Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Keywords: Breast cancer, Theranostics, Extracellular vesicles
Introduction
Breast cancer (BC) stands as the most frequently diagnosed cancer globally, representing the primary cause of cancer-related mortality in females. In 2020, BC comprised 11.7% of newly reported cancer cases worldwide, totaling 2.26 million instances and contributing to 6.9% of cancer-related deaths [1, 2]. Incidence exhibits a robust correlation with human development, manifesting higher rates in developed countries [2]. However, less developed nations experience more elevated mortality rates, primarily due to late detection and limited access to diverse treatment modalities [3, 4]. In regions like South America, Africa, and Asia, there is a notable upward trend in BC incidence, potentially stemming from lifestyle changes and expanded screening programs [3]. Approximately 10% of BC cases are hereditary, with lifestyle factors contributing to overall risk [5, 6].
Early diagnosis assumes paramount importance, given the substantial disparities between early-stage (96% 5-year survival) and metastatic BC (38% 5-year survival) with profound implications for prognosis [7]. The diagnostic process involves mammography screening, a proven method that reduces BC mortality by 19% [8]. For higher-risk patients, supplementing mammography with Magnetic Resonance Imaging (MRI) is recommended, enhancing the detection of occult cancers [9, 10]. However, early diagnosis remains challenging, necessitating the development of more effective methods.
BC exhibits molecular heterogeneity, presenting subtypes such as luminal A, luminal B, basal-like, and Human epidermal growth factor receptor 2 (HER2)-enriched [11]. Treatment strategies take this diversity into account, emphasizing biologically-directed therapies and treatment de-escalation. Available treatment modalities encompass surgery, radiation, chemotherapy, and hormonal therapy. Despite notable advancements, the recurrence and metastasis of BC persist, often attributed to therapy-resistant cells, serving as predominant causes of death [6, 12–14]. Metastases alone account for over 90% of BC-related fatalities [15]. Consequently, addressing the determinants of distant metastasis and therapy resistance is essential for devising more effective therapeutic strategies.
Over the years, cancer management has relied on methods such as imaging, chemotherapy, radiotherapy, and surgery. However, these approaches face challenges such as incomplete resection, off-target toxicities, and limited drug penetration into tumors [16, 17]. The emergence of personalized medicine, especially in theranostics, addresses these issues by tailoring treatments to patient needs [18]. Theranostics is a term coined in 1998 by John Funkhouser, and it refers to an approach combining therapy and diagnostics for disease diagnosis, treatment, and follow-up [19]. Nevertheless, the history of radiotheranostics dates back to 1941 when Saul Hertz pioneered the use of radioiodine for thyrotoxicosis treatment [20]. Since then, the integration of diagnosis and therapy has become common, with recent advancements targeting somatostatin receptors in neuroendocrine tumors, HER2 antigens in BC, and Prostate-specific membrane antigen (PSMA) in prostate cancer [20–22]. Nanotechnology, specifically Extracellular Vesicles (EVs) such as exosomes, explores targeted therapy and biomarker identification in BC, offering a non-invasive alternative for early cancer detection [23]. It has been demonstrated that exosomes, nanovesicles facilitating cellular communication, offer a non-invasive alternative for clinical applications, addressing challenges in early cancer detection posed by tumor heterogeneity and conventional biopsy methods [23, 24]. Theranostics holds promise for effective and safe BC therapy, combining cutting-edge technologies into a single platform for personalized medicine.
Over the past decade, the field of EVs has experienced significant growth, showcasing diagnostic, prognostic, and therapeutic potential [25]. They are present in biological fluids such as saliva, urine, milk, and amniotic fluid and are classified as exosomes, microvesicles, and apoptotic bodies [26–28]. EVs play a crucial role in cell communication by carrying nucleic acids and specific proteins/lipids [29]. In the context of BC, EVs are implicated in tumor microenvironment (TME) modulation, angiogenesis, metastasis, and drug resistance [30–32]. It has been demonstrated that EVs have a significant impact on cancer progression, and they also contribute to drug resistance, posing challenges in anti-cancer treatments [30, 33]. However, there is growing optimism as EVs show potential as biomarkers. As mentioned above, early diagnosis of BC is crucial for survival prognosis, but despite the fact that we already have some cancer biomarkers such as tissue receptor expression (Estrogen Receptor (ER), Progesterone Receptor (PR), HER2) that are vital for staging or blood biomarkers, like Cancer Antigen (CA) 15-3, CA27-29, and Carcinoembryonic Antigen (CEA), these have limited sensitivity in early BC [34]. EVs could offer a less invasive and more effective alternative, even serving as a tool for monitoring disease progression and treatment efficacy [35, 36]. For example, it has been proposed to use circulating exosomal micro-ribonucleic acids (miRNAs), long noncoding Ribonucleic Acids (lncRNAs), and proteins as potential diagnostic tools for BC [37]. Moreover, due to their biocompatibility that allows them to cross biological barriers such as the blood–brain barrier, EVs could be used as natural drug delivery vehicles, overcoming limitations associated with conventional treatments; such as toxicities associated with cell-based therapies, they can carry proteins, miRNAs, siRNAs, and other therapeutic compounds [29, 38–43]. This could improve drug penetrance, stability, and cellular uptake in targeted sites [44].
This article seeks to delve deeply into the multifaceted potential of EVs as both biomarkers and vehicles for drug delivery. Our goal is to offer a comprehensive analysis of the mechanisms, diverse applications, and challenges inherent in harnessing the capabilities of EVs in these roles.
Methodology
A contemporary and comprehensive narrative review on "Extracellular Vesicle-Mediated Drug Delivery in Breast Cancer Theranostics" was conducted, utilizing PubMed, SCOPUS, and Google Scholar as the primary databases. Precise keywords and MeSH terms, including "extracellular vesicles," "drug delivery," "breast cancer," and "theranostics." were employed to identify relevant articles for the study. Furthermore, a manual search was conducted to identify references from recently published studies. The inclusion criteria encompassed English-language articles, comprising research studies and clinical investigations directly addressing the use of extracellular vesicles in breast cancer theranostics. No specific time frame was set for study inclusion, however, priority was given to recently published studies to ensure recent advances on the topic. All unpublished articles were excluded from this study. Furthermore, articles were excluded if they did not align with the primary focus of the study or lacked sufficient information for analysis.
EVs
EVs are small, lipid-bilayer membrane-derived particles released from cells into the extracellular space (Fig. 1) [45]. First reported in 1946 by Erwin Chargaff and Randolph West, EVs have garnered increasing interest due to their involvement in various physiological conditions, including cancer [45, 46]. They serve as messengers, transporting proteins, nucleic acids, lipids, and other molecules between cells and their microenvironments [47, 48]. The International Society for Extracellular Vesicles (ISEV) recommends classifying EVs based on physical characteristics [28]. Exosomes, microvesicles, and apoptotic bodies are categorized by size and generation mechanism, influencing their uptake and cargo fate.
Fig. 1.
Structure and Types of Extracellular Vesicles. Extracellular vesicles (EVs) are lipid-bound structures secreted by cells into the extracellular space. They encompass microvesicles, exosomes, and apoptotic bodies, each distinguished by their origin, size, and cargo, comprising lipids, nucleic acids, and proteins from various cellular compartments
The 2018 Minimal Information for Studies of Extracellular Vesicles (MISEV) consensus recommends distinguishing exosomes or exosomes and medium/large extracellular vesicles (M/LEVs) based on size [28]. exosomes undergo endosomal cargo sorting, leading to intraluminal vesicles within multivesicular bodies, while M/LEVs originate from outward plasma membrane budding [49, 50]. Despite distinct biogenesis mechanisms, both exosomes and M/LEVs may function similarly in intercellular communication within the TME [51].
In the BC-TME, EVs play a crucial role in mediating cell signaling [51]. These EVs transport oncogenic proteins, lipids, miRNA, and DNA, influencing signaling and gene regulation [52]. Protein cargo involves molecules in signal transduction and immunoregulatory molecules [53]. Nucleic acid cargo varies among EV subtypes, with miRNAs being potent regulators of gene expression [54, 55]. Less is known about lipid cargo, but sphingomyelin, glycosphingolipids, and phosphatidylserine are enriched in EVs [56]. Furthermore, EV uptake leads to "cancer-induced reprogramming," reinforcing cancer progression and contributing to the creation of favorable environments for metastasis [57–61].
EVs in BC progression
The liberation of exosomes from tumor cells represents a pivotal mechanism governing intercellular communication within the TME, exerting profound influence over key cancer hallmarks [62]. Initially discovered several decades ago, the significance of exosomes was markedly underscored in 2007 with the revelation of their Ribonucleic acid (RNA) content, encapsulated within these nanoscale vesicles [63]. In the context of BC, a condition characterized by a spectrum of clinicopathological features, the dynamic interplay between cancerous cells and the non-malignant microenvironment assumes paramount importance [64–67]. This microenvironment comprises diverse cell types, encompassing cancer-associated fibroblasts (CAFs), immune cells, and extracellular matrix (ECM) components 68], [69]. Exosomes, functioning as positive modulators, assume a central role in guiding BC through its phases of development, progression, invasion, metastasis, stimulation of stem cells, and resistance to therapeutic interventions [70–72]. The intricate nature of these interactions is accentuated by the tissue-specific inhibition of exosome release from BC cells, mediated by exosomes derived from normal mammary epithelial cells [73].
TME
The intricate interplay between the TME and exosomes assumes a pivotal role in sculpting the dynamics of cancer progression, particularly in breast tissue. Under stress-induced conditions, the liberation of exosomes from tumor cells serves as a trigger for TME changes and expansion [74]. These exosomes, laden with bioactive molecules, function as messengers, intricately coordinating the modulation of gene expression within the TME [53, 55]. In the context of breast tissue, exosome-mediated delivery of miRNAs exercises a significant influence over cytokines and growth factors, consequently impacting the ECM and contributing to the underlying pathogenesis [75].
The complexities of this communication network extend beyond the confines of cancer cells. exosomes, as mediators, facilitate interactions between mesenchymal stem cells (MSCs) and cancer cells, thereby fostering processes such as angiogenesis, invasion, drug resistance, and the establishment of dormant micrometastasis, or reversal of dormancy [68, 76–78]. Moreover, exosomes originating from both fibroblasts and CAFs induce phenotypic shifts in BC cells, cultivating chemoresistance and enabling anchorage-independent growth [79, 80]. This multifaceted interplay underscores the complexity of the molecular landscape governing BC progression.
Tumor proliferation
The proliferation of tumors in BC is a complex process driven by intricate interactions facilitated by exosomes released by specific BC cells. These exosomes play a significant role in tumor expansion and oncogenic potential by encapsulating lncRNAs that function as oncogenes, thereby promoting tumor growth through the upregulation of critical signaling pathways [81]. Importantly, oncoproteins such as Myelocytomatosis (MYC) and Aurora Kinase B (AURKB) intricately regulate the biogenesis and release of these exosomes. Tumorigenesis and proliferation are further propelled by diverse functional cargos delivered via exosomes. Noteworthy examples include Nischarin-positive exosomes, which promote BC cell migration, and miR-1246, which regulates cell cycle progression. Moreover, exosomes containing the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) contribute to an increase in tumor size, while the programmed death-ligand 1 (PD-L1) in exosomes suppress T cell activity, thereby fostering tumor proliferation [82, 83].
The influence of exosomes extends beyond cancer cells to fibroblast and stromal activation. Exosomes derived from BC cells have the capacity to transform normal fibroblasts into CAFs, thereby contributing to the aggressive nature of the disease [84, 85]. Within the TME, adipocytes, known as cancer-associated adipocytes (CAAs), play a pivotal role in promoting BC development through various signaling pathways, including the fibroblast growth factor (FGF), the vascular endothelial growth factor (VEGF), and Interleukin-1 beta ( IL-1β) [86]. In addition, adipose tissue-derived MSCs induced by BC-derived EVs undergo differentiation into tumor-associated myofibroblasts, promoting both migration and proliferation [87].
Furthermore, the uptake of EVs from MDA-MB-231 cells by MCF10A cells induces regulatory changes in E-cadherin, secretion of matrix metalloproteinases (MMPs), and promotion of invasion [88]. Additionally, the reprogramming of cancer metabolism, an essential process for cancer progression, is facilitated by exosomes shed from BC cells and the TME, carrying metabolites and enzymes that affect glycolysis and other critical pathways [37]. For example, exosomes from MDA-MB-231 BC cell line enhance the expression of Glucose Transporter 1 (GLUT1) and hexokinase HK2 genes in peripheral blood mononuclear cells, promoting glycolysis and cell proliferation [89].
Angiogenesis
In the context of BC, the initiation of angiogenesis is facilitated by the action of exosomes. Under conditions of reduced oxygen availability, an upregulation in exosome secretion ensues, thereby promoting the formation of new blood vessels, a pivotal process that underpins tumor proliferation and metastasis [90]. Notably, it has been reported that hypoxic tumors release exosomes that possess an augmented capacity to instigate angiogenesis and vascular permeability, a phenomenon mediated through the activation of hypoxia-inducible factor-1 alpha (HIF-1α) signaling [91]. Additionally, within these exosomes, miRNAs such as miR-9 and miR-23a play a significant role in inducing endothelial angiogenesis by modulating specific signaling pathways [92, 93].
Furthermore, exosomes originating from BC cells, in tandem with the secretion of transforming growth factor-beta (TGF-β) and VEGF, contribute to the myofibroblastic differentiation of adipose-derived stem cells (ASCs), activate Mitogen-activated Protein kinase (MAPK) signaling pathways in ASCs and promote ASC pro-angiogenic behavior [94]. Moreover, serum exosomes annexin A2 has emerged as a key player directly implicated in angiogenesis [95, 96]. Its levels exhibit a robust correlation with tumor grade and significantly impact overall and disease-free survival in the context of triple-negative breast cancer (TNBC) [96].
Immune evasion
Immune evasion mechanisms in BC encompass intricate interactions facilitated by exosomes, which play a pivotal role in the crosstalk between cancer cells and immune cells. Particularly, tumor-derived exosomes carrying surface markers such as PD-L1 and miR-92 have been identified as key mediators delivering negative signals to immune cells [83, 97–99]. This phenomenon promotes immunosuppressive effects by inducing T-cell exhaustion and suppressing Natural Killer (NK) cell cytotoxicity [100]. Furthermore, the secretion of exosomes by BC cells, induced by hypoxia, contributes to T-cell suppression through the action of TGF-β [101].
BC cell-derived exosomes additionally contribute to immune evasion by engaging with various immune cells, including dendritic cells (DCs), macrophages, and T-regulatory cells. This interaction fosters cancer progression and facilitates distant metastasis. Tumor-associated macrophages (TAMs) adopt an immunosuppressive M2 phenotype through EV-mediated communication with cancer cells [102–104]. On the other hand, DCs have been shown to employ EVs for anti-tumor immune responses, however, BC-derived vesicles exhibit the capacity to alter fatty acid metabolism in DCs, enhancing immune evasion [105, 106]. It has been demonstrated that myeloid-derived suppressor cell (MDSC)-derived vesicles are key mediators in promoting growth, invasion, and angiogenesis in BC [107, 108]. Moreover, it has been shown that murine BC cell-derived exosomes induce the accumulation of MDSCs in the lungs and liver, suppressing NK cell cytotoxicity and ultimately conditioning the pre-metastatic niche [109]. Furthermore, although research is limited, some studies have reported that BC-derived vesicles influence neutrophil levels and thrombus formation, potentially impacting disease progression [110].
Metastasis
Invasion and migration, pivotal elements in the genesis of treatment resistance, are facilitated by BC-derived exosomes that encapsulate metalloproteinases responsible for the degradation of the ECM [111]. exosomes originating from BC cells play a sophisticated role in ECM remodeling, promoting invasiveness, and enabling the local dissemination of tumor cells, often accompanied by vascular disruption [112–115]. Extending beyond the confines of the primary tumor, these exosomes actively shape a pre-metastatic niche, steering distant sites toward a hospitable environment conducive to metastatic settlement [57, 116]. Notably, the miR-200 family, encapsulated within exosomes from BC cells, emerges as a potent mediator of metastatic signals conveyed to distant tumor cells [117].
In the context of brain metastases in BC, exosome-derived miR-1290 assumes significance, activating astrocytes and propelling metastasis within the brain [118]. Parallel findings indicate that exosomes from metastatic BC cells in the brain carry miR-181c, facilitating blood–brain barrier destruction and mediating brain metastasis [119]. Additionally, Integrin avb1, conveyed by circulating exosomes, establishes a molecular link with metastatic BC cells, suggesting its potential involvement in the metastatic cascade [120]. Furthermore, miR-105 from BC-associated EVs strategically suppresses Zonula occludens-1 (ZO-1) expression, leading to the dismantling of cell–cell adhesion and fostering metastasis [114]. Moreover, exosomes rich in miR-122, emanating from BC cells, ingeniously reprogram glucose metabolism in pre-metastatic niches, thereby propelling the machinery of metastasis [121]. In addition, exosomes derived from MSCs in the bone marrow induce dormancy in metastatic BC cells, contributing significantly to the prolonged latency periods observed in metastatic disease [122].
Drug resistance
Tumor-derived exosomes have emerged as pivotal entities in the intricate landscape of drug resistance within the context of cancer. These vesicles play a crucial role by facilitating the transfer of functional resistance proteins between cancer cells, thereby orchestrating pathways that actively promote chemotherapeutic drug efflux [123]. Exosomes are known to mediate at least three pathways that promote chemotherapeutic drug efflux. They contribute to drug efflux directly, enhance the expression and function of membrane-embedded drug efflux pumps, and influence the expression of proteins and miRNAs that regulate specific drug efflux proteins, such as P-glycoprotein (P-gp) [124–128].
In BC research, early investigations into drug resistance focused on intracellular vesicles associated with resistance to mitoxantrone in the MCF-7 cell line. These vesicles contained the ABCG2 protein, contributing to drug resistance [129]. Now, the significance of exosomes in the realm of drug resistance is underscored by specific miRNAs identified within their cargo. Notably, miR-9-5p and miR-101 have been implicated in tamoxifen resistance, exerting their influence by downregulating target genes [130, 131]. Furthermore, exosomes from tamoxifen-resistant variants were found to transfer miR-221/222 [132]. Similarly, miR-21 present in exosomes has been linked to trastuzumab resistance, further accentuating the multifaceted role of these vesicles in conferring resistance [133, 134]. Moreover, it has been shown that exosomes from adriamycin- and docetaxel-resistant cell lines transfer resistance to drug-sensitive cells, involving specific miRNAs (miR-100, miR-222, miR-30a, and miR-17) [135–137]. Expanding the scope, exosomes-carried lncRNAs have also been implicated in promoting drug resistance in BC [138].
Theranostic application of EVs as biomarkers for BC diagnosis
In recent decades, scholars have delved into the examination of EVs in the context of BC. Research findings underscore the substantial engagement of EVs in key pathways pivotal to the development of BC, encompassing processes like proliferation, migration, modulation of the TME, and the emergence of drug resistance [139, 140]. Furthermore, a multitude of clinical investigations have underscored the prospective utility of EVs in both therapeutic interventions and diagnostic frameworks for BC [33, 141]. Exosomes encapsulate an extensive repertoire, approximately half, of the human proteome [142]. This diverse protein content, mirroring the cell types of origin, positions exosomes as an ideal candidate for discovering disease-specific biomarkers, particularly in the context of BC (Table 1 [96, 111, 114, 143, 144]).
Table 1.
Exosome Biomarkers Detection in Breast Cancer
| Study/Reference | Biomarker name | Source of biomarker | Detection method(s) | Clinical relevance |
|---|---|---|---|---|
| Zhou et al. [114] | miR-105 | Patient solid and liquird tumor biopsies | Immunohistochemistry | Detection of exosomal miR-105 in early breast cancer patient biopsies indicates metastatic progression |
| Bandini et al. [143] | Exosomal surface epitopes and Isotopes | BC patient plasma and cell line supernatants | Flow Cytometry | The expression of EV-related biomarkers in BC patient plasma and cell line supernatants might be used to characterise and track disease development |
|
Khan et al [111] |
Exosome protein survivin-2B | Serum exosome | Western blots and immunohistochemistry | In early breast cancer patients, differential expression of exosomal-Survivin is a prognostic or diagnostic marker |
| Li et al. [144] | Exosomal miR-148a | Serum exosome | Quantitative Real Time-Reverse Transcription Polymerase Chain Reaction (qRT-PCR) | Decreased levels of serum exosomal miR-148a is strongly related with a poor clinical outcome of BC, implying that serum exosomal miR-148a could serve as a viable diagnostic and prognostic biomarker for BC |
| Chaudhary et al. [96] | Serum exo-AnxA2 | Serum exosome | In vivo Matrigel plug assay | Exo-AnxA2 is a possible prognosticator of triple-negative breast cancer, which might lead to an efficient therapeutic alternative |
Axillary lymph node (ALN) metastasis stands out as a crucial prognostic factor in early-stage BC [145]. Sentinel lymph node biopsy (SLNB) is a primary method for assessing ALN status, but its limitations, including a notable false-negative rate and postoperative complications like lymphedema, necessitate alternative approaches [146].
Numerous studies emphasize the pivotal role of exosome protein biomarkers in BC diagnosis. Lee et al., through Liquid Chromatography-Tandem Mass Spectrometry (LC–MS/MS), identified 270 exosome proteins in invasive BC cell lines, unveiling the diagnostic biomarker Epidermal Growth Factor-like repeats and Discoidin I-Like Domains 3 (EDIL3) correlated with metastasis [147]. In another investigation, the profiling of 241 uniquely expressed exosome proteins in various BC cell lines pinpointed fibronectin (FN) as a promising diagnostic biomarker, specifically distinguishing between ER + and ER − BC [36, 148].
Wang et al.'s study introduced miR-363-5p in plasma exosomes as a diagnostic indicator for distinguishing ALN-positive and ALN-negative BC. Moreover, high expression of miR-363-5p in plasma exosomes correlates with prolonged survival, highlighting its potential as a diagnostic marker with prognostic value [149]. The expression of Connexin-46 (Cx46) in EVs released from BC cells has garnered significant attention. Cx46 plays a pivotal role in enhancing the interactions between EVs and receptor cells, thereby contributing to the migratory and invasive abilities of BC cells. This identification positions EVs-Cx46 not only as a potential malignancy marker for BC but also as a viable target for therapeutic interventions [150].
The concept of liquid biopsy (Fig. 2) for studying recurrence risk and early detection in tumor patients takes a spotlight, specifically focusing on multiple miRNAs contained in BC cell-secreted exosomes [67, 151–153]. The utilization of exosome-based liquid biopsy emerges as a crucial element for refining treatment decisions and prognostic evaluation. A comprehensive exosome miRNA profiling study brought to light the prognostic potential of specific miRNAs in BC recurrence. Elevated levels of miR-338-3p, miR-340-5p, and miR-124-3p were identified, contrasting with the down-regulation of miR-29b-3p, miR-20b-5p, miR-17-5p, miR-130a-3p, miR-18a-5p, miR-195-5p, miR-486-5p, and miR-93-5p in the serum of BC patients with recurrence when compared to those without recurrence [154].
Fig. 2.
Liquid Biopsy in Breast Cancer. Liquid biopsy in breast cancer reveals miRNA profiles in exosomes, aiding in recurrence risk assessment and early detection strategies. Exosome-derived miRNA profiling distinguishes breast cancer recurrence risks
Furthermore, exosome miRNA profiling in plasma, specifically in patients with ductal carcinoma in situ (DCIS) and primary BC patients with recurrence compared to healthy counterparts, revealed distinctive expression patterns. Higher levels of miR-16 and miR30b were associated with recurrent patients, while miR-93 exhibited elevated levels in DCIS patients [155]. This underscores the potential of exosome miRNAs as discerning markers for distinguishing recurrent BC from the early stages of the disease.
In a separate investigation profiling 35 differentially expressed miRNAs in plasma exosomes from early-stage BC patients, miR-375 and miR-24–2-5p were identified as highly abundant miRNAs negatively correlated with patient survival. Conversely, significantly down-regulated miR-548b-5p, miR-655-3P, and miR-376b-5p were found to be positively correlated with survival outcomes [156]. Bao et al. employed a combined approach, integrating genomic instability (GI) analysis with exosome miRNA profiling, leading to the identification of three exosome miRNA signatures (miR-421, miR-128–1, and miR-128–2) in the serum of BC patients, associated with poor prognosis [157].
Baldasici et al. propose a non-invasive method for early BC diagnosis, isolating miRNAs in tumor-derived exosomes (TEx). They identify exosomal miRNAs associated with BC metastasis, offering a potential array of biomarkers for various metastatic scenarios [158]. Risha et al., utilizing nano LC–MS/MS, profiled 726 uniquely expressed proteins in TNBC cells, identifying Glypican-1 (GPC-1), glucose GLUT-1, and a Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) as potential biomarkers located on the membrane surface of exosomes and up-regulated compared to a non-tumorigenic epithelial breast cell line [159]. A multiplexed cantilever array showed that GPC-1 in exosomes released from BC cell lines demonstrated high sensitivity and throughput in real-time acquisition [160].
In the realm of inflammatory BC, a rare and aggressive malignancy often misdiagnosed as mastitis, EVs extracted from patient plasma have unveiled the presence of three specific miRNAs (miR-181b-5p, miR-222-3p, and let-7a-5p). The diagnostic potential of these miRNAs, indicated by a high area under the curve (AUC > 0.9) in receiver operating characteristic curve analysis, positions them as promising diagnostic biomarkers for inflammatory BC. This is particularly crucial for accurate and timely diagnosis, given the ease of misdiagnosis as mastitis, which can result in delayed treatment [161, 162]. Exploring the realm of metabolites, Buentzel et al. identify eight metabolites, including lysoPCaC26:0 and PCaaC38:5, strongly associated with poor prognosis in BC patients [163]. Furthermore, studies by Cai et al. and Chen et al. delve into the potential of mRNAs and phosphorylated proteins in EVs as biomarkers for BC, offering diagnostic and screening possibilities [139, 164].
Recent advancements in exosome screening methods, including microfluidic chips, surface-enhanced Raman scattering nanotags, and DNA aptamer-mediated microfluidics, offer simplified and time-saving approaches to profile exosome Epithelial Cell adhesion Molecule (EpCAM) and HER2 proteins, particularly for the diagnosis of HER2 + BC. While these findings collectively highlight the diagnostic value of exosome protein biomarkers in BC, further validation through large-scale studies involving independent clinical samples is imperative to confirm their clinical significance [147, 148, 160, 165].
These findings collectively emphasize the utility of exosome-derived miRNAs as a valuable tool for BC prognosis, providing insights that are pivotal for refining clinical strategies and enhancing patient outcomes.
EV-mediated drug delivery in BC
Harnessing EVs for drug delivery in BC
Choice of parent cell for EV production
As potential carriers for targeted drug delivery in nanotechnology, EVs offer advantages such as lower molecular weight, good bioavailability, lower toxicity, and tissue-specific receptor coating. Sources of EVs for drug delivery include red blood cells, macrophages, DCs, and platelets, with studies demonstrating their effectiveness against specific cancer cells including BC cells [166].
Extraction and characterization of EVs
To extract EVs, various separation methods are employed, focusing on preserving their integrity and characteristics. Ultracentrifugation, a common method, may cause mechanical damage and affect purity [167]. Ultrafiltration, based on size, is rapid but prone to clogging. Tangential flow filtration, an automated alternative, can result in membrane interactions. Studies, such as one by Busatto et al., compare methods, indicating that Tangential flow filtration is superior in yield and impurity removal for BC cell cultures [168].
Blind elute chromatography, based on size/affinity, has limited sample capacity. Precipitation methods offer convenience but may introduce impurities. It is crucial to choose a separation method that yields high-purity EVs at minimal cost and ensures safety, considering the diverse pros and cons of each technique in this evolving field.
As carriers for drug delivery, EVs show potential in transporting therapeutic substances such as nucleic acids, and anti-breast cancer drugs (Table 2. [169–179] [180, 181]) [182, 183]. Furthermore, they can be labeled with tissue-specific receptors and molecules or devices with imaging properties such as biosensors (Fig. 3) [184, 185]. This enables their tracking in systemic circulation and targeted delivery of drugs to specific tissues. The suitability of EVs as delivery agents stems from their minimal immunogenicity and favorable biocompatibility. During the process of cellular growth, intercellular communication persists through EVs. Within this stage, cells have the capacity to internalize drugs and subsequently secrete them through these vesicles. Consequently, the vesicles serve as carriers for loading the drugs.
Table 2.
Variability in Drug Loading within EVs for Breast Cancer Therapy: Comprehensive Analysis of Cargo Types, isolation method, loading method and EV Sources
| Cargo | Source of EV | Isolation method | Loading method | Outcome of the study | References |
|---|---|---|---|---|---|
| Doxorubicin | Immature dendritic cells (mouse) | Ultracentrifugation | Electroporation | Purified exosomes from imDC loaded with Dox had an encapsulation efficiency of 20%. Intravenous Injection of loaded Dox resulted in tumor growth inhibition without significant toxicity | [169] |
| Doxorubicin |
MCF-7 breast carcinoma cells (human) ADR/MCF-7 doxorubicin resistant breast carcinoma cells (human) |
– | – | – | [170] |
|
VEGF siRNA |
Primary dendritic cells (mouse) | Ultrafiltration | Electroporation |
AS1411-EVs loaded with miRNA let-7 selectively targeted tumor tissues in tumor-bearing mice and inhibited tumor growth. Also, the modified EVs were well tolerated and showed no evidence of nonspecific side effects or immune response |
[171] |
| Doxorubicin | HEK293 cell | Total Exosome Isolation Kit (Invitrogen) | Transfection | 293T cell-derived exosomes are safe and suitable for use as in vivo drug delivery vehicles | [172] |
| Paclitaxel | RAW 264.7 macrophages | Double emulsification | Incubation | The study showed the high efficiency of a macrophage-mediated delivery system and showed its advantage over traditional drug delivery methods | [173] |
| Doxorubicin | Grape fruit | Centrifugation | Sonication | – | [174] |
| Doxorubicin | RBC | Ultracentrifugation | Fusion of EVs with functionalized liposomes triggered by polyethylene glycol (PEG) to form hybrid vectors | Hybrid EVs Improved cellular delivery of chemotherapeutic compounds, enables the biocamouflage of liposomes and drug delivery | [175] |
| miRNA 100, miR-379 | Mesenchymal cell | Exosomal transfer of miR-100 from Human mesenchymal stem cells (MSC) | A novel method underlying the paracrine effects of MSC-derived exosomes and modulation of vascular responses in breast cancer cell environments | [176] | |
| miR-142-3p inhibitor | Mesenchymal cell | Review article | – | – | Lee and Dutta [177] |
| Lamp2b fusion proteins with peptides (176) | FBS-derived exosomes | Ultracentrifugation | Incubation | Glycosylation motif GNSTM-tagged peptides enhance targeted delivery of exosomes to neuroblastoma cells | [178] |
| CpG DNA-modified exosomes (CpG-SAV-exo | Tumor cell-derived exosomes | Ultracentrifugation | Incubation | Enhanced tumor antigen presenting capacity, useful for cancer immunotherapy | [179] |
| Paclitaxel | Mesenchymal stroma/stem-like cells (MSC) derived exosomes | Centrifugation | Incubation | Effective in inhibiting primary tumor growth and reducing distant organ metastases, Effectively targeting primary tumors and metastases by reducing side effects | [180] |
| Paclitaxel and 5-Fluorouracil | Folic acid (FA) functionalized bovine milk derived exosome | Ultracentrifugation | Sonication after dissolving in methanol/pbs (phosphate buffered saline) | Enhanced efficacy against breast cancer. Significant decreases in IC50 observed. Higher apoptotic index and better control over cell migration | [181] |
Fig. 3.
Illustration of Delivery of Anticancer Drugs for Treatment of Breast Cancer. This figure depicts the delivery of anticancer drugs for breast cancer treatment. Exosomes, nanovesicles secreted by cells, efficiently transport drugs actively or passively loaded within their cargo. Labeling of extracellular vesicles enables their tracking in systemic circulation and targeted delivery to specific tissues
Loading of drugs into EVs
There are two main approaches to loading drugs into EVs: pre-loading, which involves loading drugs before EV isolation, and post-loading, where drugs are loaded after isolation. The pre-loading approach allows for the continuous and straightforward generation of EVs loaded with cargo without compromising the integrity of the vesicle membrane. The common methods for pre-loading are co-incubation, transfection, and ultrasound-stimulated microbubbles (USMB).
In the process of co-incubation, drugs are co-incubated with parent cells under specific conditions, facilitating their loading into cells through spontaneous interaction with the lipid bilayer. The drugs are then secreted along with the EVs. Despite its simplicity, the method often exhibits low loading efficiency, influenced by factors such as drug characteristics, concentration gradient, and the type of parent cells [186]. Various chemotherapeutic drugs, particularly hydrophobic ones like Doxorubicin (DOX) and Paclitaxel (PTX), have been successfully loaded by co-incubation [187–191]. EVs loaded with PTX have demonstrated encouraging outcomes in effectively targeting and treating BC [166].
Recent investigations have indicated that inducing apoptosis in healthy cells through Ultraviolet (UV) exposure enhances the efficiency of loading co-incubated drugs or nanoparticles into EVs [170, 192, 193]. Notably, Fukuta et al. discovered that treating cells with low electrical currents could activate intracellular signaling, promote endocytosis of macromolecules, and enhance the secretion of EVs [194]. By means of cellular transfection, parent cells can be induced to overexpress therapeutic cargo, encompassing RNAs and proteins, subsequently packaging them into EVs. ExoIL-12, incorporating Prostaglandin F2 receptor negative regulator (PTGFRN), has made history as the pioneering engineered exosome candidate drug to progress into clinical trials, marking a significant milestone in the realm of medical research [195]. The use of lipid-based transfection presents advantages in terms of heightened repeatability and simplicity. Nonetheless, this approach is not without its inherent challenges, notably, the presence of low transfection efficiency and a significant dependence on the vitality of the cells [196, 197].
USMB stimulation has been demonstrated to induce the release of EVs from cancer cells. Yuana et al. employed this method to generate drug-loaded EVs [198]. They loaded the fluorescent dyes cell tracker green (CTG) and bovine serum albumin coupled with fluorescein isothiocyanate (BSA FITC) into human umbilical vein endothelial cells (HUVECs) using varying ultrasound acoustic pressures. Notably, at 0.6 MPa, the BSA-FITC signal intensity in HUVECs reached its peak, surpassing both untreated conditions and treatments at 0.7 and 0.8 MPa. The BSA-FITC signal intensity induced by USMB exceeded that of the untreated group. It is crucial to note that USMB may not be suitable for substances prone to quenching and entrapment in the endosomal-lysosomal degradative pathway post-uptake. Despite its effectiveness in producing cargo-loaded EVs, a notable drawback of USMB lies in its susceptibility to entrapment within cellular organelles.
In the realm of drug loading into isolated EVs, the post-loading approach emerges as a highly customizable strategy, offering advantages over pre-loading by minimizing the incorporation of interfering substances [199]. Post-loading encompasses two main categories: passive loading and active loading. Passive loading involves the co-incubation of EVs with high drug concentrations, allowing drugs to interact with the lipid bilayer and diffuse passively into the vesicle's lumen [200]. While this method is simple and retains membrane integrity, limitations include low loading efficiency and restricted applicability to hydrophobic compounds [201]. For instance, Saari et al. demonstrated a mere 9.2% loading efficiency of the hydrophobic drug PTX into EVs through co-incubation [201]. The duration of co-incubation varies, with curcumin achieving loading in as little as 5 min, while DOX typically requires overnight incubation [202].
Active loading becomes necessary when cargo cannot passively diffuse through EV membranes. This approach involves physical induction and chemical induction methods [203]. Physical induction commonly entails the immediate disruption of EV membranes through external forces, while chemical induction relies on transfection agents to aid cargo loading without causing harm to the integrity of EV membranes [204, 205]. Physical induction methods, including electroporation, sonication, extrusion, and freeze–thaw cycles, temporarily affect membrane permeability to facilitate cargo entry [206]. Electroporation, using high-intensity pulsed electric fields, induces transient permeable pores on EV membranes, enhancing cargo entry, particularly effective for siRNA loading [207, 208]. However, concerns arise regarding the impact on Zeta potential and colloid stability, which may lead to siRNA and EV aggregation [209]. To mitigate this, a trehalose pulse medium has been developed to enhance colloidal stability and reduce aggregation caused by electroporation [209].
Sonication increases membrane permeability by deforming EV membranes, promoting cargo diffusion, with higher loading efficiency compared to co-incubation and electroporation [166, 206, 210]. Haney et al. utilized EVs sourced from macrophages in a targeted approach against TNBC through the application of the sonication method [166]. These EVs were employed as carriers for the drug delivery of PTX and DOX subsequent to incubation (DOX) or sonication (PTX). The resultant EVs loaded with DOX and PTX exhibited a spherical morphology with a uniform size distribution. Remarkably, these EVs demonstrated noteworthy attributes, including effective intracellular accumulation, successful drug accumulation within cancer cells, minimal immunogenicity, and heightened stability. Despite its efficacy, sonication may compromise EV structure due to mechanical shear force, prompting recommendations for execution in an ice bath [211].
Extrusion involves passing the EV-cargo mixture through nanoscale aperture membrane filters, disrupting EV membranes, and aiding cargo loading [174]. While extrusion produces homogeneous EVs, it may alter Zeta potential and membrane proteins [206].
Freeze–thaw cycles alternate rapid crystallization and thawing, temporarily disrupting EV membranes and facilitating cargo entry [212–214]. However, this approach tends to increase EV size, inducing aggregation [214].
Chemical induction methods utilize saponins or transfection agents to enhance cargo loading without damaging EV membranes [215, 216]. Although saponin significantly enhances loading efficiency, its potential for hemolysis necessitates strict concentration control and additional EV purification [216], Transfection reagents such as liposomes and EXO-Fect expedite cargo loading into isolated EVs [208, 217]. Nevertheless, residual transfection agents may pose toxicity concerns, limiting their application [218]. An alternative method employs calcium chloride for miRNA transfection into EVs, demonstrating similar efficacy to electroporation while ensuring simplicity and stability [219]. Thus, the post-loading approach offers a versatile means for drug loading into EVs, with passive and active loading methods presenting distinct advantages and considerations. The choice of method should align with the specific cargo characteristics and desired outcomes in drug delivery applications [199].
Advantages and disadvantages of EVs as delivery systems
EVs represent a promising drug delivery system owing to their resemblance to parent cells, facilitating intercellular communication and disease microenvironment modulation [220]. Unlike synthetic nanoparticles, EVs possess the remarkable ability to traverse both extracellular and intracellular barriers, enabling efficient transport of beneficial biomolecules across distant cells [221, 222]. Notably, EVs exhibit low toxicity, minimal immunogenicity, and exceptional stability, delivery efficiency, and biocompatibility, enhancing their therapeutic potential [223]. Their unique capacity to traverse the blood–brain barrier further underscores their applicability in targeting specific sites within the brain [224]. Leveraging endogenous cellular mechanisms, EVs can safeguard and deliver functional cargo, rendering them highly appealing as therapeutic agents. Nevertheless, challenges persist in establishing a consistent biochemical strategy for their clinical therapeutic utilization. Moreover, hurdles exist in achieving effective brain-targeted drug delivery via EVs. Addressing these challenges necessitates further research to elucidate the underlying mechanisms governing the therapeutic efficacy of EVs.
Application of EV-mediated drug delivery in treatment of BC
Challenges in treating BC, including drug tolerance, high toxicity, and other mechanisms leading to treatment failure, has prompted the exploration of novel therapies and drug delivery technologies [3]. Precision oncology, with its potential to identify molecular biomarkers, has garnered attention in this context. Researchers are increasingly interested in exosomes (which are endosome-released nanometer-sized EVs) as a promising avenue for targeted drug delivery and a novel cancer vaccine [225]. exosomes offer advantages over other nanoparticle drug delivery systems, such as liposomes or polymeric nanoparticles, due to their biocompatibility, biodegradability, and lower toxicity [226]. Additionally, exosomes exhibit limited immunogenicity and cytotoxicity, and their ability to traverse anatomical barriers enhances their potential as drug carriers [227, 228].
Clinical trials are underway to explore the therapeutic potential of exosomes in BC, with various exosome-based therapies showing promise in improving chemotherapy effectiveness. exosomes have been employed to deliver chemotherapeutic drugs such as PTX and doxycycline (DOX) [229, 230]. The loading of DOX in exosomes not only reduces cardiotoxicity but also enhances its efficacy compared to traditional administration [203, 231]. Similarly, PTX-loaded exosomes exhibit greater efficiency in inhibiting cancer cell growth than free PTX and liposomal PTX [232]. Hybrid exosomes (HE) formed by fusing exosomes with liposomes show great results in improving PTX loading capacity for TNBC chemotherapy [233].
Exosomes are believed to be involved in multiple stages during invasive processes, likely contributing to early steps in metastasis [234]. Furthermore, exosome-mediated delivery of tumor-secreted miR-105 selectively destroys tight junctions and the integrity of natural barriers, enhancing metastasis in BC [114]. Collaborative research has shown that the ASPH network regulates designated exosomes to enable the delivery of a pro-oncogenic secretome, facilitating long-distance metastasis. At the same time, numerous studies have revealed the influential role of exosomes in reducing metastasis activity in BC.
In BC xenografts, sulfisoxazole, an oral antibiotic with anti-tumor and antimetastatic properties, interferes with endothelin receptor A and decreases exosome release, ultimately inhibiting progression and metastasis in BC cells [235]. Additionally, the tumor suppressor nischarin has been found to regulate early metastatic events in BC, with further research demonstrating its novel role in preventing BC cell motility and tumor growth by regulating Rab14 activity and secreting exosomes that control tumor malignancy [236, 237]. Another study suggested that antisense non-coding mitochondrial RNA could be a novel target for BC therapy, with exosomes derived from knockdown cells reducing tumorigenic properties and inhibiting the development of BC metastatic niches [238].
Exosomes-mediated siRNA has shown promise as a therapeutic strategy to inhibit metastasis in postoperative BC patients [239]. Exosomes serve as carriers for nucleic acid molecules and can be genetically engineered to deliver specific DNA or RNA molecules. SEV-mediated delivery of miRNAs, such as miR-142-3p and let7c-5p, has demonstrated significant suppression of BC cell proliferation and migration [240, 241]. Engineered exosomes loaded with miR-let-7a efficiently target Epidermal Growth Factor Receptor (EGFR) -expressing cells, resulting in tumor growth inhibition [242]. Moreover, an EV-based drug delivery system demonstrated a synergistic anti-tumor effect, enhancing tumor-killing efficiency by 15% through the promotion of the drug's tumor-targeting capabilities [243]. The microbiota has been recognized for its crucial role in cancer progression and treatment [244, 245]. An et al. conducted a study highlighting the considerable enhancement of the therapeutic effect of tamoxifen on ER + MCF7 cells through the combination of Klebsiella pneumoniae-derived EVs and tamoxifen. This combination downregulated cyclin E2 and p-ERK expression, providing an effective approach [246].
Microbiome-mediated regulation of estrogen metabolism, referred to as the estrogenome, has been implicated in BC development. An et al. compared the EVs profiles of blood microorganisms from BC patients and healthy controls, revealing that Staphylococcus aureus -derived EVs influenced the efficacy of tamoxifen by modulating extracellular signal-regulated kinase (ERK) and Protein kinase B -related signaling pathways. The synergistic combination of S. aureus-derived EVs and tamoxifen impeded the growth of ER + BC cells [247]. Furthermore, exosomes facilitate combinational therapy, as seen in the co-delivery of miR-159 and DOX for TNBC therapy [225]. exosomes also deliver long non-coding RNAs (lncRNAs), such as DARS-AS1, suppressing TNBC cell growth and liver metastasis [248]. Utilizing a tissue engineering approach, Gong et al. developed EVs containing therapeutic doses of adriamycin and cholesterol-modified miR-159, resulting in effective anti-tumor effects against TNBC cells [225].
The pharmacologically important characteristics of exosomes have led to the development of nanoparticles based on cell-derived exosomes through tissue engineering, significantly contributing to tumor treatment [249–251]. Shi et al. created a synthetic multivalent antibody retargeted exosome platform using tissue engineering, modifying exosomes to target human-derived Clusters of Differentiation (CD3) and HER2 proteins [183]. This approach efficiently targeted HER2-expressing BC cells by recruiting CD3 + -expressing cytotoxic T cells, demonstrating a promising strategy against HER2 + BC.
A novel therapeutic strategy involving antibodies targeting exosomes has demonstrated efficacy both in vivo and in vitro, as macrophages internalized and eliminated antibody-tagged cancer-derived exosomes, resulting in decreased metastatic incidence [252]. Interestingly, specific cancer cell-released exosomes have been found to inhibit lung cancer cell proliferation and migration in a recent study, suggesting their potential role in treating other cancer cells [253]. These exosomes, released from tumor cells, were exploited as miRNA-126 protective nanocarriers, inhibiting the Protein Kinase B signaling pathway and suppressing pulmonary tumor cell metastatic ability [253]. In addition, Chang et al. demonstrated that endocytosis of EVs secreted from Wharton’s Jelly MSCs (WJ-MSCs) into TNBC cells significantly reduced proliferation potential, stem cell characteristics, tumor formation capacity, and metastatic capacity under hypoxic conditions [254]. This suggested the potential therapeutic effects of targeting TNBC with MSC-derived EVs. Further mechanistic analysis revealed that WJ-MSC-secreted EVs attenuated the tumorigenic ability of TNBC cells and prevented immunosuppression in the TME by transferring miR-125b and inhibiting HIF1a signaling pathway-related protein expression [254].
Targeting the polarization of TAMs from the M1 to M2 phenotype has proven to be an efficacious strategy in BC treatment [255–257]. It is noteworthy that the M1 phenotype of TAMs exhibits pro-cancer effects, while the M2 phenotype exerts cancer-suppressive effects. In a novel approach, Zhao et al. proposed a system to load docetaxel into M1 TAM-derived exosomes, leading to the conversion of the M1 phenotype to the M2 phenotype [258]. This innovative strategy significantly improved the anti-cancer effect with minimal side effects.
Exosomes are explored not only for drug delivery but also as potential components of tumor vaccines [259]. Topotecan-induced exosomes containing DNA have been investigated for their ability to activate DCs and stimulate immune responses against BC cells [260]. exosomes from DCs, when engineered with antigens and adjuvants, show promise in initiating precise immune responses against tumor cells, presenting a fundamental approach for developing DC vaccines [261].
Exosomes exhibit heterogeneity based on cell conditions, providing various possibilities. Engineering exosomes with ligands specific to targeted cancer cells is crucial for their effective use in cancer treatment. Bioengineered exosomes expressing designed ankyrin repeat proteins (DARPins) on their membrane surface demonstrate specific binding to HER2, showcasing the potential for targeted drug delivery [207]. Engineered exosomes with CD3 and EGFR expressions induce T cell cross-linking and elicit antitumor immunity both in vitro and in vivo [262]. Furthermore, exosomes engineered with anti-human CD3 and anti-human HER2 antibodies redirect and activate cytotoxic T cells toward attacking HER2-expressing BC cells [183].
The therapeutic potential of exosomes in cancer, particularly BC, is promising, and ongoing clinical trials are investigating their efficacy [263]. However, challenges remain, and further breakthroughs are needed to optimize these novel therapeutic approaches in vivo. A comprehensive understanding of exosome biology is imperative to expedite vectorization in BC patient treatment.
State of clinical trials of EVs in BC theranostics
The potential of EVs has been well described in many diseases, including BC. Due to their dynamic characteristics, exosomes are currently employed as biomarkers and drug-delivery vehicles in clinical trials. Exosomes used in clinical trials are derived from two primary sources- human cells/samples and plants. The most common human source of clinical trial exosomes is MSCs [264]. We will explore the different applications of exosomes in clinical trials below.
Exosome as a biomarker in clinical trials
The biomarker application of exosomes is the most explored potential in clinical trials. This is based on the knowledge that exosomes carry a complex selection of molecules from one cell to the other. Hence, observing exosome components at a given time of release can help characterize the state of the cell of origin. Transcriptomics and proteomics changes in the cargo of exosomes are analyzed and observed [265]. Thus, exosomes provide an avenue for measuring cell status and function, making it valuable tool for diagnostics [266]. Differential expression of miRNA on exosomes has been consistently observed in some carcinomas, giving a potential for using exosomal miRNA as a biomarker. A clinical study conducted on patients with stage 1 Non-small cell lung cancer (NSCLC) used miRNA profiles of exosomes to differentiate between adenocarcinoma (AC) and squamous cell carcinoma (SCC). AC-specific and SCC-specific exosomal miRNA were characterized by next-generation sequencing (NGS), showing that exosomal miRNA constitutes a sensitive biomarker to classify early-stage cancers [267]. In another study, three miRNAs (miR-181b-5p, miR-222-3p, and let-7a-5p) were selectively identified to be upregulated in small EVs from women with inflammatory BC [162]. Similarly, Wang et al. identified a correlation between the downregulation of the exosomal miRNA, miR-363-5p, and lymph node metastasis in BC patients [149]. Other clinical studies have also detected specific changes in exosomal miRNA in BC patients. There is a need for further research on exosomal miRNA before their use as a biomarker for BC [23, 158]. Many clinical trials employ EVs as a predictive or prognostic marker in BC (Table 3. [268]). A clinical trial (currently withdrawn) has explored the potential of TEx as a predictive and prognostic biomarker in patients receiving Neoadjuvant Chemotherapy (NCT01344109). Another clinical trial evaluates the potential of TEVs and tumor-derived circulating tumor DNA as predictive markers for drug response and metastasis in early BC patients (NCT05955521). Molecular changes in exosomes isolated from tumors and liquid biopsies (Urine, Blood, Tears, etc.) have also been used in the trial to track resistance development to Palbociclib in metastatic BC patients(NCT04653740). In an ongoing trial, EVs from blood are used to characterize the genomic signature of metastatic BC patients (NCT04258735). The genomic changes in exosomes in this trial are correlated with patient survival. Another trial employed microvesicles isolated from BC patients' Cerebrospinal fluid (CSF) to predict leptomeningeal metastasis (NCT03974204). In an ongoing clinical trial, HER 2 expression in the TEx and blood-derived exosomes are compared to highlight the potential of liquid biopsy measurement in HER 2 positive BC patients (NCT04288141). The immunomodulatory potential of pembrolizumab is also being assessed using serum-derived EVs in TNBC patients (NCT02977468). Other ongoing or completed clinical trials assess EVs' biomarker potential in BC [1].
Table 3.
Summary of Clinical Trials on the Use of EVs as biomarkers for Breast Cancer
| Trial number | Exosome source | Trial objective | Outcome/expected outcome | Status | Link |
|---|---|---|---|---|---|
| NCT01344109 | Tumor | To use exosomes as a diagnostic and prognostic marker for breast cancer patients receiving Neoadjuvant Chemotherapy | – | Withdrawn | https://clinicaltrials.gov/study/NCT01344109?term=exosomes&cond=Breast%20Cancer&city=&rank=1 |
| NCT05955521 | Tumor | To evaluate circulating tumor DNA (ctDNA) and tumor-derived exosomes as a predictive and prognostic marker in early BC patients | ctDNA or exosomes could be used as a marker for predicting recurrence in early BC patients receiving Neoadjuvant Chemotherapy | Active Not Recruiting | https://clinicaltrials.gov/study/NCT05955521?term=exosomes&cond=Breast%20Cancer&city=&rank=2 |
| NCT04653740 | Tumor & Liquid Biopsy | To assess longitudinal changes in exosomes to assess resistance to Palbociclib in metastatic BC patients | Changes in the molecular signature of exosomes after Palbociclib will explain resistance development | Unknown | https://clinicaltrials.gov/study/NCT04653740?term=exosomes&cond=Breast%20Cancer&city=&rank=5 |
| NCT04258735 | Blood | Genomic analysis of metastatic breast cancer patients | Genetic changes will be associated with patient survival | Ongoing | https://clinicaltrials.gov/study/NCT04258735?term=exosomes&cond=Breast%20Cancer&city=&rank=6 |
| NCT03974204 | Cerebrospinal Fluid (CSF) | Using microvesicles from the CSF of breast cancer patients to diagnose leptomeningeal metastasis | Comparison between the proteomic profile of the isolated microvesicles can signal leptomeningeal metastasis | Withdrawn | https://clinicaltrials.gov/study/NCT03974204?term=exosomes&cond=Breast%20Cancer&city=&rank=7 |
| NCT04288141 | Tumor & Blood | Comparing HER2-HER3 dimer expression in tumor and blood-derived exosomes in HER 2 positive BC patients receiving anti-HER 2 therapy | HER2 expression in the blood-derived exosomes will be similar to the expression level in tumor-derived exosomes to avoid invasive diagnosis of HER 2 BC | Ongoing | https://clinicaltrials.gov/study/NCT04288141?term=exosomes&cond=Breast%20Cancer&city=&page=2&rank=11 |
| NCT02977468 | Serum | To assess response to pembrolizumab in TNBC patients | The administration of pembrolizumab in patients will alter the expression of immune-tolerant markers | Ongoing | https://clinicaltrials.gov/study/NCT02977468?term=exosomes&cond=Breast%20Cancer&city=&page=1&rank=8 |
Information on this table was gotten from the following link: https://clinicaltrials.gov/search?term=exosomes&cond=Breast%20Cancer&city = on the 7th of December, 2024 at 17:37
Exosome as a drug delivery tool in clinical trials
Unlike biomarker applications, the use of EVs for drug delivery for BC is still limited. This limitation is mainly due to concerns relating to the characterization and safety of the EVs. However, few studies have employed EVs for drug delivery [269]. A phase 1 study completed in 2022 employed plant-derived exosomes to deliver curcumin to healthy subjects and patients with colon cancer (NCT01294072). Similarly, another clinical trial is being conducted focused on using EVs to deliver curcumin for Inflammatory Bowel Disease (IBD) (NCT04879810). The safety of genetically engineered EVs expressing CD24 for moderate-to-severe Coronavirus Disease 19 (COVID-19) is being tested (NCT04747574). An ongoing Phase 1 trial tests the tolerance and efficacy of MSC-derived EVs loaded with KrasG12D siRNA in pancreatic cancer patients (NCT03608631). In addition, miR-124 loaded exosomes derived from MSCs have been administered in Phase 1 to ameliorate acute brain injury (NCT03384433).
Challenges of EV translation in BC therapy
Although EVs have a tremendous physiological advantage as a nano-sized carrier for drugs in BC, their use in therapy is currently limited. This is due to some technical problems with the standardization, isolation, and purification of EVs. These limitations include:
EV heterogeneity
For EVs to be applicable in loading medications for clinical use, there must be a detailed understanding of the biogenesis and composition of EVs. However, due to their heterogeneous nature, there has been a lack of complete knowledge of EV characteristics. The fact that EVs derived from the same cell can have different molecular compositions has made it complex to standardize EVs for therapeutic use [270]. In addition to the intrinsic diversity of EVs, the isolation method used can impact heterogeneity in EVs by altering their physicochemical features and purity states. Hence, before EVs can be used as drug carriers, it is essential to understand their heterogeneity and the factors contributing to their diversity [271].
Choice of the parent cell
Although many cells have been shown to secrete EVs, there is still the question of what the ideal cell to extract EVs for BC therapy is. The lack of credible answers to this question has played a part in the factors limiting EV use in clinical trials. This is because the intrinsic behavior of isolated EVs depends mainly on the parent cells—for example, the cytotoxicity effect observed in EVs isolated from immune cells [272]. The property of the cell also determines the efficiency of loading drugs to the EVs in indirect loading techniques. Therefore, further characterization of the best cell of origin is needed for isolating cells for BC therapy [271, 273].
Loading procedure employed
As previously discussed, the loading techniques determine the efficiency of drugs loaded on the EVs. Apart from the loading efficiency, the methods employed can also affect EVs' integrity, resulting in biological limitations for EVs. Loading techniques can induce modifications affecting EVs' quality, purity, and storage conditions. Therefore, the most efficient loading technique for EVs must be established for loading drugs for BC therapy [271, 274].
Genetically engineering parental cells for cargo loading of EVs ensures RNA molecules are properly encapsulated and protected within the EV lumen, unlike post-loading methods which may lead to RNA localization on the EV surface [275]. However, monitoring cargo-loading efficiency in pre-loaded EVs is challenging, and potential changes in EV composition due to recombinant protein overexpression cannot be overlooked. Similarly, damage to EVs during post-loading methods like electroporation or sonication is a concern. Hence, the choice between pre-loading and post-loading methods for miRNA loading depends on research goals. Electroporation is currently the most popular method for miRNA loading due to its simplicity and speed [276, 277].
Route of administration
EV-mediated drug delivery aims to deliver drugs to the target cell or tumor site. For targeted delivery, a good understanding of the best route of administration of EVs is essential. This is because various routes can induce EV clearance differently. For appropriate translation of EVs for BC therapy, a complete understanding of the best route to administer designed EVs [271].
Storage of EVs
Preserving the therapeutic properties of extracted EVs poses a challenge due to their sensitivity to storage conditions. EVs undergo changes in surface characteristics, morphology, and protein content during storage [278]. Temperature fluctuations affect EV stability, with lower temperatures (-70°C to -80°C) proving optimal for preservation [279–281]. Aggregation, particularly at -70°C, threatens EV structure and function [282]. Maintaining an acidic pH environment enhances EV uptake [283], while freeze–thaw cycles impact EV concentration but not uptake significantly [281, 284]. Balancing these factors presents a challenge in ensuring effective EV uptake while minimizing concentration reduction.
Limitations
While this review aimed to provide a contemporary perspective on EV-mediated drug delivery in BC theranostics, several limitations should be noted. Firstly, the potential for publication bias exists, as only published articles were included. Additionally, the review focused on English-language publications, potentially excluding relevant studies in other languages.
The choice to use PubMed, SCOPUS, and Google Scholar, while providing a comprehensive overview, may have overlooked relevant studies in other databases. Despite efforts to ensure completeness, some studies may have been inadvertently missed during the literature search.
The heterogeneity in study designs, methodologies, and outcome measures among included studies may pose challenges in synthesizing data. Furthermore, the rapid evolution of EV research may render certain aspects of this review subject to updates as the field progresses. Acknowledging these limitations is crucial for interpreting the findings and guiding future research directions in this dynamic field.
Conclusion
As BC stands as the most frequently diagnosed cancer globally, there is a need for proper theranostics. The article comprehensively analyses EVs and highlights their crucial role in BC diagnosis and drug delivery. The review has shown that EVs play a vital role in shaping the TME and influencing essential aspects of cancer. However, research has shown that EVs have great potential in BC theranostics, specifically as biomarkers and drug delivery vehicles. Studies showed that this discovery is a significant step in advancing personalized medicine. Nevertheless, the challenge of early diagnosis persists, and EVs offer significant potential as non-invasive biomarkers that could enhance the sensitivity of existing diagnostic techniques. It is worth mentioning that the presence of circulating exosomal miRNAs, long noncoding RNAs, and proteins in EVs holds potential for early detection, disease monitoring, and evaluating treatment effectiveness. In addition, the biocompatibility of EVs enables them to function as natural carriers for drug delivery, effectively overcoming the limitations associated with traditional treatment methods.
Based on the findings of the review, it is evident that EV-mediated drug delivery has the potential to significantly enhance drug penetrance, stability, and cellular uptake in specific areas. This, in turn, can significantly improve therapeutic effectiveness while minimizing any unintended toxic effects. Continued exploration and progress in this field could lead to the creation of advanced diagnostic tools and specialized treatments, ultimately enhancing the management of BC with greater effectiveness and personalization.
Acknowledgements
The authors would like to acknowledge Toufik’s World Medical Association for organizing this project.
Abbreviations
- AC
Adenocarcinoma
- ADAM10
A Disintegrin and metalloproteinase domain-containing protein 10
- ALN
Axillary lymph node
- ASC
Adipose-derived stem cell
- AUC
Area under the curve
- AURKB
Aurora kinase B
- BSA FITC
Bovine Serum Albumin coupled with fluorescein isothiocyanate
- CA
Cancer antigen
- CAA
Cancer associated adipocyte
- CAF
Cancer-associated fibroblast
- CD
Clusters of differentiation
- CEA
Carcinoembryonic antigen
- COVID-19
Coronavirus disease 19
- CSF
Cerebrospinal fluid
- Cx46
Connexin-46
- CTG
Cell tracker green
- DC
Dendritic cell
- DCIS
Ductal carcinoma in situ
- DARPins
Designed ankyrin repeat proteins
- DOX
Doxorubicin
- ECM
Extracellular matrix
- EDIL3
Epidermal growth factor-like repeats and discoidin i-like domains 3
- EGFR
Epidermal growth factor receptor
- EpCAM
Epithelial cell adhesion molecule
- ER
Estrogen receptor
- ERK
Extracellular signal-regulated kinase
- EV
Extracellular vesicle
- FN
Fibronectin
- GI
Genomic instability
- GPC-1
Glypican-1
- GLUT
Glucose transporter
- HER2
Human epidermal growth factor receptor 2
- HIF-1α
Hypoxia-inducible factor-1 alpha
- HUVEC
Human umbilical vein endothelial cells
- IBD
Inflammatory Bowel Disease
- IL
Interleukin
- ISEV
International Society for Extracellular Vesicles
- lncRNA
Long noncoding Ribonucleic acid
- LC–MS/MS
Liquid chromatography tandem mass spectrometry
- MAPK
Mitogen activated protein kinase
- MALAT1
Metastasis Associated Lung Adenocarcinoma transcript 1
- MISEV
Minimal information for studies of extracellular vesicles
- MMP
Matrix metalloproteinase
- M/LEV
Medium/large extracellular vesicle
- MRI
Magnetic resonance imaging
- MSC
Mesenchymal stem cell
- MYC
Myelocytomatosis
- NK
Natural Killer
- NGS
Next generation sequencing
- NSCLC
Non small cell lung cancer
- PD-L1
Programmed death-ligand 1
- P-gp
P-glycoprotein
- PR
Progesterone receptor
- PTX
Paclitaxel
- PTGFRN
Prostaglandin F2 receptor negative regulator
- PSMA
Prostate-specific membrane antigen
- SCC
Squamous cell carcinoma
- TAM
Tumor-associated macrophage
- TEx
Tumor-derived exosomes
- TGF-β
Transforming growth factor-beta
- TNBC
Triple-negative breast cancer
- TME
Tumor microenvironment
- UV
Ultraviolet
- USMB
Ultrasound stimulated microbubbles
- VEGF
Vascular Endothelial Growth Factor
- WJ-MSC
Wharton's Jelly MSC
- ZO-1
Zona occludens-1
Author contributions
Conceptualization of Ideas: Toufik Abdul-Rahman. Data curation: Toufik Abdul-Rahman.Visualization: Toufik Abdul-Rahman. Supervision: Marios Papadakis, Athanasios Alexiou, Toufik Abdul-Rahman. Writing of Initial Draft: Poulami Roy, Ranferi Eduardo Herrera-Calderón, Feriha Fatima Khidri, Quadri Ajibola Omotesho, Rumide Tolulope Sharon6, Mahek Fatima, Sakshi Roy, Subham Roy, Felix Amekpor, Shankhaneel Ghosh, Isaac Aksavdwa Agyigra, Writing—Review and Editing: Toufik Abdul-Rahman, Andrew Awuah Wireko, Oday Atallah, Tetiana Teslyk, Viktoriia Horbas, Valentyna Bumeister, Marios Papadakis, Athanasios Alexiou.
Funding
Open Access funding enabled and organized by Projekt DEAL. This work was supported by the University of Witten-Herdecke Germany.
Data availability
No datasets were generated or analysed during the current study.
Declarations
Competing interests
Authors wish to declare no conflict of interest.
Footnotes
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Toufik Abdul-Rahman, Email: drakelin24@gmail.com.
Marios Papadakis, Email: drmariospapadakis@gmail.com.
Athanasios Alexiou, Email: athanasios.th.alexiou@gmail.com.
References
- 1.Kumar DN, et al. Exosomes as emerging drug delivery and diagnostic modality for breast cancer: recent advances in isolation and application. Cancers. 2022;14(6):1435. doi: 10.3390/cancers14061435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Sung H, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660. [DOI] [PubMed] [Google Scholar]
- 3.Harbeck N, Gnant M. Breast cancer. The Lancet. 2017;389(10074):1134–1150. doi: 10.1016/s0140-6736(16)31891-8. [DOI] [PubMed] [Google Scholar]
- 4.Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi: 10.3322/caac.21262. [DOI] [PubMed] [Google Scholar]
- 5.Shiovitz S, Korde LA. Genetics of breast cancer: a topic in evolution. Ann Oncol. 2015;26(7):1291–1299. doi: 10.1093/annonc/mdv022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Harbeck N, et al. Breast cancer. Nat Rev Dis Primer. 2019 doi: 10.1038/s41572-019-0111-2. [DOI] [PubMed] [Google Scholar]
- 7.Gennari A, et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol. 2021;32(12):1475–1495. doi: 10.1016/j.annonc.2021.09.019. [DOI] [PubMed] [Google Scholar]
- 8.Pace LE, Keating NL. A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA. 2014;311(13):1327. doi: 10.1001/jama.2014.1398. [DOI] [PubMed] [Google Scholar]
- 9.Lehman CD. Clinical indications: what is the evidence? Eur J Radiol. 2012;81:S82–S84. doi: 10.1016/s0720-048x(12)70033-5. [DOI] [PubMed] [Google Scholar]
- 10.Berg WA. Tailored supplemental screening for breast cancer: what now and what next? Am J Roentgenol. 2009;192(2):390–399. doi: 10.2214/ajr.08.1706. [DOI] [PubMed] [Google Scholar]
- 11.Perou CM, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–752. doi: 10.1038/35021093. [DOI] [PubMed] [Google Scholar]
- 12.Jin X, Mu P. Targeting breast cancer metastasis. Breast Cancer Basic Clin Res. 2015 doi: 10.4137/bcbcr.s25460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer Targets Ther. 2020;12:211–229. doi: 10.2147/bctt.s270799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Saha T, Lukong KE. Breast cancer stem-like cells in drug resistance: a review of mechanisms and novel therapeutic strategies to overcome drug resistance. Front Oncol. 2022 doi: 10.3389/fonc.2022.856974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73. doi: 10.1615/critrevoncog.v18.i1-2.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Jeelani S, Jagat Reddy R, Maheswaran T, Asokan G, Dany A, Anand B. Theranostics: a treasured tailor for tomorrow. J Pharm Bioallied Sci. 2014 doi: 10.4103/0975-7406.137249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Shah JV, et al. Shortwave infrared-emitting theranostics for breast cancer therapy response monitoring. Front Mol Biosci. 2020 doi: 10.3389/fmolb.2020.569415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Bhushan A, Gonsalves A, Menon JU. Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics. 2021;13(5):723. doi: 10.3390/pharmaceutics13050723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kelkar SS, Reineke TM. Theranostics: combining Imaging and Therapy. Bioconjug Chem. 2011;22(10):1879–1903. doi: 10.1021/bc200151q. [DOI] [PubMed] [Google Scholar]
- 20.Jadvar H, Chen X, Cai W, Mahmood U. Radiotheranostics in cancer diagnosis and management. Radiology. 2018;286(2):388–400. doi: 10.1148/radiol.2017170346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Hapuarachchige S, et al. Cellular delivery of bioorthogonal pretargeting therapeutics in PSMA-positive prostate cancer. Mol Pharm. 2019;17(1):98–108. doi: 10.1021/acs.molpharmaceut.9b00788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Redfern JS. Theranostics: cancer imaging and therapy using injectable radionuclide-labeled ligands. Pharm Pharmacol Int J. 2020;8(6):325–331. doi: 10.15406/ppij.2020.08.00313. [DOI] [Google Scholar]
- 23.Singh T, Kaushik M, Mishra LC, Behl C, Singh V, Tuli HS. Exosomal miRNAs as novel avenues for breast cancer treatment. Front Genet. 2023 doi: 10.3389/fgene.2023.1134779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Wang X, et al. The advancing roles of exosomes in breast cancer. Front Cell Dev. Biol. 2021 doi: 10.3389/fcell.2021.731062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.St-Denis-Bissonnette F, Khoury R, Mediratta K, El-Sahli S, Wang L, Lavoie JR. Applications of extracellular vesicles in triple-negative breast cancer. Cancers. 2022;14(2):451. doi: 10.3390/cancers14020451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Jiang Y, et al. Engineered exosomes: a promising drug delivery strategy for braindiseases. Curr Med Chem. 2022;29(17):3111–3124. doi: 10.2174/0929867328666210902142015. [DOI] [PubMed] [Google Scholar]
- 27.Goh CY, et al. Exosomes in triple negative breast cancer: Garbage disposals or Trojan horses? Cancer Lett. 2020;473:90–97. doi: 10.1016/j.canlet.2019.12.046. [DOI] [PubMed] [Google Scholar]
- 28.Théry C, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018 doi: 10.1080/20013078.2018.1535750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.He C, Zheng S, Luo Y, Wang B. Exosome theranostics: biology and translational medicine. Theranostics. 2018;8(1):237–255. doi: 10.7150/thno.21945. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020 doi: 10.1126/science.aau6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Wu C-Y, Du S-L, Zhang J, Liang A-L, Liu Y-J. Exosomes and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Cancer Gene Ther. 2016;24(1):6–12. doi: 10.1038/cgt.2016.69. [DOI] [PubMed] [Google Scholar]
- 32.Zhang C, Ji Q, Yang Y, Li Q, Wang Z. Exosome: function and role in cancer metastasis and drug resistance. Technol Cancer Res Treat. 2018;17:153303381876345. doi: 10.1177/1533033818763450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Namee NM, O’Driscoll L. Extracellular vesicles and anti-cancer drug resistance. Biochim Biophys Acta BBA Rev Cancer. 2018;1870(2):123–136. doi: 10.1016/j.bbcan.2018.07.003. [DOI] [PubMed] [Google Scholar]
- 34.Seale KN, Tkaczuk KHR. Circulating biomarkers in breast cancer. Clin Breast Cancer. 2022;22(3):e319–e331. doi: 10.1016/j.clbc.2021.09.006. [DOI] [PubMed] [Google Scholar]
- 35.Hench IB, Hench J, Tolnay M. liquid biopsy in clinical management of breast, lung, and colorectal cancer. Front Med. 2018 doi: 10.3389/fmed.2018.00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Vinik Y, et al. Proteomic analysis of circulating extracellular vesicles identifies potential markers of breast cancer progression, recurrence, and response. Sci Adv. 2020 doi: 10.1126/sciadv.aba5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular vesicles in breast cancer: from biology and function to clinical diagnosis and therapeutic management. Int J Mol Sci. 2023;24(8):7208. doi: 10.3390/ijms24087208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Zhuang X, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–1779. doi: 10.1038/mt.2011.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Rashed MH, et al. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci. 2017;18(3):538. doi: 10.3390/ijms18030538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015 doi: 10.3389/fimmu.2015.00203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Nowak M, Górczyńska J, Kołodzińska K, Rubin J, Choromańska A. Extracellular vesicles as drug transporters. Int J Mol Sci. 2023;24(12):10267. doi: 10.3390/ijms241210267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Zhao H, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 2016 doi: 10.7554/elife.10250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56(11):1649–1659. doi: 10.1016/j.addr.2004.02.014. [DOI] [PubMed] [Google Scholar]
- 44.Deng Y, et al. Application of the nano-drug delivery system in treatment of cardiovascular diseases. Front Bioeng Biotechnol. 2020 doi: 10.3389/fbioe.2019.00489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Yang J, Bahcecioglu G, Zorlutuna P. The extracellular matrix and vesicles modulate the breast tumor microenvironment. Bioengineering. 2020;7(4):124. doi: 10.3390/bioengineering7040124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–197. doi: 10.1016/s0021-9258(17)34997-9. [DOI] [PubMed] [Google Scholar]
- 47.Vella LJ. The emerging role of exosomes in epithelial–mesenchymal-transition in cancer. Front Oncol. 2014 doi: 10.3389/fonc.2014.00361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Urbanelli L, Buratta S, Sagini K, Ferrara G, Lanni M, Emiliani C. Exosome-based strategies for diagnosis and therapy. Recent Patents CNS Drug Discov. 2015;10(1):10–27. doi: 10.2174/1574889810666150702124059. [DOI] [PubMed] [Google Scholar]
- 49.Doyle L, Wang M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727. doi: 10.3390/cells8070727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–372. doi: 10.1016/j.tcb.2015.01.004. [DOI] [PubMed] [Google Scholar]
- 51.Giordano C, et al. The biology of exosomes in breast cancer progression: dissemination, immune evasion and metastatic colonization. Cancers. 2020;12(8):2179. doi: 10.3390/cancers12082179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Brena D, Huang M-B, Bond V. Extracellular vesicle-mediated transport: reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis. Transl Oncol. 2022;15(1):101286. doi: 10.1016/j.tranon.2021.101286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Samuels M, Cilibrasi C, Papanastasopoulos P, Giamas G. Extracellular vesicles as mediators of therapy resistance in the breast cancer microenvironment. Biomolecules. 2022;12(1):132. doi: 10.3390/biom12010132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Bergsmedh A, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci. 2001;98(11):6407–6411. doi: 10.1073/pnas.101129998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018 doi: 10.3389/fendo.2018.00402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev. 2020;159:308–321. doi: 10.1016/j.addr.2020.03.002. [DOI] [PubMed] [Google Scholar]
- 57.Wang H-X, Gires O. Tumor-derived extracellular vesicles in breast cancer: from bench to bedside. Cancer Lett. 2019;460:54–64. doi: 10.1016/j.canlet.2019.06.012. [DOI] [PubMed] [Google Scholar]
- 58.Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69–79. doi: 10.1016/j.smim.2017.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Tomasetti M, Lee W, Santarelli L, Neuzil J. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy. Exp Mol Med. 2017;49(1):e285–e285. doi: 10.1038/emm.2016.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Yan W, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5):597–609. doi: 10.1038/s41556-018-0083-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Green TM, Alpaugh ML, Barsky SH, Rappa G, Lorico A. Breast cancer-derived extracellular vesicles: characterization and contribution to the metastatic phenotype. BioMed Res Int. 2015;2015:1–13. doi: 10.1155/2015/634865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Wee I, Syn N, Sethi G, Goh BC, Wang L. Role of tumor-derived exosomes in cancer metastasis. Biochim Biophys Acta BBA Rev Cancer. 2019;1871(1):12–19. doi: 10.1016/j.bbcan.2018.10.004. [DOI] [PubMed] [Google Scholar]
- 63.Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596. [DOI] [PubMed] [Google Scholar]
- 64.Pecero ML, Salvador-Bofill J, Molina-Pinelo S. Long non-coding RNAs as monitoring tools and therapeutic targets in breast cancer. Cell Oncol. 2018;42(1):1–12. doi: 10.1007/s13402-018-0412-6. [DOI] [PubMed] [Google Scholar]
- 65.Dai X, Xiang L, Li T, Bai Z. Cancer hallmarks, biomarkers and breast cancer molecular subtypes. J Cancer. 2016;7(10):1281–1294. doi: 10.7150/jca.13141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Zhang M, Lee AV, Rosen JM. The cellular origin and evolution of breast cancer. Cold Spring Harb Perspect Med. 2017;7(3):a027128. doi: 10.1101/cshperspect.a027128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Lakshmi S, Hughes TA, Priya S. Exosomes and exosomal RNAs in breast cancer: a status update. Eur J Cancer. 2021;144:252–268. doi: 10.1016/j.ejca.2020.11.033. [DOI] [PubMed] [Google Scholar]
- 68.Patel JS, et al. Non-coding RNA as mediators in microenvironment–breast cancer cell communication. Cancer Lett. 2016;380(1):289–295. doi: 10.1016/j.canlet.2015.11.016. [DOI] [PubMed] [Google Scholar]
- 69.Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res. 2016 doi: 10.1186/s13058-016-0740-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Wang X, et al. Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer. J Exp Clin Cancer Res. 2016 doi: 10.1186/s13046-016-0468-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Ohno S, Ishikawa A, Kuroda M. Roles of exosomes and microvesicles in disease pathogenesis. Adv Drug Deliv Rev. 2013;65(3):398–401. doi: 10.1016/j.addr.2012.07.019. [DOI] [PubMed] [Google Scholar]
- 72.Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):1208–1215. doi: 10.1172/jci81135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Riches A, Campbell E, Borger E, Powis S. Regulation of exosome release from mammary epithelial and breast cancer cells—a new regulatory pathway. Eur J Cancer. 2014;50(5):1025–1034. doi: 10.1016/j.ejca.2013.12.019. [DOI] [PubMed] [Google Scholar]
- 74.Ciardiello C, Leone A, Budillon A. The crosstalk between cancer stem cells and microenvironment is critical for solid tumor progression: the significant contribution of extracellular vesicles. Stem Cells Int. 2018;2018:1–11. doi: 10.1155/2018/6392198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Chou J, Shahi P, Werb Z. microRNA-mediated regulation of the tumor microenvironment. Cell Cycle. 2013;12(20):3262–3271. doi: 10.4161/cc.26087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Kahroba H, Hejazi MS, Samadi N. Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer. Cell Mol Life Sci. 2019;76(9):1747–1758. doi: 10.1007/s00018-019-03035-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Lopatina T, Gai C, Deregibus MC, Kholia S, Camussi G. Cross talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids. Front Oncol. 2016 doi: 10.3389/fonc.2016.00125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Bliss SA, et al. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marroW. Cancer Res. 2016;76(19):5832–5844. doi: 10.1158/0008-5472.can-16-1092. [DOI] [PubMed] [Google Scholar]
- 79.Hu Y, et al. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS ONE. 2015;10(5):e0125625. doi: 10.1371/journal.pone.0125625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Donnarumma E, et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget. 2017;8(12):19592–19608. doi: 10.18632/oncotarget.14752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Xiong X, et al. Long non-coding RNA SNHG1 promotes breast cancer progression by regulation of LMO4. Oncol Rep. 2020 doi: 10.3892/or.2020.7530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Zhang P, Zhou H, Lu K, Lu Y, Wang Y, Feng T. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. OncoTargets Ther. 2018;11:291–299. doi: 10.2147/ott.s155134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Yang Y, et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 2018;28(8):862–864. doi: 10.1038/s41422-018-0060-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Vu LT, et al. Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles. 2019 doi: 10.1080/20013078.2019.1599680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Feng L, Guo L, Tanaka Y, Su L. Tumor-derived small extracellular vesicles involved in breast cancer progression and drug resistance. Int J Mol Sci. 2022;23(23):15236. doi: 10.3390/ijms232315236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol J Hematol Oncol. 2019 doi: 10.1186/s13045-019-0778-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Cho JA, Park H, Lim EH, Lee KW. Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 2012;40(1):130–138. doi: 10.3892/ijo.2011.1193. [DOI] [PubMed] [Google Scholar]
- 88.Galindo-Hernandez O, Serna-Marquez N, Castillo-Sanchez R, Salazar EP. Extracellular vesicles from MDA-MB-231 breast cancer cells stimulated with linoleic acid promote an EMT-like process in MCF10A cells. Prostaglandins Leukot Essent Fatty Acids. 2014;91(6):299–310. doi: 10.1016/j.plefa.2014.09.002. [DOI] [PubMed] [Google Scholar]
- 89.Kang SY, et al. Extracellular vesicles induce an aggressive phenotype in luminal breast cancer cells via PKM2 phosphorylation. Front Oncol. 2021;11:785450. doi: 10.3389/fonc.2021.785450. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Shao C, et al. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17(1):120. doi: 10.1186/s12943-018-0869-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421. doi: 10.1186/1471-2407-12-421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Zhuang G, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 2012;31(17):3513–3523. doi: 10.1038/emboj.2012.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Sruthi TV, et al. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. J Cell Physiol. 2018;233(4):3498–3514. doi: 10.1002/jcp.26202. [DOI] [PubMed] [Google Scholar]
- 94.Song YH, et al. Breast cancer-derived extracellular vesicles stimulate myofibroblast differentiation and pro-angiogenic behavior of adipose stem cells. Matrix Biol J Int Soc Matrix Biol. 2017;60–61:190–205. doi: 10.1016/j.matbio.2016.11.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Maji S, et al. Exosomal annexin ii promotes angiogenesis and breast cancer metastasis. Mol Cancer Res MCR. 2017;15(1):93–105. doi: 10.1158/1541-7786.MCR-16-0163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Chaudhary P, Gibbs LD, Maji S, Lewis CM, Suzuki S, Vishwanatha JK. Serum exosomal-annexin A2 is associated with African-American triple-negative breast cancer and promotes angiogenesis. Breast Cancer Res BCR. 2020;22(1):11. doi: 10.1186/s13058-020-1251-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Chen G, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–386. doi: 10.1038/s41586-018-0392-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Dou D, et al. Cancer-associated fibroblasts-derived exosomes suppress immune cell function in breast cancer via the miR-92/PD-L1 pathway. Front Immunol. 2020;11:2026. doi: 10.3389/fimmu.2020.02026. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 99.Monypenny J, et al. ALIX Regulates Tumor-Mediated Immunosuppression by Controlling EGFR Activity and PD-L1 Presentation. Cell Rep. 2018;24(3):630–641. doi: 10.1016/j.celrep.2018.06.066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6(6):e1792. doi: 10.1038/cddis.2015.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Rong L, Li R, Li S, Luo R. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells. Oncol Lett. 2016;11(1):500–504. doi: 10.3892/ol.2015.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Qiu S-Q, Waaijer SJH, Zwager MC, de Vries EGE, van der Vegt B, Schröder CP. Tumor-associated macrophages in breast cancer: Innocent bystander or important player? Cancer Treat Rev. 2018;70:178–189. doi: 10.1016/j.ctrv.2018.08.010. [DOI] [PubMed] [Google Scholar]
- 103.Laoui D, et al. Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. Int J Dev Biol. 2011;55(7–9):861–867. doi: 10.1387/ijdb.113371dl. [DOI] [PubMed] [Google Scholar]
- 104.Tao S, et al. The role of macrophages during breast cancer development and response to chemotherapy. Clin Transl Oncol. 2020 doi: 10.1007/s12094-020-02348-0. [DOI] [PubMed] [Google Scholar]
- 105.Wolfers J, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303. doi: 10.1038/85438. [DOI] [PubMed] [Google Scholar]
- 106.Yin X, et al. PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep. 2020;33(3):108278. doi: 10.1016/j.celrep.2020.108278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother CII. 2009;58(1):49–59. doi: 10.1007/s00262-008-0523-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Rashid MH, et al. Critical immunosuppressive effect of MDSC-derived exosomes in the tumor microenvironment. Oncol Rep. 2021;45(3):1171–1181. doi: 10.3892/or.2021.7936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Wen SW, et al. The biodistribution and immune suppressive effects of breast cancer-derived exosomes. Cancer Res. 2016;76(23):6816–6827. doi: 10.1158/0008-5472.CAN-16-0868. [DOI] [PubMed] [Google Scholar]
- 110.Leal AC, et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci Rep. 2017;7(1):6438. doi: 10.1038/s41598-017-06893-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Khan S, et al. Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer. 2014;14:176. doi: 10.1186/1471-2407-14-176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Das A, Mohan V, Krishnaswamy VR, Solomonov I, Sagi I. Exosomes as a storehouse of tissue remodeling proteases and mediators of cancer progression. Cancer Metastasis Rev. 2019;38(3):455–468. doi: 10.1007/s10555-019-09813-5. [DOI] [PubMed] [Google Scholar]
- 113.Gupta GP, et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 2007;446(7137):765–770. doi: 10.1038/nature05760. [DOI] [PubMed] [Google Scholar]
- 114.Zhou W, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–515. doi: 10.1016/j.ccr.2014.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Di Modica M, et al. Breast cancer-secreted miR-939 downregulates VE-cadherin and destroys the barrier function of endothelial monolayers. Cancer Lett. 2017;384:94–100. doi: 10.1016/j.canlet.2016.09.013. [DOI] [PubMed] [Google Scholar]
- 116.Peinado H, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–317. doi: 10.1038/nrc.2017.6. [DOI] [PubMed] [Google Scholar]
- 117.Epstein DM. Special delivery: microRNA-200-containing extracellular vesicles provide metastatic message to distal tumor cells. J Clin Invest. 2014;124(12):5107–5108. doi: 10.1172/JCI79191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Sirkisoon SR, et al. Breast cancer extracellular vesicles-derived miR-1290 activates astrocytes in the brain metastatic microenvironment via the FOXA2→CNTF axis to promote progression of brain metastases. Cancer Lett. 2022;540:215726. doi: 10.1016/j.canlet.2022.215726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 119.Tominaga N, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun. 2015 doi: 10.1038/ncomms7716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Zhang DX, et al. αvβ1 integrin is enriched in extracellular vesicles of metastatic breast cancer cells: a mechanism mediated by galectin-3. J Extracell Vesicles. 2022;11(8):e12234. doi: 10.1002/jev2.12234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Fong MY, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17(2):183–194. doi: 10.1038/ncb3094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Banys M, et al. Dormancy in breast cancer. Breast Cancer Targets Ther. 2012;4:183–191. doi: 10.2147/BCTT.S26431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Gong J, Jaiswal R, Dalla P, Luk F, Bebawy M. Microparticles in cancer: a review of recent developments and the potential for clinical application. Semin Cell Dev Biol. 2015;40:35–40. doi: 10.1016/j.semcdb.2015.03.009. [DOI] [PubMed] [Google Scholar]
- 124.Shedden K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 2003;63(15):4331–4337. [PubMed] [Google Scholar]
- 125.Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol. 2016;23(6):487–493. doi: 10.1038/nsmb.3216. [DOI] [PubMed] [Google Scholar]
- 126.Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer-how we can rise to the challenge. Cells. 2019;8(9):957. doi: 10.3390/cells8090957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene. 2003;22(47):7468–7485. doi: 10.1038/sj.onc.1206948. [DOI] [PubMed] [Google Scholar]
- 128.Ma X, et al. Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proc Natl Acad Sci U S A. 2012;109(40):16282–16287. doi: 10.1073/pnas.1202989109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Ifergan I, Scheffer GL, Assaraf YG. Novel extracellular vesicles mediate an ABCG2-dependent anticancer drug sequestration and resistance. Cancer Res. 2005;65(23):10952–10958. doi: 10.1158/0008-5472.CAN-05-2021. [DOI] [PubMed] [Google Scholar]
- 130.Liu J, Zhu S, Tang W, Huang Q, Mei Y, Yang H. Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p. Cancer Cell Int. 2021;21(1):55. doi: 10.1186/s12935-020-01659-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Sachdeva M, Wu H, Ru P, Hwang L, Trieu V, Mo Y-Y. MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene. 2011;30(7):822–831. doi: 10.1038/onc.2010.463. [DOI] [PubMed] [Google Scholar]
- 132.Wei Y, et al. Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Res Treat. 2014;147(2):423–431. doi: 10.1007/s10549-014-3037-0. [DOI] [PubMed] [Google Scholar]
- 133.Gong C, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286(21):19127–19137. doi: 10.1074/jbc.M110.216887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.De Mattos-Arruda L, et al. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. 2015;6(35):37269–37280. doi: 10.18632/oncotarget.5495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Chen W, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE. 2014;9(4):e95240. doi: 10.1371/journal.pone.0095240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Mao L, et al. Exosomes decrease sensitivity of breast cancer cells to adriamycin by delivering microRNAs. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2016;37(4):5247–5256. doi: 10.1007/s13277-015-4402-2. [DOI] [PubMed] [Google Scholar]
- 137.Yu D-D, et al. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2016;37(3):3227–3235. doi: 10.1007/s13277-015-4161-0. [DOI] [PubMed] [Google Scholar]
- 138.Heery R, Finn SP, Cuffe S, Gray SG. Long non-coding RNAs: Key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers. 2017;9(4):38. doi: 10.3390/cancers9040038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Chen I-H, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci. 2017;114(12):3175–3180. doi: 10.1073/pnas.1618088114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Li X-Q, Zhang R, Lu H, Yue X-M, Huang Y-F. Extracellular vesicle–packaged CDH11 and ITGA5 induce the premetastatic niche for bone colonization of breast cancer cells. Cancer Res. 2022;82(8):1560–1574. doi: 10.1158/0008-5472.can-21-1331. [DOI] [PubMed] [Google Scholar]
- 141.Teles RHG, et al. Advances in breast cancer management and extracellular vesicle research, a bibliometric analysis. Curr Oncol. 2021;28(6):4504–4520. doi: 10.3390/curroncol28060382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. PROTEOMICS Clin Appl. 2015;9(3–4):358–367. doi: 10.1002/prca.201400114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Bandini E, et al. Early detection and investigation of extracellular vesicles biomarkers in breast cancer. Front Mol Biosci. 2021 doi: 10.3389/fmolb.2021.732900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Li D, et al. Identification of serum exosomal miR-148a as a novel prognostic biomarker for breast cancer. Eur Rev Med Pharmacol Sci. 2020;24(13):7303–7309. doi: 10.26355/eurrev_202007_21889. [DOI] [PubMed] [Google Scholar]
- 145.Lyman GH, Somerfield MR, Bosserman LD, Perkins CL, Weaver DL, Giuliano AE. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology Clinical Practice guideline update. J Clin Oncol. 2017;35(5):561–564. doi: 10.1200/jco.2016.71.0947. [DOI] [PubMed] [Google Scholar]
- 146.Magnoni F, Galimberti V, Corso G, Intra M, Sacchini V, Veronesi P. Axillary surgery in breast cancer: An updated historical perspective. Semin Oncol. 2020;47(6):341–352. doi: 10.1053/j.seminoncol.2020.09.001. [DOI] [PubMed] [Google Scholar]
- 147.Lee J-E, et al. Identification of EDIL3 on extracellular vesicles involved in breast cancer cell invasion. J Proteomics. 2016;131:17–28. doi: 10.1016/j.jprot.2015.10.005. [DOI] [PubMed] [Google Scholar]
- 148.Moon P-G, et al. Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget. 2016;7(26):40189–40199. doi: 10.18632/oncotarget.9561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Wang X, et al. Circulating exosomal miR-363-5p inhibits lymph node metastasis by downregulating PDGFB and serves as a potential noninvasive biomarker for breast cancer. Mol Oncol. 2021;15(9):2466–2479. doi: 10.1002/1878-0261.13029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Acuña RA, Varas-Godoy M, Berthoud VM, Alfaro IE, Retamal MA. Connexin-46 contained in extracellular vesicles enhance malignancy features in breast cancer cells. Biomolecules. 2020;10(5):676. doi: 10.3390/biom10050676. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Tay TKY, Tan PH. Liquid biopsy in breast cancer: a focused review. Arch Pathol Lab Med. 2020;145(6):678–686. doi: 10.5858/arpa.2019-0559-ra. [DOI] [PubMed] [Google Scholar]
- 152.de Freitas AJA, et al. Liquid biopsy as a tool for the diagnosis, treatment, and monitoring of breast cancer. Int J Mol Sci. 2022;23(17):9952. doi: 10.3390/ijms23179952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Nakase I, Takatani-Nakase T. Exosomes: Breast cancer-derived extracellular vesicles; recent key findings and technologies in disease progression, diagnostics, and cancer targeting. Drug Metab Pharmacokinet. 2022;42:100435. doi: 10.1016/j.dmpk.2021.100435. [DOI] [PubMed] [Google Scholar]
- 154.Sueta A, Yamamoto Y, Tomiguchi M, Takeshita T, Yamamoto-Ibusuki M, Iwase H. Differential expression of exosomal miRNAs between breast cancer patients with and without recurrence. Oncotarget. 2017;8(41):69934–69944. doi: 10.18632/oncotarget.19482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Ni Q, et al. Different signatures of miR-16, miR-30b and miR-93 in exosomes from breast cancer and DCIS patients. Sci Rep. 2018 doi: 10.1038/s41598-018-31108-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Yan C, et al. Plasma extracellular vesicle-packaged microRNAs as candidate diagnostic biomarkers for early-stage breast cancer. Mol Med Rep. 2019 doi: 10.3892/mmr.2019.10669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Bao S, et al. Genomic instability-derived plasma extracellular vesicle-microRNA signature as a minimally invasive predictor of risk and unfavorable prognosis in breast cancer. J Nanobiotechnology. 2021 doi: 10.1186/s12951-020-00767-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Baldasici O, et al. Breast cancer-delivered exosomal mirna as liquid biopsy biomarkers for metastasis prediction: a focus on translational research with clinical applicability. Int J Mol Sci. 2022;23(16):9371. doi: 10.3390/ijms23169371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep. 2020 doi: 10.1038/s41598-020-70393-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Etayash H, McGee AR, Kaur K, Thundat T. Nanomechanical sandwich assay for multiple cancer biomarkers in breast cancer cell-derived exosomes. Nanoscale. 2016;8(33):15137–15141. doi: 10.1039/c6nr03478k. [DOI] [PubMed] [Google Scholar]
- 161.Faldoni FLC, et al. Inflammatory breast cancer: clinical implications of genomic alterations and mutational profiling. Cancers. 2020;12(10):2816. doi: 10.3390/cancers12102816. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Ahmed SH, et al. Small extracellular vesicle-encapsulated miR-181b-5p, miR-222-3p and let-7a-5p: Next generation plasma biopsy-based diagnostic biomarkers for inflammatory breast cancer. PLoS ONE. 2021;16(4):e0250642. doi: 10.1371/journal.pone.0250642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Buentzel J, et al. Metabolomic profiling of blood-derived microvesicles in breast cancer patients. Int J Mol Sci. 2021;22(24):13540. doi: 10.3390/ijms222413540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Cai G-X, et al. A plasma-derived extracellular vesicle mRNA classifier for the detection of breast cancer. Gland Surg. 2021;10(6):2002–2009. doi: 10.21037/gs-21-275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Kibria G, et al. A rapid, automated surface protein profiling of single circulating exosomes in human blood. Sci Rep. 2016 doi: 10.1038/srep36502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Haney MJ, et al. Macrophage-derived extracellular vesicles as drug delivery systems for triple negative breast cancer (TNBC) therapy. J Neuroimmune Pharmacol. 2019;15(3):487–500. doi: 10.1007/s11481-019-09884-9. [DOI] [PubMed] [Google Scholar]
- 167.Buschmann D, Mussack V, Byrd JB. Separation, characterization, and standardization of extracellular vesicles for drug delivery applications. Adv Drug Deliv Rev. 2021;174:348–368. doi: 10.1016/j.addr.2021.04.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168.Busatto S, et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. 2018;7(12):273. doi: 10.3390/cells7120273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 169.Tian Y, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–2390. doi: 10.1016/j.biomaterials.2013.11.083. [DOI] [PubMed] [Google Scholar]
- 170.Ma J, et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res. 2016;26(6):713–727. doi: 10.1038/cr.2016.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 171.Wang Y, et al. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics. 2017;7(5):1360–1372. doi: 10.7150/thno.16532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Li J, et al. Identification and characterization of 293T cell-derived exosomes by profiling the protein, mRNA and MicroRNA components. PLoS ONE. 2016;11(9):e0163043. doi: 10.1371/journal.pone.0163043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 173.Zhang L, et al. Nanoparticles carrying paclitaxel and anti-miR-221 for breast cancer therapy triggered by ultrasound. Cell Death Discov. 2023 doi: 10.1038/s41420-023-01594-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174.Wang Q, et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res. 2015;75(12):2520–2529. doi: 10.1158/0008-5472.CAN-14-3095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano. 2018;12(7):6830–6842. doi: 10.1021/acsnano.8b02053. [DOI] [PubMed] [Google Scholar]
- 176.Pakravan K, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol. 2017;40(5):457–470. doi: 10.1007/s13402-017-0335-7. [DOI] [PubMed] [Google Scholar]
- 177.Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol Mech Dis. 2009;4(1):199–227. doi: 10.1146/annurev.pathol.4.110807.092222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 178.Hung ME, Leonard JN. Stabilization of exosome-targeting peptides via engineered glycosylation*. J Biol Chem. 2015;290(13):8166–8172. doi: 10.1074/jbc.M114.621383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179.Morishita M, Takahashi Y, Matsumoto A, Nishikawa M, Takakura Y. Exosome-based tumor antigens–adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials. 2016;111:55–65. doi: 10.1016/j.biomaterials.2016.09.031. [DOI] [PubMed] [Google Scholar]
- 180.Melzer C, Rehn V, Yang Y, Bähre H, von der Ohe J, Hass R. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers. 2019;11(6):798. doi: 10.3390/cancers11060798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181.Kumar DN, et al. Combination therapy comprising paclitaxel and 5-fluorouracil by using folic acid functionalized bovine milk exosomes improves the therapeutic efficacy against breast cancer. Life. 2022 doi: 10.3390/life12081143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 182.Walker S, et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 2019;9(26):8001–8017. doi: 10.7150/thno.37097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 183.Shi X, et al. Genetically engineered cell-derived nanoparticles for targeted breast cancer immunotherapy. Mol Ther. 2020;28(2):536–547. doi: 10.1016/j.ymthe.2019.11.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 184.de Jong OG, et al. Drug delivery with extracellular vesicles: from imagination to innovation. Acc Chem Res. 2019;52(7):1761–1770. doi: 10.1021/acs.accounts.9b00109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185.Aafreen S, Feng J, Wang W, Liu G. Theranostic extracellular vesicles: a concise review of current imaging technologies and labeling strategies. Extracell Vesicles Circ Nucleic Acids. 2023;4:107–132. doi: 10.20517/evcna.2023.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 186.Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Controlled Release. 2015;199:145–155. doi: 10.1016/j.jconrel.2014.12.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 187.Pascucci L, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Controlled Release. 2014;192:262–270. doi: 10.1016/j.jconrel.2014.07.042. [DOI] [PubMed] [Google Scholar]
- 188.Bonomi A, et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Stem Cell Res Ther. 2015 doi: 10.1186/s13287-015-0140-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 189.Bonomi A, et al. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells. Cytotherapy. 2015;17(12):1687–1695. doi: 10.1016/j.jcyt.2015.09.005. [DOI] [PubMed] [Google Scholar]
- 190.Toffoli G, et al. Exosomal doxorubicin reduces the cardiac toxicity of doxorubicin. Nanomed. 2015;10(19):2963–2971. doi: 10.2217/nnm.15.118. [DOI] [PubMed] [Google Scholar]
- 191.Yang Y, Chen Y, Zhang F, Zhao Q, Zhong H. Increased anti-tumour activity by exosomes derived from doxorubicin-treated tumour cells via heat stress. Int J Hyperthermia. 2015;31(5):498–506. doi: 10.3109/02656736.2015.1036384. [DOI] [PubMed] [Google Scholar]
- 192.Ye Z, et al. Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl Mater Interfaces. 2018;10(15):12341–12350. doi: 10.1021/acsami.7b18135. [DOI] [PubMed] [Google Scholar]
- 193.Guo M, et al. Autologous tumor cell–derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci Transl Med. 2019 doi: 10.1126/scitranslmed.aat5690. [DOI] [PubMed] [Google Scholar]
- 194.Fukuta T, Nishikawa A, Kogure K. Low level electricity increases the secretion of extracellular vesicles from cultured cells. Biochem Biophys Rep. 2020;21:100713. doi: 10.1016/j.bbrep.2019.100713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 195.Herrmann IK, Wood MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol. 2021;16(7):748–759. doi: 10.1038/s41565-021-00931-2. [DOI] [PubMed] [Google Scholar]
- 196.Gresch O, et al. New non-viral method for gene transfer into primary cells. Methods. 2004;33(2):151–163. doi: 10.1016/j.ymeth.2003.11.009. [DOI] [PubMed] [Google Scholar]
- 197.Felgner PL, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci. 1987;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 198.Yuana Y, Balachandran B, van der Wurff-Jacobs KMG, Schiffelers RM, Moonen CT. Potential use of extracellular vesicles generated by microbubble-assisted ultrasound as drug nanocarriers for cancer Treatment. Int J Mol Sci. 2020;21(8):3024. doi: 10.3390/ijms21083024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 199.Kanchanapally R, et al. Drug-loaded exosomal preparations from different cell types exhibit distinctive loading capability, yield, and antitumor efficacies: a comparative analysis. Int J Nanomedicine. 2019;14:531–541. doi: 10.2147/ijn.s191313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 200.Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371(1):48–61. doi: 10.1016/j.canlet.2015.10.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 201.Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Controlled Release. 2015;220:727–737. doi: 10.1016/j.jconrel.2015.09.031. [DOI] [PubMed] [Google Scholar]
- 202.Wei H, et al. A nanodrug consisting of doxorubicin and exosome derived from mesenchymal stem cells for osteosarcoma treatment in vitro. Int J Nanomedicine. 2019;14:8603–8610. doi: 10.2147/ijn.s218988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 203.Schindler C, et al. Exosomal delivery of doxorubicin enables rapid cell entry and enhanced in vitro potency. PLoS ONE. 2019;14(3):e0214545. doi: 10.1371/journal.pone.0214545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 204.Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Controlled Release. 2015;205:35–44. doi: 10.1016/j.jconrel.2014.11.029. [DOI] [PubMed] [Google Scholar]
- 205.Sancho-Albero M, et al. Efficient encapsulation of theranostic nanoparticles in cell-derived exosomes: leveraging the exosomal biogenesis pathway to obtain hollow gold nanoparticle-hybrids. Nanoscale. 2019;11(40):18825–18836. doi: 10.1039/c9nr06183e. [DOI] [PubMed] [Google Scholar]
- 206.Kim MS, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine Nanotechnol Biol Med. 2016;12(3):655–664. doi: 10.1016/j.nano.2015.10.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 207.Limoni SK, Moghadam MF, Moazzeni SM, Gomari H, Salimi F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl Biochem Biotechnol. 2018;187(1):352–364. doi: 10.1007/s12010-018-2813-4. [DOI] [PubMed] [Google Scholar]
- 208.Aqil F, et al. Milk exosomes—Natural nanoparticles for siRNA delivery. Cancer Lett. 2019;449:186–195. doi: 10.1016/j.canlet.2019.02.011. [DOI] [PubMed] [Google Scholar]
- 209.Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation. Anal Biochem. 2014;448:41–49. doi: 10.1016/j.ab.2013.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 210.Kim MS, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine Nanotechnol Biol Med. 2018;14(1):195–204. doi: 10.1016/j.nano.2017.09.011. [DOI] [PubMed] [Google Scholar]
- 211.Lamichhane TN, et al. Oncogene knockdown via active loading of small rnas into extracellular vesicles by sonication. Cell Mol Bioeng. 2016;9(3):315–324. doi: 10.1007/s12195-016-0457-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 212.Goh WJ, Lee CK, Zou S, Woon E, Czarny B, Pastorin G. Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approach for anti-tumor therapy. Int J Nanomedicine. 2017;12:2759–2767. doi: 10.2147/ijn.s131786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 213.Sato YT, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016 doi: 10.1038/srep21933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 214.Haney MJ, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Controlled Release. 2015;207:18–30. doi: 10.1016/j.jconrel.2015.03.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 215.Jamur MC, Oliver C, Permeabilization of cell membranes, Immunocytochemical Methods Protoc., pp. 63–66, 2010. 10.1007/978-1-59745-324-0_9
- 216.Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: a review. Phytochem Rev. 2010;9(3):425–474. doi: 10.1007/s11101-010-9183-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217.Yang T, et al. Delivery of small interfering RNA to inhibit vascular endothelial growth factor in zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J. 2016;19(2):475–486. doi: 10.1208/s12248-016-0015-y. [DOI] [PubMed] [Google Scholar]
- 218.Wang T, Larcher L, Ma L, Veedu R. Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules. 2018;23(10):2564. doi: 10.3390/molecules23102564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 219.Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2017 doi: 10.1152/ajplung.00423.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 220.Spiers HVM, Stadler LKJ, Smith H, Kosmoliaptsis V. Extracellular vesicles as drug delivery systems in organ transplantation: the next frontier. Pharmaceutics. 2023;15(3):891. doi: 10.3390/pharmaceutics15030891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 221.Pan R, Chen D, Hou L, Hu R, Jiao Z. Small extracellular vesicles: a novel drug delivery system for neurodegenerative disorders. Front Aging Neurosci. 2023;15:1184435. doi: 10.3389/fnagi.2023.1184435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 222.Jang YJ, et al. Extracellular vesicles, as drug-delivery vehicles, improve the biological activities of astaxanthin. Antioxidants. 2023 doi: 10.3390/antiox12020473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 223.Ashique S, Anand K. Radiolabelled extracellular vesicles as imaging modalities for precise targeted drug delivery. Pharmaceutics. 2023;15(5):1426. doi: 10.3390/pharmaceutics15051426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 224.Lin S-W, Tsai J-C, Shyong Y-J. Drug delivery of extracellular vesicles: Preparation, delivery strategies and applications. Int J Pharm. 2023;642:123185. doi: 10.1016/j.ijpharm.2023.123185. [DOI] [PubMed] [Google Scholar]
- 225.Gong C, et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology. 2019 doi: 10.1186/s12951-019-0526-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 226.Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–296. doi: 10.1016/j.apsb.2016.02.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 227.Yang B, Chen Y, Shi J. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater. 2018 doi: 10.1002/adma.201802896. [DOI] [PubMed] [Google Scholar]
- 228.Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J Controlled Release. 2017;262:247–258. doi: 10.1016/j.jconrel.2017.07.001. [DOI] [PubMed] [Google Scholar]
- 229.Agrawal AK, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine Nanotechnol Biol Med. 2017;13(5):1627–1636. doi: 10.1016/j.nano.2017.03.001. [DOI] [PubMed] [Google Scholar]
- 230.Zhang P, et al. Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv Mater. 2017 doi: 10.1002/adma.201705350. [DOI] [PubMed] [Google Scholar]
- 231.Hadla M, et al. Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomed. 2016;11(18):2431–2441. doi: 10.2217/nnm-2016-0154. [DOI] [PubMed] [Google Scholar]
- 232.Kanchanapally R, Brown K. Cancer cell-derived exosomes as the delivery vehicle of paclitaxe l to inhibit cancer cell growth. J Cancer Discov. 2022 doi: 10.55976/jcd.1202217549-58. [DOI] [Google Scholar]
- 233.Liu J, et al. Paclitaxel-loaded hybrid exosome for targeted chemotherapy of triple-negative breast cancer. Res Square Platform LLC. 2022 doi: 10.21203/rs.3.rs-2144965/v1. [DOI] [Google Scholar]
- 234.Lin Q, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019 doi: 10.1186/s12943-019-1077-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 235.Im E-J, et al. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat Commun. 2019 doi: 10.1038/s41467-019-09387-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 236.Maziveyi M, Dong S, Baranwal S, Alahari SK. Nischarin regulates focal adhesion and Invadopodia formation in breast cancer cells. Mol Cancer. 2018 doi: 10.1186/s12943-018-0764-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 237.Maziveyi M, et al. Exosomes from nischarin-expressing cells reduce breast cancer cell motility and tumor growth. Cancer Res. 2019;79(9):2152–2166. doi: 10.1158/0008-5472.can-18-0842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 238.Lobos-González L, et al. Exosomes released upon mitochondrial ASncmtRNA knockdown reduce tumorigenic properties of malignant breast cancer cells. Sci Rep. 2020 doi: 10.1038/s41598-019-57018-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 239.Zhao L, Gu C, Gan Y, Shao L, Chen H, Zhu H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. J Controlled Release. 2020;318:1–15. doi: 10.1016/j.jconrel.2019.12.005. [DOI] [PubMed] [Google Scholar]
- 240.Naseri Z, Kazemi Oskuee R, Jaafari MR, Forouzandeh M. Exosome-mediated delivery of functionally active miRNA-142–3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine. 2018 doi: 10.2147/ijn.s182384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 241.Kim H, Rhee WJ. Exosome-mediated let7c-5p delivery for breast cancer therapeutic development. Biotechnol Bioprocess Eng. 2020;25(4):513–520. doi: 10.1007/s12257-020-0002-0. [DOI] [Google Scholar]
- 242.Ohno S, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microrna to breast cancer cells. Mol Ther. 2013;21(1):185–191. doi: 10.1038/mt.2012.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 243.Zhu L, Dong D, Yu Z-L, Zhao Y-F, Pang D-W, Zhang Z-L. Folate-Engineered microvesicles for enhanced target and synergistic therapy toward breast cancer. ACS Appl Mater Interfaces. 2017;9(6):5100–5108. doi: 10.1021/acsami.6b14633. [DOI] [PubMed] [Google Scholar]
- 244.Fernández M, Reina-Pérez I, Astorga J, Rodríguez-Carrillo A, Plaza-Díaz J, Fontana L. Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health. 2018;15(8):1747. doi: 10.3390/ijerph15081747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 245.Chen J, et al. The microbiome and breast cancer: a review. Breast Cancer Res Treat. 2019;178(3):493–496. doi: 10.1007/s10549-019-05407-5. [DOI] [PubMed] [Google Scholar]
- 246.An J, et al. Bacterial extracellular vesicles affect endocrine therapy in MCF7 cells. Medicine (Baltimore) 2021;100(18):e25835. doi: 10.1097/md.0000000000025835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 247.An J, Kwon H, Lim W, Moon B-I. Staphylococcus aureus-derived extracellular vesicles enhance the efficacy of endocrine therapy in breast cancer cells. J Clin Med. 2022;11(7):2030. doi: 10.3390/jcm11072030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 248.Liu X, et al. Exosomes deliver lncRNA DARS-AS1 siRNA to inhibit chronic unpredictable mild stress-induced TNBC metastasis. Cancer Lett. 2022;543:215781. doi: 10.1016/j.canlet.2022.215781. [DOI] [PubMed] [Google Scholar]
- 249.Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B. 2021;11(1):55–70. doi: 10.1016/j.apsb.2020.09.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 250.Chen Q, et al. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. Acta Pharm Sin B. 2022;12(2):907–923. doi: 10.1016/j.apsb.2021.08.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 251.Shen D-D, et al. LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in gastric cancer. Mol Cancer. 2022 doi: 10.1186/s12943-022-01557-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 252.Nishida-Aoki N, Tominaga N, Takeshita F, Sonoda H, Yoshioka Y, Ochiya T. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol Ther. 2017;25(1):181–191. doi: 10.1016/j.ymthe.2016.10.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 253.Nie H, et al. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer. Nanoscale. 2020;12(2):877–887. doi: 10.1039/c9nr09011h. [DOI] [PubMed] [Google Scholar]
- 254.Chang Y-H, et al. Extracellular vesicles derived from Wharton’s Jelly mesenchymal stem cells inhibit the tumor environment via the miR-125b/HIF1α signaling pathway. Sci Rep. 2022 doi: 10.1038/s41598-022-17767-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 255.Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–221. doi: 10.1016/j.addr.2017.04.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 256.Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 2020 doi: 10.1002/adma.202002054. [DOI] [PubMed] [Google Scholar]
- 257.Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21(11):799–820. doi: 10.1038/s41573-022-00520-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 258.Zhao Y, Zheng Y, Zhu Y, Li H, Zhu H, Liu T. Docetaxel-loaded M1 macrophage-derived exosomes for a safe and efficient chemoimmunotherapy of breast cancer. J Nanobiotechnology. 2022 doi: 10.1186/s12951-022-01526-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 259.Markov O, Oshchepkova A, Mironova N. Immunotherapy based on dendritic cell-targeted/-derived extracellular vesicles—a novel strategy for enhancement of the anti-tumor immune response. Front Pharmacol. 2019 doi: 10.3389/fphar.2019.01152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 260.Kitai Y, et al. DNA-Containing exosomes derived from cancer cells treated with topotecan activate a sting-dependent pathway and reinforce antitumor immunity. J Immunol. 2017;198(4):1649–1659. doi: 10.4049/jimmunol.1601694. [DOI] [PubMed] [Google Scholar]
- 261.Pitt JM, et al. Dendritic cell–derived exosomes as immunotherapies in the fight against cancer. J Immunol. 2014;193(3):1006–1011. doi: 10.4049/jimmunol.1400703. [DOI] [PubMed] [Google Scholar]
- 262.Cheng Q, Shi X, Han M, Smbatyan G, Lenz H-J, Zhang Y. Reprogramming exosomes as nanoscale controllers of cellular immunity. J Am Chem Soc. 2018;140(48):16413–16417. doi: 10.1021/jacs.8b10047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 263.Piffoux M, et al. Extracellular vesicles for personalized medicine: The input of physically triggered production, loading and theranostic properties. Adv Drug Deliv Rev. 2019;138:247–258. doi: 10.1016/j.addr.2018.12.009. [DOI] [PubMed] [Google Scholar]
- 264.Duong A, Parmar G, Kirkham AM, Burger D, Allan DS. Registered clinical trials investigating treatment with cell-derived extracellular vesicles: a scoping review. Cytotherapy. 2023;25(9):939–945. doi: 10.1016/j.jcyt.2023.04.007. [DOI] [PubMed] [Google Scholar]
- 265.Zhou B, et al. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020 doi: 10.1038/s41392-020-00258-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 266.Andjus P, et al. Extracellular vesicles as innovative tool for diagnosis, regeneration and protection against neurological damage. Int J Mol Sci. 2020;21(18):6859. doi: 10.3390/ijms21186859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 267.Jin X, et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res. 2017;23(17):5311–5319. doi: 10.1158/1078-0432.ccr-17-0577. [DOI] [PubMed] [Google Scholar]
- 268.“Search for: Breast Cancer, Other terms: exosomes | Card Results | ClinicalTrials.gov.” https://clinicaltrials.gov/search?term=exosomes&cond=Breast%20Cancer&city. Accessed 26 Jan 2024.
- 269.Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun Signal. 2022 doi: 10.1186/s12964-022-00959-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 270.Willms E, Cabañas C, Mäger I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol. 2018 doi: 10.3389/fimmu.2018.00738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 271.Sadeghi S, Tehrani FR, Tahmasebi S, Shafiee A, Hashemi SM. Exosome engineering in cell therapy and drug delivery. Inflammopharmacology. 2023;31(1):145–169. doi: 10.1007/s10787-022-01115-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 272.Zhu L, et al. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics. 2017;7(10):2732–2745. doi: 10.7150/thno.18752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 273.Wei H, et al. Regulation of exosome production and cargo sorting. Int J Biol Sci. 2021;17(1):163–177. doi: 10.7150/ijbs.53671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 274.Xu M, Yang Q, Sun X, Wang Y. Recent advancements in the loading and modification of therapeutic exosomes. Front Bioeng Biotechnol. 2020 doi: 10.3389/fbioe.2020.586130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 275.Joshi BS, Ortiz D, Zuhorn IS. Converting extracellular vesicles into nanomedicine: loading and unloading of cargo. Mater Today Nano. 2021;16:100148. doi: 10.1016/j.mtnano.2021.100148. [DOI] [Google Scholar]
- 276.Sutaria DS, Badawi M, Phelps MA, Schmittgen TD. Achieving the promise of therapeutic extracellular vesicles: the devil is in details of therapeutic loading. Pharm Res. 2017;34(5):1053–1066. doi: 10.1007/s11095-017-2123-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 277.György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439–464. doi: 10.1146/annurev-pharmtox-010814-124630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 278.Maroto R, et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles. 2017;6(1):1359478. doi: 10.1080/20013078.2017.1359478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 279.Park SJ, Jeon H, Yoo S-M, Lee M-S. The effect of storage temperature on the biological activity of extracellular vesicles for the complement system. In Vitro Cell Dev Biol Anim. 2018;54(6):423–429. doi: 10.1007/s11626-018-0261-7. [DOI] [PubMed] [Google Scholar]
- 280.Lee M, Ban J-J, Im W, Kim M. Influence of storage condition on exosome recovery. Biotechnol Bioprocess Eng. 2016;21(2):299–304. doi: 10.1007/s12257-015-0781-x. [DOI] [Google Scholar]
- 281.Cheng Y, Zeng Q, Han Q, Xia W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell. 2019;10(4):295–299. doi: 10.1007/s13238-018-0529-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 282.Bosch S, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016;6:36162. doi: 10.1038/srep36162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 283.Ban J-J, Lee M, Im W, Kim M. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun. 2015;461(1):76–79. doi: 10.1016/j.bbrc.2015.03.172. [DOI] [PubMed] [Google Scholar]
- 284.Sokolova V, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 2011;87(1):146–150. doi: 10.1016/j.colsurfb.2011.05.013. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
No datasets were generated or analysed during the current study.



