Skip to main content
Microbiology Resource Announcements logoLink to Microbiology Resource Announcements
. 2024 Apr 8;13(5):e01250-23. doi: 10.1128/mra.01250-23

Metagenome-assembled bacterial genomes from benthic microbial mats in ice-covered Lake Vanda, Antarctica

Tyler Powell 1,2, Dawn Y Sumner 1, Anne D Jungblut 3, Ian Hawes 4, Tyler Mackey 5, Christen Grettenberger 1,6,
Editor: Elinne Becket7
PMCID: PMC11080526  PMID: 38587419

ABSTRACT

We recovered 57 bacterial metagenome-assembled genomes (MAGs) from benthic microbial mat pinnacles from Lake Vanda, Antarctica. These MAGs provide access to genomes from polar environments and can assist in culturing and utilizing these Antarctic bacteria.

KEYWORDS: Antarctica, microbial mat, metagenome-assembled genomes

ANNOUNCEMENT

Most microorganisms, especially extremophilic organisms cannot be cultured easily under in vitro laboratory conditions (1, 2). Molecular methodologies like metagenomic shotgun sequencing now provide a culture-independent method of examining extremophilic taxa and the adaptations that they have for life in these extreme environments. They provide a helpful alternative approach to answer questions about the organisms and their community when culturing attempts are unsuccessful. Here, we retrieved 57 metagenome-assembled genomes (MAGs) from microbial pinnacles that were subsampled from benthic mats that grew on the floor of the perennially ice-covered Lake Vanda, Antarctica.

Samples were collected as described previously (3). Briefly, scientific divers sampled microbial mat pinnacles in Lake Vanda in the McMurdo Dry Valleys, Antarctica (−77.529, 161.578) between 8th and 18th December 2013. Microbial mats were subsampled based on color into photosynthetically active green (G) or purple (P) areas and aphotic beige (IB) areas within pinnacles (4). DNA was extracted in the field from multiple green, purple, and inner beige samples and one un-subsampled “bulk mat” sample. DNA was extracted using the Zymo Soil/Fecal miniprep kit (Zymo Research, USA). Libraries were prepared using the KAPA HyperPrep kit (KAPA Biosystems, USA) and DNA was sequenced using the Illumina HiSeq-2500 1TB platform with 2 × 151 bp paired-end sequencing and quality controlled using the standard Joint Genome Institute protocol as described previously (3). Briefly, reads with four or more “N” bases with average quality less than three or minimum length ≤51  bp or 33% of the full read length and those with 93% identity to masked human, dog, cat, mouse, and common contaminants were removed using BBDuk (version 37.36) within BBTools (5). Metagenomes were assembled using MEGAHIT v1.9.6 with a minimum contig length of 1500 (6). Reads were mapped to the assembly using Bowtie2 v1.2.2 and samtools v1.7 (7, 8). A depth file was generated using the jgi_summarize_bam_contig_depths command in MetaBAT v.2.12.1 (9). Bins were generated using metaBAT using a minimum contig size of 2,500 bp. The completeness and contamination of the bins were calculated using CheckM v1.0.7 (10). Bins > 90% complete with less than 5% contamination were retained. Average nucleotide identity (ANI) between bins was calculated using the anvi-compute-genome-similarity command in Anvi’o v6.2 using fastANI (11, 12). Bins sharing >98% ANI was considered to be the same taxon and the bin with the highest completeness was selected as the representative MAG for that taxon. Representative MAGs were classified using GTDB-tk v1.7.0 (13). Previously published MAGs were removed (3, 14, 15). Genome coverage was calculated using coverM (https://github.com/wwood/CoverM) and genomes were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (16). Default parameters were used unless otherwise noted.

Metagenomes contained 177–229 million reads which assembled into 179,000–223,000 contigs (Table 1). We retrieved 57 MAGs from 20 bacterial phyla. The median contig number for MAGs was 264. The average size and GC content were 4.296 Mb and 52.828%, respectively. Average completeness was 96.41% and contamination was 1.38%. Coverage ranged from 11.1× to 111.3×. There were 2,130–6,778 protein-encoding genes (Table 1).

TABLE 1.

Summary of metagenome statistics and MAG propertiesa

Metagenome statistics Genome statistics
Site Accession Raw read pairs (millions) Quality controlled read pairs (millions) Contigs N50 Accession Genome name Classification Total length (Mb) GC (%) Contigs Complete-ness (%) Contam-ination (%) Coverage (×) Protein-encoding genes (total)
Bulk Mat SRX3539175 208 207 179,859 4156 SAMN38186868 BulkMat.140 Bacteria; Bacteroidota; Bacteroidia; Chitinophagales; Saprospiraceae;
JABWAJ01
5.56 49.33 409 97.78 1.01 50.0 4,494
SAMN38186869 BulkMat.37 Bacteria; Pseudomonadota; Alphaproteobacteria; Caulobacterales;
TH1-2; Terricaulis
3.7 62.78 136 98.62 1.54 23.1 3,852
SAMN38186870 BulkMat.75 Bacteria; Zixibacteria;
MSB-5A5; GN15; FEB-12; JACRAV01
2.7 48.5 82 98.84 0 44.0 2,246
SAMN38186871 BulkMat.82 Bacteria; Chloroflexota; Anaerolineae; Aggregatilineales;
A4b; GCA-2794515
3.9 47.52 509 96.18 1.82 15.4 3,595
MP5G1 SRX3539176 95 94 213,763 4255 SAMN38186872 MP5G1.132 Bacteria; Bacteroidota; Bacteroidia; Chitinophagales; Saprospiraceae;
JABWAJ01
5.76 49.38 437 97.78 2.27 24.6 4,673
SAMN38186873 MP5G1.138 Bacteria; Spirochaetota; Leptospirae; Leptospirales; Leptospiraceae;
Leptospira_A
4.11 35.7 37 100 0 44.6 3,834
SAMN38186874 MP5G1.179 Bacteria; Chloroflexota; Chloroflexia;
Chloroflexales; Roseiflexaceae
6.13 54.9 757 95.91 1.89 12.1 5,489
SAMN38186875 MP5G1.50 Bacteria; Bacteroidota; Bacteroidia; AKYH767;
B-17BO; UBA2475
3.53 36.14 190 97.44 2.66 28.9 3,021
MP5IB2 SRX3539179 103 102 217,012 4652 SAMN38186876 MP5IB2.11 Bacteria; Bdellovibrionota; Bdellovibrionia;
JABDDW01; JABDDW01
3 39.57 70 95.48 2.68 17.6 2,935
SAMN38186877 MP5IB2.114 Bacteria; Bacteroidota; Bacteroidia;
NS11-12g; SHWZ01
3.5 36.82 205 96.43 0.63 20.4 2,970
SAMN38186878 MP5IB2.151 Bacteria; Planctomycetia; Pirellulales;
Lacipirellulaceae; Bythopirellula
4.77 56.21 204 97.63 0 42.4 4,053
SAMN38186879 MP5IB2.172 Bacteria; Bacteroidota; Bacteroidia; Chitinophagales; Saprospiraceae;
JADKGY01
3.92 44.25 298 95.42 0.41 18.5 3,141
SAMN38186880 MP5IB2.194 Bacteria; Bacteroidota; Rhodothermia; Rhodothermales; 5.14 62.43 304 95.9 2.19 21.4 4,229
SAMN38186881 MP5IB2.201 Bacteria; Bdellovibrionota; Bdellovibrionia; Bdellovibrionales;
SG-bin7
3.26 42.33 111 99 1.79 17.7 3,273
SAMN38186882 MP5IB2.37 Bacteria; Bacteroidota; Bacteroidia; NS11-12g; UKL13-3; B1 3.59 37.51 149 95.24 1.59 23.9 3,020
SAMN38186883 MP5IB2.67 Bacteria; Gemmatimonadota; Gemmatimonadota; Gemmatimonadales;
GWC2-71-9; SZUA-320
3.29 67.18 419 95.6 2.2 27.9 3,077
SAMN38186884 MP5IB2.78 Bacteria; Planctomycetota; Planctomycetia; Planctomycetales; Planctomycetaceae;
DSVQ01
7.43 63.99 717 95.51 1.23 15.0 6,251
MP6G1 SRX3539172 101 100 223,185 4583 SAMN38186885 MP6G1.103 Bacteria;
Chloroflexota;
Anaerolineae; Aggregatilineales;
A4b; OLB15
5.21 59.04 383 98.18 0.91 25.8 4,619
SAMN38186886 MP6G1.12 Bacteria;
Planctomycetota; Phycisphaerae; Phycisphaerales;
SM1A02; JAEUIT01
4.3 64.28 281 95.8 2.84 20.6 3,691
SAMN38186887 MP6G1.168 Bacteria;
Chloroflexota; Anaerolineae; Aggregatilineales;
A4b; OLB15
4.44 61.39 335 97.27 0 28.5 4,031
SAMN38186888 MP6G1.198 Bacteria; Myxococcota; Polyangiia;
Palsa-1104_A
5.23 59.6 389 95.81 1.31 19.8 4,590
SAMN38186889 MP6G1.94 Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; UA16 3.7 41.41 269 95.61 0 16.1 2,907
MP6IB1 SRX3539177 101 100 182,767 5165 SAMN38186890 MP6IB1.110 Bacteria; Bacteroidota; Ignavibacteria; SJA-28;
B-1AR
3.61 37.22 262 95.36 1.09 31.4 3,123
SAMN38186891 MP6IB1.118 Bacteria; Bacteroidota; Bacteroidia; Chitinophagales; Saprospiraceae; JADJLQ01 4.75 42.75 325 95.17 0.99 23.7 3,981
SAMN38186892 MP6IB1.130 Bacteria; Pseudomonadales; Alphaproteobacteria; Caulobacterales; Hyphomonadaceae; UBA7672 3.61 64.33 253 97.65 2.03 40.7 3,409
SAMN38186893 MP6IB1.145 Bacteria; Proteobacteria; Alphaproteobacteria; Dongiales; Rhodospirillaceae 3.76 63.88 143 98.91 0.82 30.5 3,523
SAMN38186894 MP6IB1.15 Bacteria; Bacteroidota; Bacteroidia; Cytophagales; Cyclobacteriaceae;
ELB16-189
3.46 50.16 52 99.45 0.55 18.2 3,064
SAMN38186895 MP6IB1.21 Bacteria; Pseudomonadota; Gammaproteobacteria; Lysobacterales; SZUA-36; SHZL01 4.04 54.27 175 97.83 2.76 16.6 3,703
SAMN38186896 MP6IB1.62 Bacteria; Verrucomicrobiota; Verrucomicrobiia 2.76 48.16 132 95.95 1.38 16.0 2,590
SAMN38186897 MP6IB1.66 Bacteria; Proteobacteria; Alphaproteobacteria; Micropepsales; Micropepsaceae;
SZUA-430
3.53 58.5 234 96.35 0 41.9 3,561
SAMN38186898 MP6IB1.68 Bacteria; Planctomycetota; Planctomycetia;
Pirellulales; JAEUIK01
7.29 61.18 534 93.79 4.44 16.2 5,962
SAMN38186899 MP6IB1.8 Bacteria; Nitrospirota; Nitrospiria; Nitrospirales; Nitrospiraceae;
Palsa-1315
2.85 56.68 133 96.76 3.41 111.3 2,896
SAMN38186900 MP6IB1.81 Bacteria;
Bacteroidota; Kapabacteria; Kapabacteriales; Kapabacteriaceae;
UBA2333
3.04 50.5 71 95.9 1.09 20.3 2,514
SAMN38186901 MP6IB1.97 Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales;
TH1-2; VFBF01
3.33 65.96 240 95.94 1.49 20.3 3,382
MP7G1 SRX3539171 107 106 219,283 4526 SAMN38186902 MP7G1.125 Bacteria;
Bdellovibrionota_C; UBA2361; UBA2361
2.96 37.52 483 96.14 3.3 12.4 2,731
SAMN38186903 MP7G1.130 Bacteria; Planctomycetota; UBA1135; UBA1135;
GCA-002686595;
JAEUIA01
4.49 64 287 97.85 4.48 26.6 3,736
SAMN38186904 MP7G1.139 Bacteria; Nitrospirota; Nitrospiria;
Nitrospirales;
Nitrospiraceae;
Palsa-1315
4.32 56.62 282 95.91 3.01 41.7 4,447
SAMN38186905 MP7G1.168 Bacteria;
Verrucomicrobiota; Verrucomicrobiia; Methylacidiphilales; JAAUTS01; JAAUTS01
2.4 47.45 74 97.3 1.69 17.4 2,307
SAMN38186906 MP7G1.59 Bacteria;
Gemmatimonadota; Gemmatimonadetes; Gemmatimonadales;
GWC2-71-9
4.17 67.42 403 97.8 4.44 17.8 3,870
MP8IB2 SRX3539178 94 92 205,304 4796 SAMN38186907 MP8IB2.145 Bacteria; Proteobacteria; Alphaproteobacteria; Micropepsales; Micropepsaceae; SZUA-430 5.07 63.43 186 99.78 1.74 30.5 4,930
SAMN38186908 MP8IB2.79 Bacteria; Candidatus Eisenbacteria;
RBG-16-71-46; JABDJR01
3.96 62.82 264 95.6 3.3 39.5 3,429
MP9P1 SRX3539181 116 115 200,348 4604 SAMN38186909 MP9P1.103 Bacteria; Cyanobacteria; Vampirovibrionia; Obscuribacterales; Obscuribacteraceae 8.13 50.27 283 95.73 3.99 24.5 6,547
SAMN38186910 MP9P1.11 Bacteria; Bacteroidota; Bacteroidia;
Chitinophagales; CAIOSU01
4.53 44.3 137 96.55 0.33 40.0 3,885
SAMN38186911 MP9P1.153 Bacteria; Planctomycetota; Phycisphaerae; Phycisphaerales;
SM1A02; JAEUIT01
4.28 62.58 288 96.21 0.57 32.7 3,735
SAMN38186912 MP9P1.20 Bacteria; Verrucomicrobiota; Verrucomicrobiia 2.98 47.26 138 97.26 1.35 17.3 2,763
SAMN38186913 MP9P1.49 Bacteria; Pseudomonadota; Alphaproteobacteria; Hyphomicrobiales; Rhodomicrobiaceae 3.11 57.39 84 98.59 0.4 35.7 3,115
SAMN38186914 MP9P1.80 Bacteria; Bacteroidota; Bacteroidia; CAILMK01; CAILMK01 2.48 35.43 128 98.09 0 19.9 2,130
P2IB SRX3539180 98 97 198,359 5291 SAMN38186915 P2IB.100 Bacteria; Pseudomonadota; Gammaproteobacteria; Lysobacterales;
Ahniellaceae; 0-14-3-00-62-12
4.41 60.13 352 95.64 1.98 63.2 3,779
SAMN38186916 P2IB.134 Bacteria; Planctomycetota; Planctomycetia;
Pirellulales; PLA5
5.43 55.33 599 95.59 4.18 11.1 4,619
SAMN38186917 P2IB.159 Bacteria; Bacteroidota; Bacteroidia;
Flavobacteriales; UA16; UBA4660
3.63 45.16 89 99.73 0.29 62.8 3,161
SAMN38186918 P2IB.169 Bacteria; Actinomycetota; Acidimicrobiia;
IMCC26256; PALSA-610
3.6 68.4 395 96.41 3.02 16.1 3,701
SAMN38186919 P2IB.181 Bacteria; Planctomycetota; Planctomycetia; Pirellulales; Pirellulaceae 7.3 51.16 310 95.22 1.18 31.4 5,757
SAMN38186920 P2IB.185 Bacteria; Bacteroidota; Bacteroidia;
Chitinophagales; Chitinophagaceae; JJ008
4.66 39.15 404 96.19 1.01 22.0 4,274
SAMN38186921 P2IB.3 Bacteria; Acidobacteriota; Terriglobia; Bryobacterales; Bryobacteraceae;
JACMLA01
7.5 61 456 98.48 0.87 17.3 6,778
SAMN38186922 P2IB.85 Bacteria; Candidatus Hydrogenedentota; Hydrogenedentia; Hydrogenedentiales;
SLHB01; JABWCD01
5.17 57 280 96.6 1.1 13.9 4,543
SP4G1 SRX3539186 97 96 182,794 4400 SAMN38186923 SP4G1.39 Bacteria; Bacteroidota; Bacteroidia; Chitinophagales; Chitinophagaceae; JJ008 4.42 41.53 224 99.51 0 17.7 3,896
SAMN38186924 SP4G1.84 Bacteria; Pseudomonadota; Alphaproteobacteria; Hyphomicrobiales; Hyphomicrobiaceae; Hyphomicrobium aestuarii 3.69 61.99 258 95.35 2 17.9 3,472
a

Alternating grey and white bars indicate MAGs derived from the same metagenome.

These Antarctic MAGs help to remove barriers to researchers interested in the Antarctic by expanding the catalog of Antarctic bacterial genomes. They provide information that can be used to inform culturing efforts and be used in parallel with in vitro studies to understand how these organisms adapt to their extreme environment and may respond to ongoing climate change.

ACKNOWLEDGMENTS

Samples used in this project were collected during a field season supported by the New Zealand Foundation for Research, Science, and Technology (grant CO1X0306) with field logistics provided by Antarctica New Zealand (project K-081). Sequencing was provided by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility under Contract No. CSP502867. The U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy and operated under Contract No. DE-AC02-05CH11231. Data analysis was supported by NSF grants OPP-1745341, OPP-1937748, and BII-2022126.

Contributor Information

Christen Grettenberger, Email: clgrett@ucdavis.edu.

Elinne Becket, California State University San Marcos, San Marcos, California, USA.

DATA AVAILABILITY

Quality-controlled reads are available in the NCBI Sequence Read Archive under accession numbers SRR6448204SRR6448219. Draft genomes are available under Genbank accession numbers JAWXAL01JAWXCP01. Raw reads are available in IMG under project number Gs0127369.

REFERENCES

  • 1. Wade W. 2002. Unculturable bacteria—the uncharacterized organisms that cause oral infections. J R Soc Med 95:81–83. doi: 10.1177/014107680209500207 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Zhu D, Adebisi WA, Ahmad F, Sethupathy S, Danso B, Sun J. 2020. Recent development of extremophilic bacteria and their application in biorefinery. Front Bioeng Biotechnol 8:483. doi: 10.3389/fbioe.2020.00483 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Grettenberger CL, Sumner DY, Wall K, Brown CT, Eisen JA, Mackey TJ, Hawes I, Jospin G, Jungblut AD. 2020. A phylogenetically novel cyanobacterium most closely related to Gloeobacter. ISME J 14:2142–2152. doi: 10.1038/s41396-020-0668-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Sumner DY, Jungblut AD, Hawes I, Andersen DT, Mackey TJ, Wall K. 2016. Growth of elaborate microbial pinnacles in Lake Vanda, Antarctica. Geobiology 14:556–574. doi: 10.1111/gbi.12188 [DOI] [PubMed] [Google Scholar]
  • 5. Bushnell B. 2018. BBtools. Sourceforge.Net/projects/Bbmap/
  • 6. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. doi: 10.1093/bioinformatics/btv033 [DOI] [PubMed] [Google Scholar]
  • 7. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup . 2009. The sequence alignment/map format and SAMtools. Bioinform Oxf Engl 25:2078–2079. doi: 10.1093/bioinformatics/btp352 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Kang DD, Froula J, Egan R, Wang Z. 2015. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165. doi: 10.7717/peerj.1165 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi: 10.1101/gr.186072.114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. doi: 10.1038/s41467-018-07641-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. 2015. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3:e1319. doi: 10.7717/peerj.1319 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-TK: a toolkit to classify genomes with the genome taxonomy database. Bioinform Oxf Engl 36:1925–1927. doi: 10.1093/bioinformatics/btz848 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Lumian J, Sumner D, Grettenberger C, Jungblut AD, Irber L, Pierce-Ward NT, Brown CT. 2022. Biogeographic distribution of five Antarctic cyanobacteria using large-scale k-mer searching with sourmash branchwater. Biorxiv. doi: 10.1101/2022.10.27.514113 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Grettenberger C, Sumner DY, Eisen JA, Jungblut AD, Mackey TJ. 2021. Phylogeny and evolutionary history of respiratory complex I proteins in melainabacteria. Genes 12:929. doi: 10.3390/genes12060929 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz F, Derbyshire MK, Durkin AS, Gonzales NR, Gwadz M, Lanczycki CJ, Song JS, Thanki N, Wang J, Yamashita RA, Yang M, Zheng C, Marchler-Bauer A, Thibaud-Nissen F. 2021. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 49:D1020–D1028. doi: 10.1093/nar/gkaa1105 [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Quality-controlled reads are available in the NCBI Sequence Read Archive under accession numbers SRR6448204SRR6448219. Draft genomes are available under Genbank accession numbers JAWXAL01JAWXCP01. Raw reads are available in IMG under project number Gs0127369.


Articles from Microbiology Resource Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES