 5710. 10.3390/cancers13225710 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.MA J, WU D, YI J, et al. MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic myeloid leukemia K562 cells[J]. Biomed Pharmacother, 2019, 112: 108623. 10.1016/j.biopha.2019.108623 [DOI] [PubMed] [Google Scholar]
- 99.LIU L, HAN S, XIAO X, et al. Glucocorticoid-induced microRNA-378 signaling mediates the progression of pancreatic cancer by enhancing autophagy[J]. Cell Death Dis, 2022, 13(12): 1052. 10.1038/s41419-022-05503-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.LU M, ZHANG Q, DENG M, et al. An analysis of human microrna and disease associations[J/OL]. PLoS One, 2008, 3(10): e3420. 10.1371/journal.pone.0003420 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.BARABÁSI A L, GULBAHCE N, LOSCALZO J. Network medicine: a network-based approach to human disease[J]. Nat Rev Genet, 2011, 12(1): 56-68. 10.1038/nrg2918 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.UTHAYOPAS K, DE SÁ A, ALAVI A, et al. TSMDA: target and symptom-based computational model for miRNA-disease-association prediction[J]. Mol Ther Nucleic Acids, 2021, 26: 536-546. 10.1016/j.omtn.2021.08.016 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.DONG N, MUCKE S, KHOSLA M. MuCoMiD: a multitask graph convolutional learning framework for miRNA-disease association prediction[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(6): 3081-3092. [DOI] [PubMed] [Google Scholar]
- 104.MA Z, KUANG Z, DENG L. NGCICM: a novel deep learning-based method for predicting circRNA-miRNA interactions[J]. IEEE/ACM Trans Comput Biol Bio-inform, 2023, 20(5): 3080-3092. [DOI] [PubMed] [Google Scholar]
- 105.XU W P, LIU J P, FENG J F, et al. MiR-541 potentiates the response of human hepatocellular carcinoma to sorafenib treatment by inhibiting autophagy[J]. Gut, 2020, 69(7): 1309-1321. 10.1136/gutjnl-2019-318830 [DOI] [PubMed] [Google Scholar]
- 106.AHANGARI F, PRICE N L, MALIK S, et al. MicroRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis[J/OL]. JCI Insight, 2023, 8(4): e158100. 10.1172/jci.insight.158100 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.YANG B, BAI Y, YIN C, et al. Activation of autophagic flux and the Nrf2/ARE signaling pathway by hydrogen sulfide protects against acrylonitrile-induced neurotoxicity in primary rat astrocytes[J]. Arch Toxicol, 2018, 92(6): 2093-2108. 10.1007/s00204-018-2208-x [DOI] [PubMed] [Google Scholar]
- 108.DUAN Y, XU H, LUO X, et al. Procyanidins from nelumbo nucifera gaertn. Seedpod induce autophagy mediated by reactive oxygen species generation in human hepatoma G2 cells[J]. Biomed Pharmacother, 2016, 79: 135-152. 10.1016/j.biopha.2016.01.039 [DOI] [PubMed] [Google Scholar]
- 109.YANG B, YIN C, ZHOU Y, et al. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ[J]. Toxicology, 2019, 425: 152248. 10.1016/j.tox.2019.152248 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.LIANG Z, WU R, XIE W, et al. Effects of curcumin on tobacco smoke-induced hepatic MAPK pathway activation and epithelial-mesenchymal transition in vivo [J]. Phytother Res, 2017, 31(8): 1230-1239. 10.1002/ptr.5844 [DOI] [PubMed] [Google Scholar]
- 111.GENG J, LIU W, XIONG Y, et al. Andrographolide sulfonate improves Alzheimer-associated phenotypes and mitochondrial dysfunction in APP/PS1 transgenic mice[J]. Biomed Pharmacother, 2018, 97: 1032-1039. 10.1016/j.biopha.2017.11.039 [DOI] [PubMed] [Google Scholar]
- 112.GENG J, LIU W, GAO J, et al. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1[J]. Br J Pharmacol, 2019, 176(23): 4574-4591. 10.1111/bph.14823 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.LI B, SHI C, LI B, et al. The effects of curcumin on HCT-116 cells proliferation and apoptosis via the miR-491/PEG10 pathway[J]. J Cell Biochem, 2018, 119(4): 3091-3098. 10.1002/jcb.26449 [DOI] [PubMed] [Google Scholar]
- 114.LIU C, ROKAVEC M, HUANG Z, et al. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis[J]. Cell Death Differ, 2023, 30(7): 1771-1785. 10.1038/s41418-023-01178-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.GE Q, CHEN L, TANG M, et al. Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology[J]. Eur J Pharmacol, 2018, 833: 50-62. 10.1016/j.ejphar.2018.05.021 [DOI] [PubMed] [Google Scholar]
- 116.WANG N, ZHU F, SHEN M, et al. Network phar-macology-based analysis on bioactive anti-diabetic compounds in Potentilla discolor bunge[J]. J Ethno-pharmacol, 2019, 241: 111905. 10.1016/j.jep.2019.111905 [DOI] [PubMed] [Google Scholar]
- 117.GE Q, CHEN L, YUAN Y, et al. Network pharma-cology-based dissection of the anti-diabetic mechanism of lobelia chinensis[J]. Front Pharmacol, 2020, 11: 347. 10.3389/fphar.2020.00347 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.NIU Z, GAO X, XIA Z, et al. Prediction of small molecule drug-miRNA associations based on GNNs and CNNs[J]. Front Genet, 2023, 14: 1201934. 10.3389/fgene.2023.1201934 [DOI] [PMC free article] [PubMed] [Google Scholar]