Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Nov 19:2024.05.10.593650. Originally published 2024 May 11. [Version 3] doi: 10.1101/2024.05.10.593650

A 96-Well Polyacrylamide Gel for Electrophoresis and Western Blotting

Marc R Birtwistle, Jonah R Huggins, Cameron O Zadeh, Deepraj Sarmah, Sujata Srikanth, B Kelly Jones, Lauren N Cascio, Delphine Dean
PMCID: PMC11100825  PMID: 38765957

Abstract

Western blotting is a stalwart technique for analyzing specific proteins and/or their post-translational modifications. However, it remains challenging to accommodate more than ~10 samples per experiment without substantial departure from trusted, established protocols involving accessible instrumentation. Here, we describe a 96-sample western blot that conforms to standard 96-well plate dimensional constraints and has little operational deviation from standard western blotting. The main differences are that (i) submerged polyacrylamide gel electrophoresis is operated horizontally (similar to agarose gels) as opposed to vertically, and (ii) a 6 mm thick gel is used, with 2 mm most relevant for membrane transfer (vs ~1 mm typical). Results demonstrate both wet and semi-dry transfer are compatible with this gel thickness. The major tradeoff is reduced molecular weight resolution, due primarily to less available migration distance per sample. We demonstrate proof-of-principle using gels loaded with molecular weight ladder, recombinant protein, and cell lysates. We expect the 96-well western blot will increase reproducibility, efficiency (cost and time ~8-fold), and capacity for biological characterization relative to established western blots.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES