Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 May 17:2024.05.17.594753. [Version 1] doi: 10.1101/2024.05.17.594753

Age-related constraints on the spatial geometry of the brain

Yuritza Y Escalante, Jenna N Adams, Michael A Yassa, Niels Janssen
PMCID: PMC11118588  PMID: 38798452

ABSTRACT

Age-related structural brain changes may be better captured by assessing complex spatial geometric differences rather than isolated changes to individual regions. We applied a novel analytic method to quantify age-related changes to the spatial anatomy of the brain by measuring expansion and compression of global brain shape and the distance between cross-hemisphere homologous regions. To test how global brain shape and regional distances are affected by aging, we analyzed 2,603 structural MRIs (range: 30-97 years). Increasing age was associated with global shape expansion across inferior-anterior gradients, global compression across superior-posterior gradients, and regional expansion between frontotemporal homologues. Specific patterns of global and regional expansion and compression were further associated with clinical impairment and distinctly related to deficits in various cognitive domains. These findings suggest that changes to the complex spatial anatomy and geometry of the aging brain may be associated with reduced efficiency and cognitive dysfunction in older adults.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES