Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2024 May 12:2024.05.02.24305807. [Version 2] doi: 10.1101/2024.05.02.24305807

An Accelerated PETALUTE MRI Sequence for In Vivo Quantification of Sodium Content in Human Articular Cartilage at 3T

Cameron X Villarreal, Xin Shen, Ahmad A Alhulail, Nicholas M Buffo, Xiaopeng Zhou, Ali Caglar Ozen, Mark Chiew, Stephen Sawiak, Uzay Emir, Deva D Chan
PMCID: PMC11092686  PMID: 38746343

Abstract

In this work, we demonstrate the sodium magnetic resonance imaging (MRI) capabilities of a three-dimensional (3D) dual-echo ultrashort echo time (UTE) sequence with a novel rosette petal trajectory (PETALUTE), in comparison to the 3D density-adapted (DA) radial spokes UTE sequence. We scanned five healthy subjects using a 3D dual-echo PETALUTE acquisition and two comparable implementations of 3D DA-radial spokes acquisitions, one matching the number of k-space projections (Radial-Matched Trajectories) and the other matching the total number of samples (Radial-Matched Samples) acquired in k-space. The PETALUTE acquisition enabled equivalent sodium quantification in articular cartilage volumes of interest (168.8 ± 29.9 mM) to those derived from the 3D radial acquisitions (171.62 ± 28.7 mM and 149.8 ± 22.2 mM, respectively). We achieved a shorter scan time of 2:06 for 3D PETALUTE, compared to 3:36 for 3D radial acquisitions. We also evaluated the feasibility of further acceleration of the PETALUTE sequence through retrospective compressed sensing with 2× and 4× acceleration of the first echo and showed structural similarity of 0.89 ± 0.03 and 0.87 ± 0.03 when compared to non-retrospectively accelerated reconstruction. Together, these results demonstrate improved scan time with equivalent performance of the PETALUTE sequence compared to the 3D DA-radial sequence for sodium MRI of articular cartilage.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES