Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 May 14:2024.05.14.594221. [Version 1] doi: 10.1101/2024.05.14.594221

Circadian rhythms mediate malaria transmission potential

Inês Bento, Brianna Parrington, Rushlenne Pascual, Alexander S Goldberg, Eileen Wang, Hani Liu, Mira Zelle, Joseph S Takahashi, Joshua E Elias, Maria M Mota, Filipa Rijo-Ferreira
PMCID: PMC11118478  PMID: 38798622

Abstract

Malaria transmission begins when infected female Anopheles mosquitos deposit Plasmodium parasites into the mammalian host’s skin during a bloodmeal. The salivary gland-resident sporozoite parasites migrate to the bloodstream, subsequently invading and replicating within hepatocytes. As Anopheles mosquitos are more active at night, with a 24-hour rhythm, we investigated whether their salivary glands are under circadian control, anticipating bloodmeals and modulating sporozoite biology for host encounters. Here we show that approximately half of the mosquito salivary gland transcriptome, particularly genes essential for efficient bloodmeals such as anti-blood clotting factors, exhibits circadian rhythmic expression. Furthermore, we demonstrate that mosquitoes prefer to feed during nighttime, with the amount of blood ingested varying cyclically throughout the day. Notably, we show a substantial subset of the sporozoite transcriptome cycling throughout the day. These include genes involved in parasite motility, potentially modulating the ability to initiate infection at different times of day. Thus, although sporozoites are typically considered quiescent, our results demonstrate their transcriptional activity, revealing robust daily rhythms of gene expression. Our findings suggest a circadian evolutionary relationship between the vector, parasite and mammalian host that together modulate malaria transmission.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES