Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 May 1:2024.04.29.591753. [Version 1] doi: 10.1101/2024.04.29.591753

Alterations of PINK1-PRKN signaling in mice during normal aging

Zahra Baninameh, Jens O Watzlawik, Xu Hou, Tyrique Richardson, Nicholas W Kurchaba, Tingxiang Yan, Damian N Di Florio, DeLisa Fairweather, Lu Kang, Justin H Nguyen, Takahisa Kanekiyo, Dennis W Dickson, Sachiko Noda, Shigeto Sato, Nobutaka Hattori, Matthew S Goldberg, Ian G Ganley, Kelly L Stauch, Fabienne C Fiesel, Wolfdieter Springer
PMCID: PMC11092476  PMID: 38746191

ABSTRACT

The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES