Abstract
Yinhua Pinggan Granule (YPG) is an approved compounded traditional Chinese medicine (TCM) prescription for the treatment of cold, cough, viral pneumonia, and related diseases. Due to its complicated chemical composition, the material basis of YPG has not been systematically investigated. In this study, an analytical method based on high-performance liquid chromatography (HPLC) coupled with Q-Exactive mass spectrometry was established. Together with the help of a self-built compound database and Compound Discoverer software 3.1, the chemical components in YPG were tentatively identified. Subsequently, six main components in YPG were quantitatively characterized with a high-performance liquid chromatography–diode array detector (HPLC-DAD) method. As a result, 380 components were annotated, including 19 alkaloids, 8 organic acids, 36 phenolic acids, 27 other phenols, 114 flavonoids, 75 flavonoid glycoside, 72 terpenes, 11 anthraquinones, and 18 other compounds. Six main components, namely, chlorogenic acid, puerarin, 3′-methoxypuerarin, polydatin, glycyrrhizic acid, and emodin, were quantified simultaneously. The calibration curves of all six analytes showed good linearity (R2 > 0.9990) within the test ranges. The precision, repeatability, stability, and recovery values were all in acceptable ranges. In addition, the total phenol content and DPPH scavenging activity of YPG were also determined. The systematic elucidation of the chemical components in YPG in this study may provide clear chemical information for the quality control and pharmacological research of YPG and related TCM compounded prescriptions.
Keywords: Yinhua Pinggan Granule, HPLC–Q-Exactive MS, chemical components, quantitative analysis, quality control of TCM
1. Introduction
Yinhua Pinggan Granule (YPG) is a patent compounded traditional Chinese medicine (TCM) prescription approved by the State Food and Drug Administration of China (No. Z20133007) for the treatment of cold, cough, viral pneumonia, and other related diseases. YPG was originally developed from an ancient TCM formula, Ma-huang-Tang (Ephedra Decoction), which was recorded in the TCM classic Shang Han Lun (Treatise on Febrile Diseases). YPG is composed of six herbs, namely, Lonicerae Japonicae Flos, Puerariae Lobatae Radix, Polygoni Cuspidati Rhizoma Et Radix, Ephedrae Herba, Glycyrrhizae Radix Et Rhizoma, and Armeniacae Semen Amarum, in a ratio of 4:4:4:2:2:1. In recent years, pharmacological and clinical studies of YPG have made effective progress. Previous studies have shown that YPG can inhibit the replication of influenza virus and regulate the occurrence of apoptosis caused by influenza virus infection [1]. In addition, YPG has a significant antiviral effect on H1N1 influenza virus-infected RAW264.7 cells and can protect influenza virus-infected pneumonia mice by reducing their lung injury [2]. At the same time, recent research showed that YPG and its components have significant inhibitory effects on the proliferation of the H1N1 virus [3]. Meanwhile, a randomized, double-blind, parallel, controlled clinical trial program with a total of 240 participants is in progress to test the clinical efficacy of YPG as a complementary therapy against community-acquired drug-resistant bacterial pneumonia [4].
TCM, including YPG, has shown unique advantages in the treatment of influenza virus and related diseases [5,6,7], especially during the COVID-19 pandemic [8,9,10]. However, the chemical complexity of TCM not only leads to great challenges in elucidating the pharmacological mechanisms of TCM but also hinders the deciphering of the material basis and quality control [11]. Therefore, the chemical profiling of compounded TCM prescriptions is of great importance. With its high sensitivity and high resolution, the liquid chromatography–mass spectrometry (LC-MS) technique has been widely applied in the qualitative analysis of TCM products in recent years [12,13].
Considering that most research on YPG has focused on pharmacology and clinical efficacy, the present study aimed to systematically identify and quantitatively characterize the phytochemical constituents of YPG. Based on the HPLC–Q-Exactive MS system, the global qualitative analysis of YPG was carried out, and then the main representative components were simultaneously quantified with HPLC-DAD detection technology in order to provide a theoretical basis for its future clinical application and quality control of YPG.
2. Results and Discussion
2.1. Optimization of Chromatographic Conditions
In order to systematically elucidate the chemical components of YPG, both the extraction method (Table S3 in Supporting Information) and the chromatography conditions were optimized. In particular, three different columns based on C18 packing material were tested, namely, the Welch Ultimate XB-C18 column (Welch, Shanghai, China) (150 mm × 4.0 mm, 3.0 μm), Agilent Poroshell 120 EC-C18 column (Agilent, Santa Clara, CA, USA) (150 mm × 3.0 mm, 2.7 μm), and Capcell Pak C18 MG II (Osaka Soda Co., Ltd., Osaka, Japan) (150 mm × 4.6 mm, 3 μm). Compared with the other chromatographic columns, the MG II column exhibited better separation capacity under optimal conditions. The acetonitrile–water system showed a better resolution and response in the selection of the mobile phase, and the addition of 0.1% or 0.5% formic acid could effectively improve the ionization efficiency and peak shape of some compounds. Finally, the HPLC-UV chromatogram obtained under optimized conditions is shown in Figure 1.
Figure 1.
The HPLC chromatogram of YPG (wavelength = 254 nm). 1. Chlorogenic acid; 2. puerarin; 3. 3′-methoxypuerarin; 4. polydatin; 5. glycyrrhizic acid; 6. emodin.
2.2. Qualitative Analysis of YPG by HPLC–Q-Exactive MS
Under the optimal chromatographic conditions, the mass spectrometry information of YPG was acquired in both positive and negative modes to cover more components. The base peak chromatograms (BPCs) are presented in Figure 2. Then, as described in Section 3, the data were tentatively annotated with corresponding compounds with the help of Compound Discoverer software according to the values of the accurate molecular weight and patterns of secondary fragmentation [14]. In particular, [M + H]+ and [M − H]− were the common quasi-molecular ions in the positive and negative modes, respectively, from which the chemical formulas were preliminarily inferred, with a mass deviation ≤ 5 ppm. After compound library searching, reference comparison, and fragmentation study, a total of 380 components were tentatively identified in YPG. Among them, 45 compounds were also verified by comparison with reference compounds. The mass spectrometry information of the identified compounds is summarized in Table 1 (for additional information, see Table S1 in Supporting Information).
Figure 2.
The BPCs of YPG in positive (A) and negative (B) modes.
Table 1.
Mass spectrometry information of chemical components in YPG.
No. | Name | RT (min) | Formula | Ion Type | Molecular Ion (m/z) | Main Product Ion (m/z) |
---|---|---|---|---|---|---|
1 | ephedrannin A | 3.40 | C30H20O11 | [M + H]+ | 557.1104 | 395.1281, 215.0650, 177.0543, 145.0284 |
2 | glucose | 3.63 | C6H12O6 | [M + H]+ | 181.0705 | 163.0792, 144.0655, 109.0286, 81.0340 |
[M − H]− | 179.0551 | 161.0445, 141.0181, 117.0181, 87.0073 | ||||
3 | secologanic acid | 3.67 | C16H22O10 | [M − H]− | 373.1134 | 347.9473, 189.0156, 161.0234, 135.0440 |
4 | D-mannitol | 3.82 | C6H14O6 | [M + H]+ | 183.0862 | 147.0650, 129.0543, 104.1073, 69.0342 |
5 | sucrose | 3.86 | C12H22O11 | [M + H]+ | 343.1227 | 306.1183, 145.0495, 127.0390, 85.0290 |
[M − H]− | 341.1083 | 261.7968, 179.0559, 113.0230, 59.0125 | ||||
6 | allantoin | 3.99 | C4H6N4O3 | [M + H]+ | 159.0512 | 142.0862, 114.0915, 99.0193, 70.0658 |
* 7 | quinic acid | 4.13 | C7H12O6 | [M + H]+ | 193.0706 | 157.0492, 147.0652, 129.0546, 111.0443 |
8 | salicylic acid | 4.14 | C7H6O3 | [M + H]+ | 139.0389 | 122.0714, 111.0443, 97.0287, 85.0289 |
9 | 4-aminophenol | 5.72 | C6H7NO | [M + H]+ | 110.0604 | 87.0046, 81.0340, 78.9949 |
* 10 | citric acid | 5.59 | C6H8O7 | [M + H]+ | 193.0343 | 161.0595, 151.0388, 133.0647, 105.0702 |
[M − H]− | 191.0188 | 173.0085, 129.0180, 111.0075, 87.0071 | ||||
11 | guanosine | 6.34 | C10H13N5O5 | [M + H]+ | 284.0986 | 258.4957, 152.0566, 135.0302, 110.0351 |
[M − H]− | 282.0843 | 169.3754, 150.0411, 88.1632, 61.9871 | ||||
12 | adenosine | 6.46 | C10H13N5O4 | [M + H]+ | 268.1037 | 213.3238, 169.7115, 136.0617, 85.0288 |
* 13 | gallic acid | 7.23 | C7H6O5 | [M + H]+ | 171.0291 | 154.0974, 130.0863, 115.0392, 70.0658 |
14 | coumalic acid | 7.40 | C6H4O4 | [M + H]+ | 141.0184 | 113.9639, 90.9481, 72.9378, 56.9430 |
15 | tachioside | 8.05 | C13H18O8 | [M − H]− | 301.0926 | 283.1918, 257.0457, 221.1909, 151.0029 |
16 | isotachioside | 8.27 | C13H18O8 | [M − H]− | 301.0926 | 284.0321, 243.0658, 178.9978, 151.0026 |
17 | ephedroxane | 8.27 | C11H13NO2 | [M + H]+ | 192.1019 | 164.9844, 146.9612, 106.0654, 87.0445 |
18 | quinaldic acid | 8.27 | C10H7NO2 | [M + H]+ | 174.0551 | 146.9612, 128.9507, 105.9351, 55.9352 |
* 19 | hordenine | 8.56 | C10H15NO | [M + H]+ | 166.1225 | 151.0101, 121.0649, 103.0546, 93.0703 |
20 | leonuriside A | 8.99 | C14H20O9 | [M − H]− | 331.1035 | 285.0384, 253.0501, 169.0130, 125.0231 |
21 | 4-vinylguaiacol | 9.19 | C9H10O2 | [M + H]+ | 151.0755 | 133.0761, 123.9456, 119.0493, 91.0547 |
22 | 7α-morroniside | 9.50 | C17H26O11 | [M − H]− | 405.1401 | 371.0939, 243.0672, 191.0199, 111.0070 |
23 | tetramethylpyrazine | 9.83 | C8H12N2 | [M + H]+ | 137.1075 | 111.0080, 93.0704, 68.9978 |
24 | shuangkangsu | 10.49 | C20H30O14 | [M − H]− | 493.1560 | 447.2225, 431.0965, 269.0450, 169.0130 |
25 | epi-gallocatechin | 10.69 | C15H14O7 | [M + H]+ | 307.0807 | 289.1790, 243.1704, 208.9966, 139.0389 |
[M − H]− | 305.0665 | 247.5994, 219.0664, 165.0182, 125.0232 | ||||
26 | robinin | 10.73 | C33H40O19 | [M + H]+ | 741.2226 | 678.4389, 579.1688, 381.0964, 297.0752 |
27 | 5-(hydroxymethyl)furfural | 10.85 | C6H6O3 | [M + H]+ | 127.0393 | 111.9689, 110.0238, 84.9603, 55.9352 |
28 | N-ethylbenzylamine | 10.90 | C8H11N | [M + H]+ | 122.0967 | 107.0732, 105.0336, 95.0495, 88.0237 |
29 | vicenin-2 | 11.00 | C27H30O15 | [M + H]+ | 595.1641 | 433.1127, 415.1019, 313.0700, 283.0596 |
[M − H]− | 593.1510 | 539.2719, 521.2607, 463.2737, 226.9863 | ||||
30 | 4′-hydroxyacetophenone | 11.09 | C8H8O2 | [M + H]+ | 137.0599 | 122.0364, 116.9720, 95.0497, 55.9352 |
31 | 6-hydroxykynurenic acid | 11.35 | C10H7NO4 | [M + H]+ | 206.0445 | 178.0497, 148.1121, 117.0699, 90.0797 |
[M − H]− | 204.0293 | 168.1795, 160.0393, 132.0446, 110.1680 | ||||
32 | chlorogenic acid butyl ester | 11.36 | C20H26O9 | [M − H]− | 409.1495 | 365.0681, 337.0357, 241.0023, 169.0135 |
33 | mirificin-4′-O-glucoside | 11.73 | C32H38O18 | [M + H]+ | 711.2118 | 579.1680, 417.1183, 399.1065, 297.0753 |
[M − H]− | 709.1986 | 487.1239, 457.1142, 294.0533, 266.0583 | ||||
34 | mandelonitrile | 11.82 | C8H7NO | [M + H]+ | 134.0600 | 106.0654, 91.0544, 79.0548 |
35 | kakkalide | 11.83 | C28H32O15 | [M + H]+ | 609.1803 | 447.1279, 411.1072, 327.0857, 297.0755 |
[M − H]− | 607.1663 | 588.1254, 487.1243, 309.0403, 281.0458 | ||||
36 | mahuannin A | 11.87 | C30H24O10 | [M − H]− | 543.1324 | 528.5940, 497.2623, 381.1213, 265.0987 |
37 | 2,6-dihydroxybenzoic acid | 11.92 | C17H24O9 | [M + H]+ | 373.1480 | 308.2842, 237.3755, 151.0375, 107.0485 |
38 | 8-epi-loganic acid | 11.96 | C16H24O10 | [M + H]+ | 377.1438 | 357.1662, 339.1559, 265.0587, 237.0277 |
[M − H]− | 375.1292 | 315.8566, 265.2063, 201.0163, 113.0231 | ||||
39 | swertiamarin | 12.02 | C16H22O10 | [M − H]− | 373.1134 | 357.0130, 295.0618, 201.0158, 135.0433 |
40 | 8-epi-loganin | 12.30 | C17H26O10 | [M − H]− | 389.1448 | 371.8339, 345.1187, 227.0693, 185.0593 |
41 | 5-methoxysalicylic acid | 12.31 | C8H8O4 | [M + H]+ | 169.0498 | 151.0391, 128.9508, 111.0444, 93.0339 |
42 | norephedrine | 12.65 | C9H13NO | [M + H]+ | 152.1068 | 134.0964, 117.0700, 115.0545, 91.0547 |
43 | 7-epi-vogeloside | 12.81 | C17H24O10 | [M − H]− | 387.1295 | 341.1095, 272.9591, 227.0690, 179.0566 |
44 | loganic acid | 12.88 | C16H24O10 | [M − H]− | 375.1292 | 287.1191, 201.0159, 189.0158, 135.0440 |
* 45 | protocatechuic acid | 12.90 | C7H6O4 | [M + H]+ | 155.0339 | 137.0233, 117.0701, 107.0495, 72.9379 |
46 | polygalin B | 13.12 | C28H32O15 | [M + H]+ | 609.1803 | 555.7846, 447.1268, 285.0752, 270.0516 |
[M − H]− | 607.1663 | 460.8990, 325.0714, 310.0492, 282.0534 | ||||
47 | lonijaposide B | 13.15 | C25H32NO12 | [M − H]− | 537.1833 | 511.3804, 375.0705, 335.0791, 201.0155 |
48 | 3′-hydroxypuerarin | 13.17 | C21H20O10 | [M − H]− | 431.0975 | 415.0348, 311.0557, 283.0609, 255.0659 |
49 | norpseudoephedrine | 13.19 | C9H13NO | [M + H]+ | 152.1068 | 134.0964, 117.0700, 106.0655 |
50 | loganin | 13.30 | C17H26O10 | [M − H]− | 389.1448 | 371.8339, 326.0798, 227.0693, 185.0593 |
51 | secologanoside | 13.43 | C16H22O11 | [M + H]+ | 391.1222 | 239.0796, 241.0385, 163.0388, 151.0389 |
[M − H]− | 389.1083 | 280.5215, 194.8876, 121.0647, 95.0489 | ||||
52 | leucodelphidin | 13.74 | C15H14O8 | [M − H]− | 321.0607 | 305.2140, 265.0519, 253.0507, 186.9385 |
53 | secologanin | 13.83 | C17H24O10 | [M − H]− | 387.1295 | / |
54 | glucoisoliquiritin | 14.04 | C27H32O14 | [M − H]− | 579.1715 | 529.4413, 491.9212, 463.1199, 255.0662 |
55 | glucoliquiritin apioside | 14.07 | C32H40O18 | [M − H]− | 711.2134 | 678.4865, 549.119, 457.1141, 255.0664 |
* 56 | chlorogenic acid | 14.15 | C16H18O9 | [M + H]+ | 355.1014 | 163.0388, 135.0440 |
[M − H]− | 353.0871 | 191.0553, 161.0234, 135.0440, 127.0385 | ||||
* 57 | neochlorogenic acid | 14.22 | C16H18O9 | [M + H]+ | 355.1014 | 338.1603, 289.0706, 235.0594, 163.0390 |
* 58 | catechin | 14.25 | C15H14O6 | [M + H]+ | 291.0857 | 255.7885, 107.0648, 139.0389, 123.0442 |
[M − H]− | 289.0714 | 245.0817, 203.0705, 151.0387.123.0439 | ||||
59 | ephedrine | 14.36 | C10H15NO | [M + H]+ | 166.1225 | 148.1119, 133.0886, 117.0700, 91.0548 |
* 60 | cryptochlorogenic acid | 14.37 | C16H18O9 | [M + H]+ | 355.1014 | 337.0915, 235.0589, 205.0494, 163.0388 |
61 | pseudoephedrine | 14.43 | C10H15NO | [M + H]+ | 166.1225 | 148.1119, 133.0887, 117.0701, 91.0546 |
62 | ephedrannin D4 | 14.44 | C30H24O14 | [M − H]− | 607.1089 | 563.1151, 487.1202, 413.0903, 267.0680 |
63 | puerarin 6″-O-xyloside | 14.61 | C26H28O13 | [M + H]+ | 549.1590 | 417.1175, 381.0964, 297.0753, 267.0648 |
[M − H]− | 547.1447 | 437.0846, 295.0609, 277.0504, 267.0661 | ||||
64 | chrysoeriol 7-O-neohesperidoside | 14.65 | C28H32O15 | [M + H]+ | 609.1803 | 447.1284, 429.1182, 327.0859, 285.0755 |
[M − H]− | 607.1663 | 547.1422, 487.1246, 295.0607, 267.0660 | ||||
* 65 | p-hydroxybenzoic acid | 14.70 | C7H6O3 | [M + H]+ | 139.0389 | 121.0286, 111.0443, 93.0339 |
* 66 | amygdalin | 14.72 | C20H27NO11 | [M + H]+ | 458.1647 | 355.1036, 213.0755, 163.0389, 107.0495 |
[M − H]− | 456.1505 | 382.6093, 323.0968, 256.1356, 161.0449 | ||||
67 | methyl caffeate | 14.83 | C10H10O4 | [M + H]+ | 195.0652 | 177.0544, 163.0388, 145.0283, 117.0336 |
68 | 3,4-dimethyl-5-phenyloxazolidine | 14.94 | C11H15NO | [M + H]+ | 178.1227 | 162.1274, 147.1040, 117.0700, 105.0702 |
69 | apigenin 5-rhamnoside | 15.01 | C21H20O9 | [M + H]+ | 417.1167 | 381.0964, 321.0743, 297.0753, 267.0647 |
[M − H]− | 415.1027 | 295.0608, 267.0661, 253.0509, 223.0762 | ||||
* 70 | puerarin | 15.02 | C21H20O9 | [M + H]+ | 417.1167 | 399.1072, 381.0956, 363.0844, 255.0646 |
[M − H]− | 415.1035 | 295.0608, 277.0507, 267.0661 | ||||
71 | mirificin | 15.04 | C26H28O13 | [M + H]+ | 549.1590 | 417.1168, 399.1069, 297.0754, 267.0648 |
[M − H]− | 547.1447 | 418.4808, 295.0609, 267.0660, 114.2369 | ||||
72 | tectorigenin 7-O-xylosylglucoside | 15.07 | C27H30O15 | [M + H]+ | 595.1641 | 379.0811, 325.0695, 216.0653, 121.0283 |
[M − H]− | 593.1510 | 495.0386, 473.1082, 310.0499, 282.0529 | ||||
73 | methylephedrine | 15.14 | C11H17NO | [M + H]+ | 180.1382 | 162.1275, 148.1076, 135.0804 |
74 | methylpseudoephedrine | 15.18 | C11H17NO | [M + H]+ | 180.1382 | 162.1275, 147.1042, 135.0803, 117.0700 |
75 | 7-O-ethylsweroside | 15.26 | C18H26O10 | [M − H]− | 401.1451 | 325.7480, 269.1024, 253.0505, 178.0263 |
76 | isoviolanthin | 15.47 | C27H30O14 | [M + H]+ | 579.1692 | 417.1190, 399.1072, 297.0753, 267.0649 |
[M − H]− | 577.1554 | 531.2839, 518.0385, 283.0610, 268.0376 | ||||
* 77 | 3′-methoxypuerarin | 15.53 | C22H22O10 | [M + H]+ | 447.1277 | 285.0751, 270.0516, 225.0542, 137.0232 |
[M − H]− | 445.1134 | 430.0887, 367.1027, 327.1080, 215.0089 | ||||
* 78 | glycitin | 15.54 | C22H22O10 | [M + H]+ | 447.1277 | 429.1190, 411.1062, 327.0855, 297.0754 |
[M − H]− | 445.1135 | 379.8243, 325.0714, 282.0530, 254.0597 | ||||
79 | benzyl alcohol | 15.67 | C7H8O | [M + H]+ | 109.0653 | 94.0148, 91.0546, 87.0045, 81.0704 |
80 | methyl,4-hydroxycinnamate | 15.68 | C10H10O3 | [M + H]+ | 179.0705 | 162.1276, 147.1041, 117.0700, 109.0651 |
81 | γ-octalactone | 15.94 | C8H14O2 | [M + H]+ | 143.1068 | 128.9508, 116.9721, 113.9639, 84.9603 |
82 | (6S-9R)-roseoside | 15.98 | C19H30O8 | [M + H]+ | 387.2004 | 369.1341, 297.0762, 267.0641, 151.0388 |
83 | syringin | 15.98 | C17H24O9 | [M + H]+ | 373.1480 | 308.0842, 292.1605, 237.3755, 151.0375 |
84 | 5,7-dihydroxyisobenzofuran | 15.99 | C8H6O4 | [M + H]+ | 167.0339 | 148.1120, 133.0885, 117.0700, 111.0442 |
85 | kingiside | 16.01 | C17H24O11 | [M − H]− | 403.1240 | 371.1025, 310.7592, 243.0664, 174.8555 |
* 86 | puerarin-7-O-glucoside | 16.04 | C27H30O14 | [M + H]+ | 579.1692 | 561.1633, 399.1074, 297.0753, 267.0647 |
87 | sweroside | 16.09 | C16H22O9 | [M + H]+ | 359.1333 | 297.8041, 265.6036, 197.0808, 127.0391 |
* 88 | caffeic acid | 16.29 | C9H8O4 | [M + H]+ | 181.0494 | 163.0388, 145.0284, 135.0441, 117.0337 |
[M − H]− | 179.0341 | 164.0098, 135.0440, 112.1822, 107.0492 | ||||
89 | ephedrannin D1 | 16.53 | C30H24O13 | [M + H]+ | 593.1279 | 576.3641, 447.1271, 327.0849, 297.0745 |
90 | 5-p-coumaroylquinic acid | 16.70 | C16H18O8 | [M + H]+ | 339.1071 | 266.4322, 245.8672, 147.0439, 119.0494 |
[M − H]− | 337.0930 | 191.0553, 163.0390, 119.0470, 93.0332 | ||||
91 | loniceracetalide A | 16.71 | C21H32O11 | [M − H]− | 459.1869 | / |
92 | piceatannol 3′-O-glucoside | 16.77 | C20H22O9 | [M − H]− | 405.1190 | 359.0753, 243.0659, 201.0549, 159.0440 |
93 | lonijaposide D | 16.82 | C26H32NO13 | [M − H]− | 565.1774 | 550.4224, 519.2438, 445.1137, 325.0718 |
94 | ephedralone | 16.90 | C11H9NO4 | [M + H]+ | 220.0602 | 192.0652, 164.0699, 151.4024, 119.0490 |
[M − H]− | 218.0452 | 174.0550, 159.0315, 144.0077, 131.0365 | ||||
95 | neochlorogenic acid methyl ester | 17.85 | C17H20O9 | [M + H]+ | 369.1173 | 191.9904, 177.0544, 145.0283, 117.0336 |
[M − H]− | 367.1029 | 255.0194, 191.0552, 173.0447, 134.0361 | ||||
96 | isoschaftoside | 17.86 | C26H28O14 | [M + H]+ | 565.1542 | 479.5669, 415.1016, 313.0699, 283.0596 |
[M − H]− | 563.1340 | 341.0680, 311.0559, 283.0609, 149.0235 | ||||
97 | 2,6-dihydroxyphenylacetic acid | 18.07 | C8H8O4 | [M + H]+ | 169.0498 | 151.0389, 146.9612, 128.9508, 123.0441 |
98 | schaftoside | 18.35 | C26H28O14 | [M + H]+ | 565.1542 | 520.6823, 433.1122, 313.0700, 283.0597 |
[M − H]− | 563.1340 | 529.1846, 341.0670, 311.0558, 283.0610 | ||||
* 99 | vanillic acid | 18.50 | C8H8O4 | [M + H]+ | 169.0498 | 151.0388, 146.9612, 128.9508, 123.0442 |
100 | flavoyadorinin B | 18.51 | C23H24O11 | [M + H]+ | 477.1379 | 327.1659, 279.0375, 204.5438, 145.0499 |
101 | ephedrannin D2 | 18.54 | C30H24O13 | [M − H]− | 591.1150 | 547.1453, 462.7491, 285.0408, 253.0507 |
* 102 | cinnamic acid | 18.59 | C9H8O2 | [M + H]+ | 149.0597 | 133.0885, 121.0648, 103.0548, 95.0497 |
103 | hydroxyphenylacetic acid | 18.65 | C8H8O3 | [M + H]+ | 153.0546 | 135.1167, 112.0395, 90.9481, 72.9378 |
104 | 3-O-caffeoylshikimic acid | 18.81 | C16H16O8 | [M + H]+ | 337.0910 | 181.0494, 163.0388, 145.0283, 95.0495 |
[M − H]− | 335.0771 | 269.1091, 179.0345, 161.0233, 133.0282 | ||||
105 | leucopelargonidin | 18.82 | C15H14O6 | [M + H]+ | 291.0857 | 273.0753, 207.0647, 147.0440, 139.0389 |
[M − H]− | 289.0714 | 245.0818, 203.0705, 151.0392, 123.0441 | ||||
106 | licuraside | 19.43 | C26H30O13 | [M − H]− | 549.1609 | 502.1001, 429.1062, 255.0660, 119.0490 |
107 | genistein 7-O-glucoside | 20.25 | C21H20O10 | [M + H]+ | 433.1120 | 271.0595, 215.0700, 137.0231 |
* 108 | liquiritin apioside | 20.29 | C26H30O13 | [M − H]− | 549.1609 | 482.5059, 297.0778, 255.0660, 135.0076 |
109 | isoliquiritin apioside | 20.34 | C26H30O13 | [M − H]− | 549.1609 | 488.6683, 429.1148, 255.0659, 135.0076 |
* 110 | liquiritin | 20.38 | C21H22O9 | [M − H]− | 417.1186 | 402.1664, 373.0210, 255.0662, 119.0490 |
111 | secologanin dimethyl acetal | 20.39 | C19H30O11 | [M − H]− | 433.1706 | / |
112 | 3-methoxyphenol | 20.50 | C7H8O2 | [M + H]+ | 125.0599 | 102.9706, 97.0287, 84.9602 |
113 | piceid gallate A | 20.63 | C27H26O13 | [M − H]− | 557.1293 | / |
* 114 | polydatin | 20.92 | C20H22O8 | [M − H]− | 389.1236 | 227.0707, 185.0598, 159.0808, 143.0491 |
115 | lonicerin | 21.02 | C27H30O15 | [M + H]+ | 595.1641 | 433.1108, 313.0717, 271.0596, 215.0697 |
[M − H]− | 593.1510 | 430.4479, 329.5679, 285.0396, 227.0705 | ||||
116 | isoliquiritin | 21.24 | C21H22O9 | [M − H]− | 417.1186 | 255.0660, 153.0182, 135.0075, 119.0489 |
* 117 | quercetin 3-glucoside | 21.69 | C21H20O12 | [M − H]− | 463.0880 | 300.0272, 271.0247, 255.0296, 151.0027 |
118 | kaempferol 7-O-glucopyranoside | 21.69 | C21H20O11 | [M + H]+ | 449.1072 | 330.0535, 287.0545, 203.4280, 153.0181 |
[M − H]− | 447.0931 | 410.9457, 325.0732, 285.0397, 256.0383 | ||||
119 | neoisoliquiritin | 22.95 | C21H22O9 | [M − H]− | 417.1186 | 374.0878, 255.0660, 153.0183, 135.0076 |
* 120 | coumarin | 23.54 | C9H6O2 | [M + H]+ | 147.0442 | 131.9743, 119.0493, 113.9640 |
* 121 | daidzein | 23.56 | C15H10O4 | [M − H]− | 253.0502 | 224.0468, 209.0598, 197.0602, 135.0076 |
122 | rhoifolin | 23.76 | C27H30O14 | [M + H]+ | 579.1692 | 515.2410, 429.1205, 327.0858, 297.0754 |
* 123 | isochlorogenic acid A | 23.89 | C25H24O12 | [M − H]− | 515.1185 | 353.0883, 335.0772, 173.0445, 135.0440 |
124 | reynoutrin | 24.65 | C20H18O11 | [M − H]− | 433.0771 | / |
125 | avicularin | 25.43 | C20H18O11 | [M − H]− | 433.0771 | / |
* 126 | resveratroloside | 25.46 | C20H22O8 | [M + H]+ | 391.1375 | 229.0856, 211.0759, 135.0440, 107.0495 |
127 | liquiritigenin 7,4′-diglucoside | 25.61 | C27H32O14 | [M + H]+ | 581.1848 | 538.0963, 431.0979, 311.0434, 287.0430 |
128 | centauroside | 25.64 | C34H46O19 | [M − H]− | 757.2545 | 679.1150, 525.1623, 458.1185, 254.0573 |
129 | 3,4-dicaffeoylquinic acid | 25.75 | C25H24O12 | [M − H]− | 515.1185 | 437.3583, 353.0874, 191.0552, 135.0440 |
130 | herniarin | 26.18 | C10H8O3 | [M + H]+ | 177.0546 | 149.0597, 145.0283, 117.0336, 89.0390 |
131 | catechin-5-O-β-D-glucopyranoside | 26.54 | C21H24O11 | [M − H]− | 451.1243 | 313.0739, 289.0719, 191.0340, 167.0340 |
132 | vanillin | 26.58 | C8H8O3 | [M + H]+ | 153.0546 | 131.9743, 125.0597, 111.0443, 93.0338 |
133 | 4,7-dihydroxyflavone 7-D-glucoside | 26.84 | C21H20O9 | [M + H]+ | 417.1167 | 338.5892, 255.0647, 227.0695, 199.0747 |
134 | methyl chlorogenate | 27.00 | C17H20O9 | [M + H]+ | 369.1173 | 313.0666, 285.0745, 207.0644, 161.0596 |
135 | ketologanin | 27.07 | C17H24O10 | [M + H]+ | 389.1433 | 371.1681, 324.1584, 225.0426, 151.0388 |
136 | naringin | 27.96 | C27H32O14 | [M + H]+ | 581.1848 | 449.1047, 431.0979, 329.0610, 311.0434 |
137 | (E)-aldosecologanin | 28.10 | C34H46O19 | [M − H]− | 757.2545 | 679.1150, 595.2075, 525.1623, 458.1185 |
138 | dihydrocaffeic acid | 28.25 | C9H10O4 | [M + H]+ | 183.0649 | 165.0545, 151.0389, 123.0441, 113.9639 |
139 | p-coumaric acid | 28.25 | C9H8O3 | [M + H]+ | 165.0544 | 137.0597, 133.0283, 109.0650, 79.0547 |
140 | secoxyloganin | 28.25 | C17H24O11 | [M + H]+ | 405.1379 | 373.2119, 309.2449, 165.0545, 151.0389 |
141 | benzoic acid | 28.26 | C7H6O2 | [M + H]+ | 123.0441 | 105.0450, 95.0495, 67.0549 |
142 | 1,5-dicaffeoylquinic acid | 28.63 | C25H24O12 | [M − H]− | 515.1185 | 454.9042, 353.0873, 191.0552, 173.0446 |
143 | vogeloside | 28.65 | C17H24O10 | [M + H]+ | 389.1433 | 233.2362, 195.0655, 151.0389, 107.0495 |
144 | 3-O-caffeoylquinic acid methyl ester | 28.94 | C17H20O9 | [M + H]+ | 369.1173 | 207.0649, 177.0546, 148.0514, 107.0857 |
145 | quercitrin | 30.05 | C21H20O11 | [M + H]+ | 449.1072 | 330.0535, 287.0545, 269.0448, 153.0181 |
[M − H]− | 447.0931 | 403.1030, 241.0501, 197.0599, 174.9555 | ||||
146 | 4-feruloylquinic acid | 30.26 | C17H20O9 | [M + H]+ | 369.1173 | 239.4636, 207.0649, 177.0539, 148.0516 |
* 147 | naringenin | 31.32 | C15H12O5 | [M − H]− | 271.0609 | 230.0589, 177.0189, 151.0026, 119.0490 |
148 | kuzubutenolide A | 31.41 | C23H24O10 | [M + H]+ | 461.1433 | 299.0909, 253.0853, 193.0497, 107.0494 |
149 | pueroside A | 31.42 | C29H34O14 | [M + H]+ | 607.2010 | 461.1439, 376.1363, 299.0908, 107.0494 |
150 | epicatechingallate | 31.75 | C22H18O10 | [M + H]+ | 443.0962 | 390.0869, 291.0855, 273.0755, 123.0441 |
151 | garbanzol | 31.76 | C15H12O5 | [M + H]+ | 273.0752 | 242.4491, 189.0543, 153.0180, 123.0441 |
152 | chrysoeriol 7-O-glucopyranoside | 31.80 | C22H22O11 | [M + H]+ | 463.1220 | 445.1107, 427.1008, 343.0803, 313.0704 |
153 | sophoraside A | 31.92 | C24H26O10 | [M + H]+ | 475.1587 | 313.1061, 267.1010, 253.0853, 107.0494 |
[M − H]− | 473.1447 | 377.9086, 311.0924, 267.1024, 252.0786 | ||||
154 | vitexin | 32.25 | C21H20O10 | [M + H]+ | 433.1120 | 415.1018, 397.0909, 313.0698, 283.0597 |
[M − H]− | 431.0975 | 269.0453, 240.0423, 225.0551, 193.4129 | ||||
155 | 5-O-coumaroylcaffeoylquinic acid | 32.38 | C25H24O11 | [M + H]+ | 501.1379 | 483.1254, 320.0835, 255.0652, 163.0388 |
[M − H]− | 499.1244 | 431.0978, 291.0275, 269.0454, 240.0423 | ||||
* 156 | resveratrol | 32.64 | C14H12O3 | [M + H]+ | 229.0856 | 211.0747, 183.0808, 135.0441, 107.0494 |
* 157 | ferulic acid | 32.90 | C10H10O4 | [M + H]+ | 195.0652 | 177.0544, 163.0389, 138.0661, 107.0494 |
[M − H]− | 193.0498 | 165.0005, 134.0361, 126.9024, 102.9472 | ||||
* 158 | isoferulic acid | 32.91 | C10H10O4 | [M + H]+ | 195.0652 | 177.0544, 163.0388, 149.0596, 109.0287 |
[M − H]− | 193.0498 | 161.0233, 149.0236, 134.0363, 121.0281 | ||||
159 | kudzusaponin A1 | 34.62 | C52H84O23 | [M − H]− | 1075.5314 | 1029.5265, 763.3842, 603.3890, 485.3619 |
160 | hyperoside | 35.15 | C21H20O12 | [M + H]+ | 465.1023 | 447.1085, 303.0492, 286.0449, 257.0425 |
161 | polygalin A | 35.16 | C23H24O11 | [M + H]+ | 477.1379 | 355.1165, 315.0853, 271.0960, 229.0856 |
[M − H]− | 475.1241 | 267.0660, 252.0424, 201.9968, 132.0607 | ||||
162 | 7-hydroxy-4-methoxy-5-methylcoumarin | 35.24 | C11H10O4 | [M + H]+ | 207.0650 | 189.0544, 161.0599, 150.0261, 123.0807 |
163 | glycitin-6″-O-xylosyl | 36.12 | C27H30O14 | [M + H]+ | 579.1692 | 433.1124, 337.0699, 313.0699, 283.0596 |
164 | cuspidatumin A | 36.14 | C14H12O4 | [M + H]+ | 245.0805 | 229.0854, 161.0122, 121.0286, 98.9757 |
[M − H]− | 243.0661 | 225.1119, 207.1026, 174.9554, 146.9600 | ||||
165 | 3,5-dicaffeoylquinic acid methyl ester | 36.23 | C26H26O12 | [M + H]+ | 531.1486 | 513.1385, 369.1514, 283.0595, 163.0388 |
* 166 | rutin | 36.27 | C27H30O16 | [M + H]+ | 611.1602 | 465.1010, 303.0493, 257.0441, 229.0495 |
* 167 | taxifolin | 36.27 | C15H12O7 | [M + H]+ | 305.0653 | 287.1236, 269.1125, 227.1023, 191.0814 |
168 | pueroside B | 36.31 | C30H36O15 | [M + H]+ | 637.2119 | 475.1591, 313.1064, 267.1011, 107.0494 |
169 | pueroside C | 36.31 | C24H26O10 | [M + H]+ | 475.1587 | 457.3117, 313.1034, 249.1549, 107.0486 |
170 | macranthoidin B | 36.35 | C65H106O32 | [M + H]+ | 1399.6711 | 1075.5695, 943.5251, 795.2725, 633.2202 |
[M − H]− | 1397.6552 | 1073.5525, 911.5010, 749.4481, 603.3898 | ||||
171 | kudzusaponin SA2 | 36.39 | C47H76O19 | [M + H]+ | 945.5027 | 848.4162, 763.4678, 679.2439, 421.3453 |
172 | macranthoidin A | 36.40 | C59H96O27 | [M + H]+ | 1237.6183 | 1076.5618, 943.5206, 751.4630, 603.2128 |
[M − H]− | 1235.6036 | 1189.5997, 1073.5534, 911.5006, 749.4482 | ||||
173 | kudzusaponin SA4 | 36.40 | C47H74O20 | [M + H]+ | 959.4806 | 892.2470, 764.6243, 615.3878, 421.3457 |
174 | saponin 1 | 36.43 | C58H94O26 | [M + H]+ | 1207.6077 | 1075.5693, 913.5162, 751.4610, 603.2120 |
[M − H]− | 1205.5934 | 881.4901, 749.4479, 603.3898, 471.3479 | ||||
175 | 24-hydroxy-licorice-saponin A3 | 36.45 | C48H72O22 | [M + H]+ | 1001.4559 | 825.4282, 763.0059, 631.3789, 469.3288 |
176 | 3,4-O-dicaffeoylquinic acid methyl ester | 36.46 | C26H26O12 | [M + H]+ | 531.1486 | 319.0808, 271.0598, 177.0545, 163.0388 |
[M − H]− | 529.1344 | 443.6241, 367.1035, 191.0554, 135.1440 | ||||
177 | isoquercetin | 36.47 | C21H20O12 | [M + H]+ | 465.1023 | 303.0494, 257.0439, 229.0495, 153.0182 |
178 | soyasaponin A3 | 36.48 | C48H78O19 | [M + H]+ | 959.5183 | 813.4605, 439.3565, 141.0181, 85.0289 |
[M − H]− | 957.5065 | 911.5010, 749.4482, 587.3950, 471.3475 | ||||
179 | dipsacoside B | 36.49 | C53H86O22 | [M − H]− | 1073.5519 | 912.0020, 749.4480, 585.3804, 471.3478 |
180 | kudzusaponin B1 | 36.52 | C48H76O21 | [M + H]+ | 989.4921 | 843.4330, 681.3870, 469.3314, 141.0181 |
[M − H]− | 987.4794 | 926.4868, 763.7924, 661.3583, 503.3387 | ||||
181 | saponin 4 | 36.55 | C58H94O27 | [M − 2H]2− | 610.2908 | / |
182 | licoricesaponin A3 | 36.57 | C48H72O21 | [M + H]+ | 985.4612 | 809.4323, 615.3887, 453.3356, 189.1634 |
[M − H]− | 983.4483 | 943.1790, 821.3969, 645.3637, 351.0566 | ||||
183 | neoliquiritin | 36.58 | C21H22O9 | [M + H]+ | 419.1326 | 315.0854, 257.0803, 217.0483, 124.0392 |
184 | 6″-O-malonyldaidzin | 36.58 | C24H22O12 | [M + H]+ | 503.1170 | 480.9303, 392.3837, 255.0647, 199.0751 |
185 | (2E)-1-(2,3-dihydroxy-4-methoxyphenyl)-3-(4-hydroxyphenyl)-2-propen--one | 36.58 | C16H14O5 | [M + H]+ | 287.0908 | 245.0804, 207.0649, 193.0492, 121.0285 |
[M − H]− | 285.0765 | 270.0532, 177.0185, 150.0311, 108.0206 | ||||
186 | loniceroside D | 36.59 | C53H86O23 | [M + H]+ | 1091.5607 | 1033.7538, 945.5055, 783.4556, 421.3455 |
[M − H]− | 1089.5470 | 1071.5394, 943.4768, 882.4898, 763.4315 | ||||
187 | akebiasaponin D | 36.60 | C47H76O18 | [M + H]+ | 929.5079 | 767.4589, 635.4064, 437.3408, 189.1637 |
188 | kudzusaponin A2 | 36.61 | C42H68O16 | [M + H]+ | 829.4560 | 764.7684, 649.3955, 455.3521, 269.0806 |
[M − H]− | 827.4425 | 763.3452, 677.4987, 516.0891, 333.8636 | ||||
189 | isorhamnetin 3-O-glucopyranoside | 36.62 | C22H22O12 | [M + H]+ | 479.1170 | 397.5868, 317.0649, 274.0458, 120.0809 |
* 190 | astragalin | 36.62 | C21H20O11 | [M + H]+ | 449.1072 | 409.0180, 346.9581, 287.0544, 252.9790 |
[M − H]− | 447.0931 | 316.5085, 284.0322, 255.0294, 227.0343 | ||||
191 | 7,4′-dihydroxyflavone | 36.63 | C15H10O4 | [M + H]+ | 255.0645 | 227.0696, 199.0752, 137.0234, 91.0546 |
[M − H]− | 253.0502 | 224.0470, 208.0522, 135.0076, 91.0174 | ||||
192 | isorhamentin 3-O-rutinoside | 36.66 | C28H32O16 | [M + H]+ | 625.1743 | 479.1161, 317.0652, 302.0414, 85.0289 |
[M − H]− | 623.1613 | 527.7530, 415.1031, 252.0425, 223.0404 | ||||
* 193 | 4′-methoxypuerarin | 36.67 | C22H22O9 | [M + H]+ | 431.1326 | 395.1120, 365.1009, 311.0910, 271.0595 |
194 | 4,5-O-dicaffeoylquinic acid methyl ester | 36.67 | C26H26O12 | [M − H]− | 529.1344 | 483.1268, 463.2749, 367.1032, 253.0501 |
195 | quercetin 3-O-arabinoside | 36.67 | C20H18O11 | [M + H]+ | 435.0917 | 303.0501, 271.0596, 153.0180, 121.0280 |
196 | loniceroside A | 36.69 | C52H84O21 | [M − H]− | 1043.5422 | 1025.5223, 763.3167, 709.8038, 532.3125 |
* 197 | rhein | 36.71 | C15H8O6 | [M + H]+ | 285.0392 | 269.0440, 257.0428, 151.0385, 121.0283 |
[M − H]− | 283.0246 | 268.0373, 217.0500, 175.0391, 133.0284 | ||||
198 | 3,4,5-tricaffeoylquinic acid | 36.72 | C34H30O15 | [M + H]+ | 679.1633 | 499.1226, 322.2479, 163.0387, 135.0440 |
[M − H]− | 677.1511 | 515.1179, 353.0875, 173.0446, 135.0440 | ||||
199 | choerospondin | 36.74 | C21H22O10 | [M + H]+ | 435.1296 | 303.0501, 271.0596, 231.0647, 153.0180 |
200 | 4,5-dicaffeoylquinic acid | 36.75 | C25H24O12 | [M + H]+ | 517.1326 | 499.1223, 453.8935, 269.0803, 163.0387 |
201 | pollenitin B | 36.76 | C22H22O12 | [M + H]+ | 479.1170 | 412.8673, 317.0651, 302.0415, 274.0472 |
202 | medicarpin3-O-glucoside | 36.77 | C22H24O9 | [M + H]+ | 433.1482 | 312.0939, 271.0596, 214.2812, 153.0182 |
203 | lonfuranacid A | 36.77 | C12H20O5 | [M + H]+ | 245.1377 | 229.0853, 189.1119, 125.0962, 97.1015 |
204 | questin | 36.78 | C16H12O5 | [M + H]+ | 285.0751 | 270.0518, 253.0490, 242.0574, 153.0179 |
205 | Tricin 7-O-glucoside | 36.78 | C23H24O12 | [M + H]+ | 493.1326 | 331.0807, 315.0493, 287.0537, 270.0518 |
206 | tectoridin | 36.79 | C22H22O11 | [M + H]+ | 463.1220 | 301.0700, 286.0467, 258.0517, 153.0181 |
* 207 | liquiritigenin | 36.80 | C15H12O4 | [M + H]+ | 257.0805 | 239.0705, 211.0756, 147.0439, 137.0232 |
[M − H]− | 255.0660 | 209.0605, 153.0183, 135.0077, 119.0490 | ||||
208 | subproside V | 36.80 | C54H88O24 | [M − H]− | 1119.5575 | 1073.5519, 911.5007, 749.4478, 603.3897 |
209 | loniceroside E | 36.81 | C53H86O21 | [M − H]− | 1057.5570 | 1039.5623, 849.4960, 763.3219, 413.0908 |
210 | kudzusaponin A5 | 36.82 | C48H78O20 | [M + H]+ | 975.5131 | 829.4545, 764.4423, 667.4020, 455.3510 |
211 | torachrysone | 36.82 | C14H14O4 | [M + H]+ | 247.0960 | 229.0856, 214.0621, 201.0907, 198.0673 |
[M − H]− | 245.0812 | 230.0579, 215.0343, 202.0625, 159.0440 | ||||
212 | macranthoside B | 36.83 | C53H86O22 | [M + H]+ | 1075.5658 | 943.5235, 781.4703, 619.4197, 437.3409 |
213 | glycyroside | 36.83 | C27H30O13 | [M + H]+ | 563.1743 | 431.1331, 413.1223, 311.0907, 281.0803 |
[M − H]− | 561.1608 | 523.2799, 339.0867, 309.0767, 266.0582 | ||||
214 | ohyscion | 36.84 | C16H12O5 | [M + H]+ | 285.0751 | 270.0518, 242.0567, 189.4096, 113.0597 |
[M − H]− | 283.0609 | 268.0375, 240.0419, 211.0391, 184.0518 | ||||
215 | afzelin | 36.88 | C21H20O10 | [M + H]+ | 433.1120 | 418.8996, 271.0596, 243.0644, 215.0699 |
[M − H]− | 431.0975 | 269.0454, 240.0424, 225.0552, 152.9942 | ||||
216 | kudzusaponin SA3 | 36.89 | C53H86O23 | [M + H]+ | 1091.5607 | 929.5117, 767.4597, 635.4111, 437.3414 |
[M − H]− | 1089.5470 | 1043.5427, 881.4904, 749.4480, 603.3900 | ||||
217 | 22β-acetoxyglycyrrhizin | 36.91 | C44H64O18 | [M + H]+ | 881.4143 | 705.3826, 511.3415, 451.3196, 107.0859 |
218 | kudzusaponin C1 | 36.93 | C54H88O23 | [M + H]+ | 1105.5767 | 959.5132, 797.498, 603.4246, 423.3591 |
219 | questinol | 36.94 | C16H12O6 | [M + H]+ | 301.0701 | 286.0460, 269.0439, 167.0338, 134.0362 |
220 | 3′-methoxydaidzin | 36.96 | C22H22O10 | [M + H]+ | 447.1277 | 384.1155, 327.0859, 285.0752, 229.0857 |
221 | loniceroside B | 36.96 | C58H94O25 | [M + H]+ | 1191.6127 | 817.3367, 763.4253, 619.4137, 437.3397 |
222 | citreorosein | 36.97 | C15H10O6 | [M + H]+ | 287.0542 | 271.0596, 269.0443, 259.0960, 217.0491 |
[M − H]− | 285.0402 | 268.0367, 257.0461, 196.0532, 133.0284 | ||||
223 | herbacetin | 37.01 | C15H10O7 | [M + H]+ | 303.0492 | 286.0430, 257.0442, 229.0497, 153.0181 |
[M − H]− | 301.0351 | 284.0315, 273.0407, 178.9976, 151.0026 | ||||
224 | betulonic acid | 37.02 | C30H46O3 | [M + H]+ | 455.3507 | 409.3467, 388.4104, 203.1793, 189.1635 |
225 | kudzusaponin A3 | 37.05 | C48H78O20 | [M + H]+ | 975.5131 | 829.4545, 667.4020, 455.3510, 141.0181 |
* 226 | ononin | 37.08 | C22H22O9 | [M + H]+ | 431.1326 | 269.0805, 254.0569, 213.0910, 107.0494 |
227 | kaempferol 3-O-rutinoside | 37.11 | C27H30O15 | [M + H]+ | 595.1641 | 525.0455, 433.1108, 287.0544, 271.0596 |
228 | isobavachalcone | 37.11 | C20H20O4 | [M + H]+ | 325.1429 | 309.0781, 285.0754, 189.0906, 95.0163 |
229 | liqcoumarin | 37.18 | C12H10O4 | [M + H]+ | 219.0648 | 201.0910, 174.0674, 133.1012, 105.0702 |
230 | isokaempferide | 37.19 | C16H12O6 | [M + H]+ | 301.0701 | 283.0596, 255.0636, 227.0698, 123.1169 |
231 | uralsaponin F | 37.21 | C44H64O19 | [M + H]+ | 897.4094 | 763.6343, 679.2714, 527.3329, 334.7203 |
232 | daidzein 4′,7-diglucoside | 37.25 | C27H30O14 | [M + H]+ | 579.1692 | 503.0054, 447.1283, 285.0753, 229.0858 |
233 | liquoric acid | 37.26 | C30H44O5 | [M + H]+ | 485.3245 | 323.1276, 255.0648, 199.0751, 163.0385 |
234 | isoorientin | 37.27 | C21H20O11 | [M + H]+ | 449.1072 | 330.0535, 287.0545, 153.0181, 135.0439 |
235 | isorhodoptilometrin | 37.31 | C17H14O6 | [M + H]+ | 315.0856 | 300.0623, 272.0670, 153.0185, 95.0858 |
[M − H]− | 313.0715 | 298.0479, 270.0529, 227.0343, 183.0454 | ||||
236 | chrysophanol | 37.34 | C15H10O4 | [M + H]+ | 255.0645 | 237.0549, 227.0692, 199.0751, 187.0725 |
237 | licoricesaponin G2 | 37.34 | C42H62O17 | [M + H]+ | 839.4040 | 663.3734, 487.3410, 469.3306, 141.0181 |
[M − H]− | 837.3906 | 763.7259, 724.4032, 351.0571, 193.0345 | ||||
238 | kudzusaponin SA1 | 37.35 | C42H68O15 | [M + H]+ | 813.4611 | 764.7317, 439.3548, 141.0181, 95.0860 |
[M − H]− | 811.4482 | 765.4406, 603.3923, 432.7037, 283.0584 | ||||
239 | 1,4-dicaffeoylquinic acid | 37.38 | C25H24O12 | [M + H]+ | 517.1326 | 460.9336, 414.0990, 269.0804, 213.0906 |
240 | ethyl caffeate | 37.38 | C11H12O4 | [M + H]+ | 209.0806 | 163.0388, 145.1011, 135.0441, 117.0337 |
[M − H]− | 207.0654 | 179.0341, 161.0233, 135.0441, 121.0284 | ||||
241 | apigenin 7-glucoside | 37.41 | C21H20O10 | [M + H]+ | 433.1120 | 379.0797, 337.0701, 313.0699, 271.0596 |
[M − H]− | 431.0975 | 311.0562, 269.0453, 225.0554, 152.9949 | ||||
* 242 | daidzin | 37.42 | C21H20O9 | [M + H]+ | 417.1167 | 387.2100, 297.0747, 255.0648, 199.0753 |
243 | 2,5-dimethyl-7-hydroxychromenone | 37.46 | C11H10O3 | [M + H]+ | 191.0699 | 151.0387, 131.0856, 107.0861, 95.0860 |
244 | prunetin | 37.46 | C16H12O5 | [M + H]+ | 285.0751 | 253.0489, 242.0572, 211.0750, 151.0390 |
[M − H]− | 283.0609 | 268.0380, 240.0423, 197.0600, 168.0650 | ||||
245 | glabrolide | 37.47 | C30H44O4 | [M + H]+ | 469.3298 | 233.1540, 175.1479, 135.1167, 107.0858 |
246 | pinocembrin | 37.53 | C15H12O4 | [M + H]+ | 257.0805 | 239.0701, 229.0850, 211.0752, 147.0440 |
247 | polygonin B | 37.54 | C26H26O13 | [M + H]+ | 547.1430 | 299.0909, 284.0674, 239.0702, 163.0385 |
* 248 | glycyrrhizic acid | 37.56 | C42H62O16 | [M + H]+ | 823.4086 | 647.3788, 471.3457, 453.3356 |
[M − H]− | 821.3959 | 763.8063, 469.3315, 351.0569, 193.0347 | ||||
249 | echinatin | 37.56 | C16H14O4 | [M + H]+ | 271.0960 | 254.2115, 147.0438, 137.0596, 123.0441 |
[M − H]− | 269.0816 | 251.0708, 225.0552, 151.0030, 119.0490 | ||||
250 | hesperetin | 37.62 | C16H14O6 | [M + H]+ | 303.0853 | 258.0517, 153.0183, 106.0866, 88.0762 |
[M − H]− | 301.0714 | 273.0774, 255.0296, 230.0580, 183.0447 | ||||
251 | (S)-naringenin | 37.62 | C15H12O5 | [M + H]+ | 273.0752 | 189.0543, 153.0180, 123.0441 |
252 | puerol B | 37.64 | C18H16O5 | [M + H]+ | 313.1063 | 267.1011, 253.0854, 107.0495 |
[M − H]− | 311.0922 | 296.0689, 267.1026, 252.0789, 161.0233 | ||||
253 | coumestrol | 37.72 | C15H8O5 | [M + H]+ | 269.0437 | 254.0572, 241.0492, 213.0543, 185.0595 |
[M − H]− | 267.0297 | 251.0709, 225.0550, 181.0649, 151.0026 | ||||
254 | polygonin A | 37.73 | C25H24O13 | [M + H]+ | 533.1273 | 488.1885, 360.1438, 285.0753, 270.0517 |
[M − H]− | 531.1141 | 341.9318, 253.0502, 229.0135, 191.0555 | ||||
255 | tricin | 37.73 | C17H14O7 | [M + H]+ | 331.0804 | 315.0492, 302.0406, 270.0519, 73.0291 |
[M − H]− | 329.0664 | 271.0247, 211.1332, 171.1017 | ||||
256 | neobavaisoflavone | 37.76 | C20H18O4 | [M + H]+ | 323.1272 | 308.0663, 267.0647, 255.0648, 239.0698 |
257 | biochanin | 37.76 | C16H12O5 | [M + H]+ | 285.0751 | 270.0516, 253.0491, 225.0540, 137.0233 |
[M − H]− | 283.0609 | 268.0377, 240.0423, 224.0474, 135.0075 | ||||
258 | gancaonin V | 37.76 | C19H20O4 | [M + H]+ | 313.1425 | 281.1162, 244.0359, 153.0181 |
[M − H]− | 311.1285 | 296.0687, 267.1025, 252.0789, 161.0232 | ||||
259 | 6,7-dimethoxycoumarin | 37.76 | C11H10O4 | [M + H]+ | 207.0650 | 189.1636, 175.0388, 148.0517, 91.0547 |
260 | puerol A | 37.78 | C17H14O5 | [M + H]+ | 299.0908 | 284.0674, 256.0726, 239.0698, 95.0163 |
[M − H]− | 297.0764 | 281.0457, 256.0376, 239.0346, 151.0025 | ||||
261 | biapigenin | 37.78 | C30H18O10 | [M + H]+ | 539.0958 | 522.9716, 387.0856, 286.0465, 184.0731 |
[M − H]− | 537.0822 | 521.0623, 417.0622, 375.0506, 331.0608 | ||||
262 | 2-methoxy-6-acetyl-7-methyljuglone | 37.79 | C14H12O5 | [M + H]+ | 261.0754 | 243.0648, 215.0699, 200.0466, 187.0754 |
[M − H]− | 259.0608 | 243.1414, 231.0657, 216.0422, 188.0471 | ||||
263 | kudzusaponin SB1 | 37.79 | C53H86O22 | [M + H]+ | 1075.5658 | 943.5235, 751.4603, 437.3405, 189.1636 |
[M − H]− | 1073.5519 | 911.5006, 749.4489, 603.3903, 471.3480 | ||||
264 | diosmetin | 37.81 | C16H12O6 | [M + H]+ | 301.0701 | 286.0468, 258.0523, 241.0491, 88.0762 |
[M − H]− | 299.0557 | 284.0325, 256.0372, 227.0344, 151.0030 | ||||
265 | (-)-epiafzelechin | 37.82 | C15H14O5 | [M + H]+ | 275.0906 | 257.0795, 217.0492, 189.0544, 107.0495 |
[M − H]− | 273.0766 | 258.0532, 230.0579, 215.0343, 135.0076 | ||||
266 | licoricesaponin E2 | 37.85 | C42H60O16 | [M + H]+ | 821.3938 | 764.7926, 451.3198, 173.1327, 121.1012 |
267 | methyl glycyrrhizate | 37.86 | C43H64O16 | [M + H]+ | 837.4255 | 764.7705, 663.3716, 469.3308, 141.0181 |
268 | licoisoflavanone | 37.88 | C20H18O6 | [M + H]+ | 355.1169 | 337.1062, 299.0546, 179.0337, 123.0441 |
[M − H]− | 353.1027 | 335.0921, 312.0276, 217.0863, 189.0913 | ||||
269 | 3-methoxyherbacetin | 37.89 | C16H12O7 | [M + H]+ | 317.0647 | 302.0411, 237.0383, 153.0181, 127.0391 |
[M − H]− | 315.0506 | 300.0272, 272.0323, 188.0482, 112.9845 | ||||
270 | erybacin B | 37.89 | C19H18O5 | [M + H]+ | 327.1222 | 271.0597, 117.0367, 95.0163, 77.0059 |
[M − H]− | 325.1076 | 309.2072, 297.0051, 197.1174, 171.1016 | ||||
271 | soyasaponin I | 37.91 | C48H78O18 | [M + H]+ | 943.5241 | 797.4680, 764.6400, 423.3611, 85.0289 |
[M − H]− | 941.5101 | 912.5775, 763.8070, 615.3933, 438.3518 | ||||
272 | licoricesaponin B2 | 37.93 | C42H64O15 | [M + H]+ | 809.4296 | 633.3988, 439.3564, 285.2223, 107.0859 |
[M − H]− | 807.4168 | 763.8304, 520.9705, 351.0565, 193.0345 | ||||
273 | ephedrannin B | 37.94 | C30H20O10 | [M + H]+ | 541.1106 | 415.0806, 389.1013, 171.0287, 153.0181 |
[M − H]− | 539.0981 | 521.2609, 507.2097, 396.8802, 266.9637 | ||||
274 | medicarpin | 37.97 | C16H14O4 | [M + H]+ | 271.0960 | 253.0497, 229.0855, 197.0594, 121.0285 |
* 275 | kaempferol | 37.99 | C15H10O6 | [M + H]+ | 287.0542 | 271.0556, 254.0524, 226.0577, 153.0181 |
[M − H]− | 285.0402 | 268.0364, 257.0451, 241.0497, 211.0396 | ||||
276 | glyasperin D | 38.04 | C22H26O5 | [M + H]+ | 371.1844 | 315.1218, 303.1219, 167.0701, 123.0441 |
277 | isoliquiritigenin | 38.09 | C15H12O4 | [M + H]+ | 257.0805 | 239.0698, 211.0755, 147.0440, 137.0232 |
[M − H]− | 255.0660 | 153.0182, 135.0077, 119.0489, 91.0175 | ||||
278 | 3′-hydroxydaidzein | 38.10 | C15H10O5 | [M + H]+ | 271.0594 | 253.0492, 243.0647, 215.0702, 153.0180 |
279 | kaikasaponin III | 38.15 | C48H78O17 | [M + H]+ | 927.5280 | 767.4596, 635.4124, 437.3406, 203.1794 |
280 | 3,4,3′,4′-tetrahydroxychalcone | 38.16 | C15H12O5 | [M + H]+ | 273.0752 | 245.0811, 171.0285, 153.0181, 123.0442 |
281 | araboglycyrrhizin | 38.21 | C41H62O14 | [M + H]+ | 779.4183 | / |
282 | macranthoside A | 38.22 | C47H76O17 | [M + H]+ | 913.5130 | 781.4694, 617.4044, 423.3610, 141.0180 |
[M − H]− | 911.5004 | 749.4489, 603.3895, 471.3479, 423.3271 | ||||
283 | hydnocarpin | 38.23 | C25H20O9 | [M + H]+ | 465.1173 | 447.1065, 286.0468, 257.0440, 147.0438 |
[M − H]− | 463.1033 | 447.2420, 285.0402, 255.0293, 208.9755 | ||||
284 | puerariafuran | 38.24 | C16H12O5 | [M + H]+ | 285.0751 | 270.0512, 253.0493, 242.0569, 211.0754 |
285 | vestitol | 38.29 | C16H16O4 | [M + H]+ | 273.1118 | 255.1017, 227.1794, 137.0233, 121.0285 |
286 | homobutein | 38.31 | C16H14O5 | [M + H]+ | 287.0908 | 269.0440, 241.0491, 185.0592, 151.0389 |
287 | glycycoumarin | 38.34 | C21H20O6 | [M + H]+ | 369.1324 | 351.1228, 297.0746, 193.0494, 165.0545 |
288 | licoricesaponin J2 | 38.34 | C42H64O16 | [M + H]+ | 825.4243 | 764.8267, 455.3507, 189.1634, 141.0181 |
[M − H]− | 823.4119 | 763.2627, 473.1696, 351.0565, 193.0342 | ||||
289 | licoricesaponin C2 | 38.35 | C42H62O15 | [M + H]+ | 807.4139 | 764.8302, 678.4443, 631.3784, 437.3406 |
[M − H]− | 805.4016 | 763.3167, 453.3408, 351.0559, 193.0349 | ||||
290 | 3′-hydroxy-4′-O-methylglabridin | 38.39 | C21H22O5 | [M − H]− | 353.1393 | / |
291 | blumenol A | 38.39 | C13H20O3 | [M + H]+ | 225.1483 | 210.1245, 167.9932, 114.0913, 95.0860 |
292 | dihydrodaidzein | 38.40 | C15H12O4 | [M + H]+ | 257.0805 | 239.0690, 229.0851, 211.0744, 147.0439 |
* 293 | formononetin | 38.44 | C16H12O4 | [M + H]+ | 269.0803 | 254.0567, 213.0907, 118.0414, 95.0859 |
[M − H]− | 267.0660 | 252.0423, 225.0553, 195.0443, 132.0204 | ||||
294 | lupiwighteone | 38.44 | C20H18O5 | [M + H]+ | 339.1219 | 322.2484, 283.0594, 271.0597, 209.1646 |
* 295 | quercetin | 38.48 | C15H10O7 | [M + H]+ | 303.0492 | 285.0393, 257.0439, 229.0493, 153.0181 |
[M − H]− | 301.0351 | 283.0246, 255.0298, 227.0342, 138.0312 | ||||
296 | glycyuralin E | 38.52 | C21H22O6 | [M + H]+ | 371.1480 | 353.1372, 339.1213, 285.0749, 167.0695 |
[M − H]− | 369.1341 | 311.0558, 229.0865, 206.0213, 139.0390 | ||||
297 | estradiol | 38.53 | C18H24O2 | [M + H]+ | 273.1845 | 255.1007, 248.4772, 153.0180, 119.0856 |
298 | licoflavone A | 38.57 | C20H18O4 | [M + H]+ | 323.1272 | 280.0719, 267.0648, 254.0570, 239.0700 |
299 | irisolidone | 38.67 | C17H14O6 | [M + H]+ | 315.0856 | 297.0751, 226.0619, 199.0751, 153.0182 |
[M − H]− | 313.0715 | 295.0610, 270.0479, 224.0468, 167.2795 | ||||
300 | 1-methoxyphaseollidin | 38.68 | C21H22O5 | [M + H]+ | 355.1532 | 299.0548, 221.1169, 165.0546, 123.0441 |
[M − H]− | 353.1393 | 338.1162, 292.0359, 253.0505, 150.0311 | ||||
301 | cupressuflavone | 38.69 | C30H18O10 | [M + H]+ | 539.0958 | 497.0887, 403.0439, 377.0645, 335.0543 |
[M − H]− | 537.0822 | 521.2611, 505.2242, 375.0520, 266.9636 | ||||
302 | licoarylcoumarin | 38.69 | C21H20O6 | [M + H]+ | 369.1324 | 313.0699, 271.0596, 243.0647, 147.0439 |
303 | isoformononetin | 38.71 | C16H12O4 | [M + H]+ | 269.0803 | 251.0697, 241.0828, 237.0537, 107.0855 |
[M − H]− | 267.0660 | 252.0424, 241.0503, 197.0604, 96.9588 | ||||
304 | kakkasaponin I | 38.72 | C47H76O16 | [M − H]− | 895.5067 | 877.5569, 763.6689, 678.9240, 509.4025 |
305 | β-amyrone | 38.76 | C30H48O | [M + H]+ | 425.3767 | / |
306 | tuberosin | 38.82 | C20H18O5 | [M − H]− | 337.1080 | 309.0397, 281.0454, 254.0585, 203.1068 |
307 | glicophenone | 38.83 | C20H22O6 | [M + H]+ | 359.1482 | 301.0710, 283.0596, 175.0389, 153.0545 |
[M − H]− | 357.1341 | 247.0974, 232.0737, 189.0186, 109.0282 | ||||
308 | 7,4′-dihydroxy-3′-methoxyisoflavan | 38.83 | C16H16O4 | [M + H]+ | 273.1118 | 245.1898, 163.0750, 137.0596, 123.0442 |
[M − H]− | 271.0973 | 241.0499, 225.0550, 197.0596, 181.0652 | ||||
309 | 2′,3′-dihydro-7,7′-dihydroxy-5′-methoxy-2′,2′-dimethyl[3,6′-bi-4H-1-benzopyran]-4-one | 38.89 | C21H20O6 | [M + H]+ | 369.1324 | 313.0699, 285.0752, 270.0518, 243.0648 |
[M − H]− | 367.1182 | 337.0717, 309.0403, 256.0376, 203.0708 | ||||
310 | 3,4-didehydroglabridin | 38.98 | C20H18O4 | [M + H]+ | 323.1272 | 267.0648, 255.0647, 239.0698, 95.0163 |
[M − H]− | 321.1129 | 277.0503, 265.0505, 252.0424, 149.0598 | ||||
311 | glyasperin C | 38.98 | C21H24O5 | [M + H]+ | 357.1689 | 301.1063, 221.1165, 165.0546, 123.0441 |
[M − H]− | 355.1547 | 298.0483, 229.0865, 174.0313, 125.0232 | ||||
312 | neouralenol | 39.01 | C20H18O7 | [M + H]+ | 371.1119 | 315.0856, 268.2631, 183.0287, 165.0181 |
[M − H]− | 369.0976 | 351.0870, 310.0444, 283.0975, 193.0135 | ||||
313 | phaseol | 39.05 | C20H16O5 | [M + H]+ | 337.1065 | 319.0956, 283.0596, 255.0646, 163.0388 |
314 | eurycarpin A | 39.08 | C20H18O5 | [M + H]+ | 339.1219 | 322.2490, 293.0592, 163.0388, 114.0915 |
[M − H]− | 337.1080 | 293.1182, 268.0376, 224.0470, 135.0077 | ||||
315 | glyurallin A | 39.10 | C21H20O5 | [M − H]− | 351.1236 | 335.0564, 323.0929, 308.0317, 191.0711 |
316 | sophoraisoflavone A | 39.10 | C20H16O6 | [M + H]+ | 353.1014 | 335.0906, 325.1064, 283.02599, 191.0343 |
317 | licocoumarone | 39.11 | C20H20O5 | [M + H]+ | 341.1379 | 323.1265, 267.0648, 209.1646, 114.0915 |
[M − H]− | 339.1233 | 296.0677, 268.0377, 219.0656, 119.0490 | ||||
318 | dehydrovomifoliol | 39.18 | C13H18O3 | [M + H]+ | 223.1326 | 135.1167, 107.0858, 81.0704 |
[M − H]− | 221.1177 | 205.1224, 164.0829, 148.0516, 118.5610 | ||||
319 | fallacinol | 39.20 | C16H12O6 | [M + H]+ | 301.0701 | 283.0598, 269.0440, 227.0701, 199.0752 |
[M − H]− | 299.0557 | 284.0317, 255.0649, 240.0422, 212.0468 | ||||
320 | genkwanin | 39.23 | C16H12O5 | [M + H]+ | 285.0751 | 270.0519, 253.0494, 225.0542, 137.0233 |
[M − H]− | 283.0609 | 268.0378, 240.0423, 186.6367, 118.3947 | ||||
321 | kanzonol U | 39.25 | C19H16O4 | [M + H]+ | 309.1115 | / |
322 | 2,3-dehydrokievitone | 39.26 | C20H18O6 | [M + H]+ | 355.1169 | 337.1066, 229.0854, 179.0338, 123.0442 |
[M − H]− | 353.1027 | 284.0319, 243.1021, 216.0419, 201.0915 | ||||
323 | 2,3,4-trimethyl-5-phenyloxazolidine | 39.28 | C12H17NO | [M + H]+ | 192.1382 | 133.1011, 119.0493, 91.0547 |
324 | pratensein | 39.29 | C16H12O6 | [M + H]+ | 301.0701 | 283.0598, 269.0440, 227.0701, 199.0752 |
325 | lupenone | 39.32 | C30H48O | [M + H]+ | 425.3767 | / |
326 | corylifol B | 39.35 | C20H20O5 | [M + H]+ | 341.1379 | 267.0648, 209.1646, 114.0916 |
[M − H]− | 339.1233 | 269.0453, 233.0818, 187.1117, 167.0340 | ||||
327 | 4-O-methylglabridin | 39.36 | C21H22O4 | [M + H]+ | 339.1586 | 322.2483, 209.1644, 114.0916, 95.0163 |
328 | luteone | 39.43 | C20H18O6 | [M + H]+ | 355.1169 | 338.3415, 299.0540, 267.0284, 239.0334 |
[M − H]− | 353.1027 | 257.0063, 227.0702, 165.0179, 125.0232 | ||||
329 | glyinflanin H | 39.43 | C19H16O4 | [M + H]+ | 309.1115 | 291.1940, 223.0596, 113.0600, 95.0163 |
330 | butyl octyl phthalate | 39.44 | C20H30O4 | [M − H]− | 333.2062 | 293.0450, 281.0451, 252.0419, 201.0916 |
331 | glycyrrhetic acid 3-O-glucuronide | 39.45 | C36H54O10 | [M + H]+ | 647.3769 | 453.3359, 357.2422, 285.2203, 121.1012 |
[M − H]− | 645.3641 | 580.9614, 521.2628, 469.3308, 322.6431 | ||||
332 | glyasperin A | 39.46 | C25H26O6 | [M − H]− | 421.1654 | 403.9289, 353.1024, 312.0273, 280.0371 |
333 | 1-methoxyphaseollin | 39.47 | C21H20O5 | [M − H]− | 351.1236 | 294.4448, 243.1023, 227.0710, 125.0232 |
334 | licochalcone D | 39.53 | C21H22O5 | [M + H]+ | 355.1532 | 338.3410, 311.0542, 193.0494, 135.0440 |
335 | wighteone | 39.54 | C20H18O5 | [M + H]+ | 339.1219 | 321.2453, 311.0548, 209.1647, 114.0916 |
[M − H]− | 337.1080 | 321.0765, 309.1127, 253.0500, 209.0596 | ||||
336 | 2′-O-demethylbidwillol B | 39.54 | C19H18O4 | [M + H]+ | 311.1269 | 293.1166, 278.0932, 263.0694, 95.0163 |
337 | glycyrol | 39.63 | C21H18O6 | [M + H]+ | 367.1168 | 337.0697, 227.0702, 167.0337, 91.0547 |
[M − H]− | 365.1026 | 335.0560, 307.0247, 295.0245, 254.0220 | ||||
338 | 3-hydroxyglabrol | 39.65 | C25H28O5 | [M − H]− | 407.1863 | 387.2756, 371.2437, 150.9878, 93.0001 |
339 | kumatakenin | 39.72 | C17H14O6 | [M + H]+ | 315.0856 | 255.0647, 227.0699, 153.0180, 60.0452 |
[M − H]− | 313.0715 | 295.0606, 283.0609, 267.0663, 239.0712 | ||||
340 | eriodictyol | 39.73 | C15H12O6 | [M + H]+ | 289.0697 | 271.0959, 229.0855, 163.0388, 153.0181 |
[M − H]− | 287.0559 | 272.0326, 258.0119, 216.0419, 155.1432 | ||||
341 | licoflavone B | 39.74 | C25H26O4 | [M + H]+ | 391.1897 | 358.2020, 323.1262, 267.0647, 195.0430 |
342 | gancaonin U | 39.76 | C24H28O4 | [M − H]− | 379.1908 | / |
343 | dehydroglyceollin I | 39.78 | C20H16O4 | [M + H]+ | 321.1115 | 306.0873, 187.0752, 159.0803, 147.0439 |
[M − H]− | 319.0970 | 303.0658, 289.0504, 243.0657, 161.0233 | ||||
344 | tectorigenin | 39.80 | C16H12O6 | [M + H]+ | 301.0701 | 283.0598, 255.0646, 227.0698, 199.0748 |
[M − H]− | 299.0557 | 284.0317, 267.0301, 240.0422, 212.0468 | ||||
345 | derrone | 39.87 | C20H16O5 | [M + H]+ | 337.1065 | 309.1118, 267.0650, 225.0545, 91.0549 |
[M − H]− | 335.0921 | 319.0606, 305.0436, 278.3866, 158.8393 | ||||
346 | abyssinone II | 39.91 | C20H20O4 | [M + H]+ | 325.1429 | 269.0804, 241.0850, 135.0440, 95.0163 |
[M − H]− | 323.1283 | 308.1031, 201.0914, 187.0761, 135.0441 | ||||
347 | corylin | 39.96 | C20H16O4 | [M + H]+ | 321.1115 | 306.0870, 279.0649, 265.0488, 137.0232 |
348 | ephedradine A | 39.98 | C28H36N4O4 | [M + H]+ | 493.2800 | 465.2870, 394.2122, 219.1489, 120.0809 |
349 | kudzusapogenol A | 40.02 | C30H50O5 | [M − H]− | 489.3575 | / |
350 | kanzonol Y | 40.04 | C25H30O5 | [M − H]− | 409.2015 | 391.2520, 373.2436, 235.0971, 177.0912 |
351 | kanzonol W | 40.11 | C20H16O5 | [M + H]+ | 337.1065 | 321.1119, 281.0443, 253.0488, 163.0388 |
[M − H]− | 335.0921 | 320.0677, 291.1024, 199.0758, 135.0078 | ||||
352 | isoglycyrol | 40.13 | C21H18O6 | [M + H]+ | 367.1168 | 349.1074, 325.0702, 291.0630, 167.0338 |
[M − H]− | 365.1026 | 349.0708, 309.0393, 216.0423, 192.0055 | ||||
353 | licoisoflavone B | 40.17 | C20H16O6 | [M + H]+ | 353.1014 | 311.0558, 299.0544, 153.0180, 95.0163 |
[M − H]− | 351.0869 | 337.0660, 283.0974, 241.0864, 199.0756 | ||||
354 | 6,8-diprenylgenistein | 40.26 | C25H26O5 | [M + H]+ | 407.1844 | 339.1198, 283.0596, 237.0534, 91.0547 |
[M − H]− | 405.1704 | 387.2755, 371.2439, 281.0460, 150.9878 | ||||
355 | parvisoflavone A | 40.29 | C20H16O6 | [M + H]+ | 353.1014 | 335.0906, 325.1068, 191.0328, 153.0180 |
356 | licoricidin | 40.30 | C26H32O5 | [M + H]+ | 425.2315 | 369.1328, 313.0703, 175.0388, 139.0389 |
357 | kanzonol C | 40.31 | C25H28O4 | [M + H]+ | 393.2051 | 376.1539, 329.0271, 268.0656, 215.0684 |
* 358 | emodin | 40.43 | C15H10O5 | [M + H]+ | 271.0594 | 243.0650, 229.0493, 197.0596, 173.0591 |
[M − H]− | 269.0450 | 241.0503, 225.0551, 197.0597, 181.0647 | ||||
359 | apigenin | 40.43 | C15H10O5 | [M + H]+ | 271.0594 | 229.0495, 201.0543, 173.0597, 91.0548 |
[M − H]− | 269.0450 | 241.0501, 225.0551, 210.0314, 181.0644 | ||||
360 | genistein | 40.44 | C15H10O5 | [M + H]+ | 271.0594 | 243.0642, 229.0495, 201.0543, 371.0596 |
[M − H]− | 269.0450 | 241.0504, 225.0550, 197.0597, 181.0647 | ||||
361 | lupalbigenin | 40.45 | C25H26O5 | [M + H]+ | 407.1844 | 373.1034, 283.0597, 213.0541, 149.0232 |
362 | angustone A | 40.51 | C25H26O6 | [M − H]− | 421.1654 | 404.9251, 352.0951, 269.0453, 201.0913 |
363 | dehydroglyasperin D | 40.59 | C22H24O5 | [M + H]+ | 369.1688 | 313.0700, 295.0597, 197.0441, 179.0337 |
[M − H]− | 367.1545 | 351.9669, 322.9651, 269.0455, 240.0420 | ||||
364 | corymbosin | 40.63 | C19H18O7 | [M + H]+ | 359.1118 | 329.0648, 313.0695, 269.0804, 95.0163 |
365 | euchrenone a5 | 40.64 | C25H26O4 | [M + H]+ | 391.1897 | 358.2020, 267.0647, 239.0701, 149.0236 |
[M − H]− | 389.1751 | 319.0978, 298.0473, 266.0580, 195.1691 | ||||
366 | paratocarpin L | 40.75 | C25H28O5 | [M − H]− | 407.1863 | / |
367 | diisobutyl phthalate | 40.79 | C16H22O4 | [M + H]+ | 279.1583 | 167.0340, 149.0232, 121.0284, 57.0706 |
[M − H]− | 277.1438 | 245.3889, 193.7951, 134.0361, 121.0283 | ||||
368 | glyurallin B | 40.79 | C25H26O6 | [M + H]+ | 423.1793 | / |
369 | angustone B | 40.82 | C25H24O6 | [M + H]+ | 421.1637 | 365.1014, 309.0388, 281.0439, 140.0342 |
[M − H]− | 419.1497 | 402.9280, 375.0866, 363.0872, 308.0323 | ||||
370 | licoagrocarpin | 40.93 | C21H22O4 | [M + H]+ | 339.1586 | / |
371 | palmitic acid | 41.04 | C16H32O2 | [M − H]− | 255.2322 | 170.3186, 162.0524, 116.9273, 74.0233 |
372 | 2′-hydroxyisolupalbigenin | 41.11 | C25H26O6 | [M − H]− | 421.1654 | 404.9261, 363.0872, 227.0711, 193.0862 |
373 | butesuperin A | 41.15 | C26H22O8 | [M + H]+ | 463.1375 | 445.1275, 283.0597, 255.0647, 161.0594 |
* 374 | luteolin | 41.16 | C15H10O6 | [M − H]− | 285.0402 | 268.9432, 257.0451, 242.0536, 196.0504 |
375 | sophoracoumestan A | 41.19 | C20H14O5 | [M + H]+ | 335.0909 | 320.0672, 307.0952, 292.0722, 137.0237 |
* 376 | glycyrrhetic acid | 41.41 | C30H46O4 | [M + H]+ | 471.3456 | 317.2107, 269.0803, 189.1636, 121.1013 |
377 | 8-prenylphaseollinisoflavan | 41.74 | C25H28O4 | [M + H]+ | 393.2051 | 339.0701, 269.0807, 167.0337, 149.0232 |
[M − H]− | 391.1912 | 289.1443, 271.1335, 187.0393, 119.0490 | ||||
378 | stearic acid | 41.75 | C18H36O2 | [M − H]− | 283.2635 | / |
379 | puerarol | 41.75 | C25H24O5 | [M + H]+ | 405.1683 | 319.0950, 281.0439, 209.0591, 171.0138 |
[M − H]− | 403.1546 | 387.2754, 371.2439, 333.0764, 150.9877 | ||||
380 | hederagenin | 41.79 | C30H48O4 | [M + H]+ | 473.3615 | 310.8371, 189.1640, 133.1015, 59.0162 |
[M − H]− | 471.3470 | 429.2146, 403.1549, 319.0597, 280.0376 |
*: Verified with its reference standard.
In general, the 380 proposed chemical components of YPG can be classified into 9 categories based on chemical structure, including 19 alkaloids, 8 organic acids, 36 phenolic acids, 27 other phenols, 114 flavonoids, 75 flavonoid glycoside,72 terpenes, 11 anthraquinones and 18 other compounds (Figure 3a). While in the term of plant source, 114 compounds are from Glycyrrhizae Radix Et Rhizoma, 93 from Lonicerae Japonicae Flos, 76 from Puerariae Lobatae Radix, 47 from Ephedrae Herba, 42 from Polygoni Cuspidati Rhizoma Et Radix, and 8 from Armeniacae Semen Amarum (Figure 3b).
Figure 3.
(a) The distribution of plant sources tentatively identified in YPG; (b) the types of compounds tentatively identified in YPG.
2.3. Identification of Several Specific Compounds in YPG
Based on the global identification of the components in YPG, the chemical structures of some compounds were inferred from the MS2 fragment ions, the proposed fragmentation pathways, and published references.
2.3.1. Phenolic Acids
Chlorogenic acid and its isomers, including neochlorogenic acid, cryptochlorogenic acid, etc., are typical phenolic acids found in YPG with high contents [15,16]. As shown in Figure 4, in the positive ion mode, the chlorogenic acid molecule is ionized to produce an [M + H]+ peak at m/z 355.1014. It is observed that fragmentation occurred via the neutral loss of quinic acid (C7H11O6), resulting in the formation of a product ion at m/z 163.0388. Alternatively, the [M + H]+ ion may lose a neutral molecule of C8H12O7 to generate a product ion at m/z 135.0440.
Figure 4.
MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of chlorogenic acid (positive ion mode).
2.3.2. Flavonoids
In YPG, 114 flavonoids were identified and were the most abundant compound type. As the most basic natural product in plant medicine, flavonoids have a wide variety of biological activities and efficacies [17,18]. In this study, puerarin was taken as an example to illustrate its fragmentation pathway. As a representative compound with high content in YPG, puerarin was observed in multiple characteristic fragmentation patterns in secondary mass spectrometry (Figure 5). The [M − H]− ion (m/z 415.1035) of puerarin loses a C4H8O4 moiety to generate a product ion at m/z 295.0608. Further neutral loss of H2O (18 Da) and CO (28 Da) then produced the fragment ions at m/z 277.0507 and 267.0661, respectively.
Figure 5.
MS/MS spectrum of [M − H]− ions and plausible fragmentation pathway of puerarin (negative ion mode).
2.3.3. Alkaloids
The alkaloids in YPG are mainly ephedra alkaloids and isomers from Herba Ephedrae [19]. As a representative compound, the fragmentation pathway of methylephedrine is discussed herein. As shown in Figure 6, based on the protonated methylephedrine ion at m/z 180.1382, three characteristic fragment ions were observed at m/z 162.1275, 148.1076, and 138.0804, which can be attributed to [M + H − H2O]+, [M + H − H2O − CH2]+, and [M + H − C2H7N]+, respectively.
Figure 6.
MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of methylephedrine (positive ion mode).
2.3.4. Terpenoids
A total of 72 terpenoids were tentatively identified in YPG, of which triterpenoid saponins were mainly concentrated in Lonicera Japonica Thunb, Puerariae Lobatae Radix, and Glycyrrhizae Radix. Glycyrrhizic acid is the main active ingredient of Glycyrrhizae Radix, and it possesses various pharmacological effects, such as detoxification and anti-inflammatory activities [20,21,22]. As shown in Figure 7, the [M + H]+ ion of glycyrrhizic acid at m/z 823.4086 subsequently loses two gluconic acid moieties to form fragment ions at m/z 647.3788 and 471.3457. The latter ion can further lose one molecule of H2O to produce a product ion at m/z 453.3356.
Figure 7.
MS/MS spectrum of [M + H]+ ions and plausible fragmentation pathway of glycyrrhizic acid (positive ion mode).
2.4. Quantitative Analysis, Total Phenolic Content, and DPPH Radical Scavenging Activity of YPG
In addition to the qualitative analysis of YPG, the contents of six main components in YPG, namely, chlorogenic acid, puerarin, 3′-methoxypuerarin, polydatin, glycyrrhizic acid, and emodin, were also determined with the help of the HPLC-DAD method. The method validation results in Table 2 reveal that all analytes showed good linear regression in the range of 0.01–2.00 mg/mL (R2 ≥ 0.9990). The limits of detection (LODs) were 0.38–2.13 μg/mL, and the limits of quantitation (LOQs) ranged between 1.14 and 6.47 μg/mL. The repeatability RSD was 1.18–2.94%, and the intermediate precision was 2.00–3.89%, indicating that the method has good precision. The RSD of stability was less than 3.60%, indicating that the six components were stable under storage conditions. The method also showed satisfactory accuracy, with recovery values ranging from 96.79% to 103.13%, and the RSD was less than 3.15% (data shown in Table S2 in Supporting Information).
Table 2.
Quantitative method validation results of YPG.
Main Components |
Calibration Curve |
Linear Range (mg/mL) |
R2 | LOD (μg/mL) | LOQ (μg/mL) | Repeatability RSD (%) | Stability RSD (%) | Intermediate Precision (%, n = 12) |
---|---|---|---|---|---|---|---|---|
chlorogenic acid | y = 12,757x – 376.29 | 0.05–2.00 | 0.9991 | 2.13 | 6.47 | 1.18% | 1.37% | 2.82% |
puerarin | y = 37,995x + 303.18 | 0.05–1.60 | 0.9990 | 1.85 | 5.61 | 1.23% | 2.60% | 2.00% |
3′-methoxypuerarin | y = 25,755x + 64.034 | 0.04–1.50 | 0.9998 | 1.26 | 3.83 | 2.94% | 1.09% | 2.81% |
polydatin | y = 9872.5x – 89.081 | 0.03–1.00 | 0.9992 | 1.25 | 3.80 | 2.27% | 3.10% | 3.45% |
glycyrrhizic acid | y = 7190.5x + 101.33 | 0.02–1.00 | 0.9994 | 0.77 | 2.33 | 2.03% | 1.30% | 3.89% |
emodin | y = 33,371x + 138.83 | 0.01–0.50 | 0.9992 | 0.38 | 1.14 | 1.26% | 3.59% | 3.53% |
As presented in Table 3 and Figure 8, chlorogenic acid (34.15 ± 1.25 mg/g) and puerarin (28.30 ± 1.09 mg/g) were found as the most abundant compounds in YPG, followed by 3′-methoxypuerarin (9.63 ± 0.12 mg/g), polydatin (10.83 ± 0.57 mg/g), glycyrrhizic acid (3.33 ± 0.56 mg/g), and emodin (4.14 ± 0.34 mg/g). The contents of the six compounds were stable in three batches of YPG samples, which suggested that the six compounds may be used as quality markers of YPG.
Table 3.
Quantitative analysis, total phenol content, and DPPH radical scavenging results of YPG.
Main Components | Sample S1 (mg/g) |
Sample S2 (mg/g) |
Sample S3 (mg/g) |
Content (mg/g) | Scavenging Percentage of DPPH Radical (%) |
---|---|---|---|---|---|
chlorogenic acid | 33.16 | 33.72 | 35.56 | 34.15 ± 1.25 | 59.2 |
puerarin | 27.30 | 28.15 | 29.46 | 28.30 ± 1.09 | 49.6 |
3′-methoxypuerarin | 9.73 | 9.66 | 9.50 | 9.63 ± 0.12 | 58.9 |
polydatin | 10.29 | 10.76 | 11.43 | 10.83 ± 0.57 | 58.0 |
glycyrrhizic acid | 3.18 | 2.85 | 3.94 | 3.33 ± 0.56 | 54.6 |
emodin | 4.15 | 4.48 | 3.80 | 4.14 ± 0.34 | 30.3 |
total phenol | 144.11 | 147.89 | 147.99 | 144.66 ± 2.21 | / |
Figure 8.
Quantitative analysis results of six main components in YPG.
Considering that the six compounds are phenols with antioxidative and radical scavenging activities, total phenolic contents and DPPH scavenging capacities were also determined. The total phenolic contents of three batches of YPG were calculated as 144.66 ± 2.21 mg/g with the Folin–Ciocalteu method (Table 3). In addition, the results of an online HPLC-based DPPH radical quenching assay revealed that all six main components were good radical scavengers with scavenging percentages ranging from 30.3% to 59.2% (Table 3 and Figure S1 in Supporting Information). Emodin exhibited a lower capacity against the DPPH radical compared with the other five compounds.
3. Materials and Methods
3.1. Reagents and Materials
YPG (Batch No. 200404) was provided by Shaanxi Dongke Pharmaceutical Co., Ltd. (Xianyang, China). Chlorogenic acid (≥95%), gallic acid (≥95%), 2,2-diphenyl-1-picrylhydrazyl (≥97%), and sodium carbonate anhydrous (≥99.8%) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai, China); 3′-methoxypuerarin (≥98%) and polydatin (≥98%) were purchased from Chengdu Efa Biotechnology Co., Ltd. (Chengdu, China); puerarin (≥98%) and Folin–Ciocalteu reagent (>99.5%) were purchased from Shanghai Yien Chemical Technology Co., Ltd. (Shanghai, China); glycyrrhizic acid (≥98%) was purchased from Dalian Meilun Biotechnology Co., Ltd. (Dalian, China); emodin (≥99%) was obtained from China Institute for Food and Drug Control (Beijing, China). LC-MS-grade methanol, acetonitrile, and formic acid for HPLC analysis and LC-MS analysis were purchased from Tedia Co. (Fairfield, OH, USA). The water used was obtained from a Milli-Q water purification system (Bedford, MA, USA).
3.2. Sample Preparation
First, 100.00 mg of YPG was accurately weighed and added to 50% methanol (v/v, 1 mL). After extraction in an ultrasonic bath (300 W, 40 kHz, 50 °C) for 30 min, the extracted solution was centrifuged (13,000 rpm, 10min) and filtered through a 0.22 μm membrane. The obtained solution was kept at 4 °C until analysis.
3.3. Preparation of Standard Solutions
Six reference standards (chlorogenic acid 20.00 mg, puerarin 16.00 mg, 3′-methoxypuerarin 15.00 mg, polydatin 10.00 mg, glycyrrhizic acid 10.00 mg, emodin 5.00 mg) were accurately weighed and dissolved in 10 mL of 50% (v/v) methanol to prepare the respective stock solutions. The stock solutions were mixed and diluted with 50% methanol to prepare a series of mixed reference solutions in certain concentrations. All standard solutions were prepared in a 10 mL dark-brown volumetric flask and stored in a refrigerator at 4 °C before use.
3.4. Qualitative Analysis with HPLC–Q-Exactive MS
HPLC analysis was performed on a Thermo U3000 HPLC system (Thermo, San Jose, CA, USA). A CAPCELL PAK C18 MG II (150 mm × 4.6 mm, 3 μm; Osaka Soda, Osaka, Japan) column was used. The mobile phase consisted of 0.5% formic acid (A) and acetonitrile (B), with the elution gradient as follows: 0–10 min, 5–20% B; 10–30 min, 20–35% B; 30–32 min, 35–55% B; 32–35 min, 55–95% B; 35–42 min, 95% B, flow rate 0.4 mL/min. The column temperature was maintained at 35 °C, and the injection volume was 5 μL.
The Q-Exactive mass spectrometer (Thermo, San Jose, USA) equipped with a heated electrospray ion source (HESI) was operated in both positive and negative modes. The MS parameters were set as follows: scanning mode, Full MS/ddMS2; nebulizer voltage, 2.5 kV; sheath gas, 50 arb; aux gas, 14 arb; capillary temperature 320 °C; probe heater temperature, 300 °C; scanning range, m/z 100–1500. For different compounds, the collision energy was 30 and 40 eV. Instrument control and data acquisition were achieved using Xcalibur 2.3.1 (Thermo, San Jose, USA).
The raw data were processed with Compound Discoverer 3.1 (CD, Thermo, San Jose, USA) using a self-built compound library and workflow. The compound information was collected from public databases, including PubChem (https://pubchem.ncbi.nlm.nih.gov/), CAS SciFinder (https://scifindern.cas.org/), and CNKI (https://www.cnki.net/). Then, the original data of MS detection were matched with the self-built database in Compound Discoverer 3.1. The workflow included peak extraction, normalization, and compound annotation, and the specific parameters in the process were as follows: retention time range, 0–42 min; mass range, 100–1500 Da; positive adducts, [M + H]+, [2M + H]+; negative adducts, [M − H]−, [2M − H]−, [M − 2H]2−; mass tolerance, 5.0 ppm; S/N threshold, 3; minimum peak intensity, 100000.
3.5. Quantitative Analysis by HPLC-DAD
For quantitative analysis, an Agilent 1260 system equipped with a G7112C Quat Pump, a G7129A Vial sampler, and a G7117C diode array detector (DAD) was used (Agilent, Santa Clara, CA, USA). The chromatographic parameters were the same as described in Section 3.4. The chromatograms were recorded at 254 nm.
3.6. Quantitative Analysis Method Validation
In order to verify the applicability of the established method, the linearity, limits of quantitation (LOQs), limits of detection (LODs), repeatability, precision, stability, and recovery were validated. In the linear relationship experiment, the standard solution with a certain concentration gradient was used to draw the curve of the peak area (y) of the standard and the corresponding concentration (x, mg/mL). In the precision test, the standard solution was analyzed 6 times continuously, the intra-day precision was analyzed, and the intermediate precision was analyzed by different analysts at different times. The sample solution was analyzed at 0, 2, 4, 8, and 12 h in the stability test. In the repeatability test, the contents of the six target compounds in the sample solution were quantified. At the same time, the standard substance of each analyte was added to the sample according to 80%, 100%, and 120% of its content in the sample solution to prepare the sample solution for the recovery test. Three replicates were required for each spiked amount, and the recovery rate was calculated as described previously [16].
3.7. Determination of Total Phenolic Contents
3.7.1. Total Phenol Standard Curve Drawing
The total phenolic contents were measured according to a previously reported Folin–Ciocalteu reagent-based method, with gallic acid as a reference substance [23,24]. The absorbance was measured at 760 nm with an ultraviolet spectrophotometer. With absorbance as y, and total phenol mass concentration as x, the standard curve was drawn. The linear regression equation of gallic acid was y = 0.0965x + 0.0277 (R2 = 0.9992), and the linear range was 0.01–0.50 mg/mL.
3.7.2. Total Phenol Content in the Sample
Different batches of YPG samples were taken, and the solution was prepared according to the above method. The determination was repeated three times, and the content of each sample was calculated according to the linear regression equation.
3.8. In Vitro Antioxidant Activity Evaluation—DPPH Radical Scavenging Activity
The DPPH free radical scavenging activities of the six components in YPG were evaluated with an HPLC-based method, as previously reported [14]. The scavenging percentages were calculated using the following equation:
Scavenging percentage (%) = (Aoriginal − ADPPH)/Aoriginal × 100% |
where Aoriginal stands for the absolute HPLC peak area of each ingredient, and ADPPH stands for the HPLC peak area of each ingredient after YPG reacted with DPPH.
4. Conclusions
In this study, a set of integrated methods, which include the qualitative HPLC–Q-Exactive MS method and the quantitative HPLC-DAD method, were established to profile the chemical properties of YPG from a macroscopic and systematic view. In the qualitative analysis part, 380 components were tentatively identified in YPG with the help of a self-built compound database and Compound Discoverer software. In the quantitative analysis part, the contents of six main components in YPG were determined with a validated method. These results may provide clear chemical information for the quality control and pharmacological research of YPG. This study may also contribute as a valuable reference for research on other complex TCM compounded prescriptions.
Supplementary Materials
The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/molecules29102300/s1: Table S1: Mass spectrometric information of chemical components of Yinhua Pinggan Granule; Table S2: Recovery of six representative components. Table S3: The contents of representative components of YPG under different extraction conditions. Figure S1. The HPLC chromatograms at 254 nm of YPG before and after the reaction with DPPH. Refs. [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60] are cited in the Supplementary Materials.
Author Contributions
Conceptualization, C.L.; methodology, I.Y. and L.Y. (Li Yu); validation, H.W. (Haofang Wan), L.Y. (Lulu Ye) and L.Y. (Li Yu); formal analysis, H.W. (Haofang Wan); investigation, I.Y., H.W. (Haofang Wan) and L.Y. (Lulu Ye); resources, H.W. (Haitong Wan); data curation, I.Y. and C.L.; writing—original draft preparation, I.Y. and H.W. (Haofang Wan); writing—review and editing, C.L., Y.H. and H.W. (Haitong Wan); supervision, C.L., Y.H. and H.W. (Haitong Wan); project administration, C.L.; funding acquisition, C.L. and H.W. (Haitong Wan). All authors have read and agreed to the published version of the manuscript.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
The data presented in this study are available in article and Supplementary Materials. Additional data that support the findings of this study are also available on request from the corresponding author.
Conflicts of Interest
The authors declare no conflicts of interest.
Funding Statement
This research was funded by the National Natural Science Foundation of China [81930111] and the Key Laboratory of TCM Encephalopathy of Zhejiang Province [2020E10012].
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
- 1.Du H., Zhou H., Yang J., Lu Y., He Y., Wan H. Preliminary study of Yinhuapinggan granule against H1N1 influenza virus infection in mice through inhibition of apoptosis. Pharm. Biol. 2020;58:979–991. doi: 10.1080/13880209.2020.1818792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Du H., Zhou H., Wan H., Yang J., Lu Y., He Y., Wan H. Antiviral effects and mechanisms of Yinhuapinggan granule against H1N1 influenza virus infection in RAW264.7 cells. Inflammopharmacology. 2018;26:1455–1467. doi: 10.1007/s10787-018-0457-1. [DOI] [PubMed] [Google Scholar]
- 3.Chen T., Du H., Zhou H., Yang J., Zhu J., Tong X., Yang Y., Wan J., Fan Y., Lu Y., et al. Screening of Antiviral Components of Yinhuapinggan Granule and Protective Effects of Yinhuapinggan Granule on MDCK Cells with Influenza A/H1N1 Virus. Biomed Res. Int. 2022;2022:1040129. doi: 10.1155/2022/1040129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Wang J., Hu H., Du H., Luo M., Cao Y., Xu J., Chen T., Guo Y., Li Q., Chen W., et al. Clinical Efficacy Protocol of Yinhuapinggan Granules: A Randomized, Double-Blind, Parallel, and Controlled Clinical Trial Program for the Intervention of Community-Acquired Drug-Resistant Bacterial Pneumonia as a Complementary Therapy. Front. Pharmacol. 2022;13:852604. doi: 10.3389/fphar.2022.852604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Xie K., Guan S., Jing H., Ji W., Kong X., Du S., Jia M., Wang H. Efficacy and safety of traditional Chinese medicine adjuvant therapy for severe pneumonia: Evidence mapping of the randomized controlled trials, systematic reviews, and meta-analyses. Front. Pharmacol. 2023;14:1227436. doi: 10.3389/fphar.2023.1227436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Zhao D., Chen X., Wang L., Zhang J., Lv R., Tan L., Chen Y., Tao R., Li X., Chen Y., et al. Improvement influenza vaccine immune responses with traditional Chinese medicine and its active ingredients. Front. Microbiol. 2023;14:1111886. doi: 10.3389/fmicb.2023.1111886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Wei J., Sun J., Zeng J., Ji E., Xu J., Tang C., Huo H., Zhang Y., Li H., Yang H. Precise Investigation of the Efficacy of Multicomponent Drugs Against Pneumonia Infected with Influenza Virus. Front. Pharmacol. 2021;12:604009. doi: 10.3389/fphar.2021.604009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Lee D.Y.W., Li Q.Y., Liu J., Efferth T. Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine. 2021;80:153337. doi: 10.1016/j.phymed.2020.153337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Chen X., Wu Y., Chen C., Gu Y., Zhu C., Wang S., Chen J., Zhang L., Lv L., Zhang G., et al. Identifying potential anti-COVID-19 pharmacological components of traditional Chinese medicine Lianhuaqingwen capsule based on human exposure and ACE2 biochromatography screening. Acta Pharm. Sin. B. 2021;11:222–236. doi: 10.1016/j.apsb.2020.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Li R., Hou Y., Huang J., Pan W., Ma Q., Shi Y., Li C., Zhao J., Jia Z., Jiang H., et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2) Pharmacol. Res. 2020;156:104761. doi: 10.1016/j.phrs.2020.104761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Qian X., Nie L., Zhao H., Dai Z., Ma S., Liu J., Kuang Y. Discovery and molecular elucidation of the anti-influenza material basis of Banlangen granules based on biological activities and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry. J. Ethnopharmacol. 2022;298:115683. doi: 10.1016/j.jep.2022.115683. [DOI] [PubMed] [Google Scholar]
- 12.Fu S., Cheng R., Deng Z., Liu T. Qualitative analysis of chemical components in Lianhua Qingwen capsule by HPLC-Q Exactive-Orbitrap-MS coupled with GC-MS. J. Pharm. Anal. 2021;11:709–716. doi: 10.1016/j.jpha.2021.01.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Hogenboom A.C., van Leerdam J.A., de Voogt P. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. J. Chromatogr. A. 2009;1216:510–519. doi: 10.1016/j.chroma.2008.08.053. [DOI] [PubMed] [Google Scholar]
- 14.Meng M., Wan H., Bao Y., He Y., Li C., Wan H. Rapid identification, quantitation, and antioxidant activity evaluation of the components in Guanxin Shutong capsule with liquid chromatography and mass spectrometry. J. Pharm. Biomed. Anal. 2023;224:115194. doi: 10.1016/j.jpba.2022.115194. [DOI] [PubMed] [Google Scholar]
- 15.Shah M.A., Kang J.B., Park D.J., Kim M.O., Koh P.O. Chlorogenic acid alleviates cerebral ischemia-induced neuroinflammation via attenuating nuclear factor kappa B activation. Neurosci. Lett. 2022;773:136495. doi: 10.1016/j.neulet.2022.136495. [DOI] [PubMed] [Google Scholar]
- 16.Liu D., Wang H., Zhang Y., Zhang Z. Protective Effects of Chlorogenic Acid on Cerebral Ischemia / Reperfusion Injury Rats by Regulating Oxidative Stress-Related Nrf2 Pathway. Drug Des. Devel. Ther. 2020;14:51–60. doi: 10.2147/DDDT.S228751. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 17.Song M. Chemistry of the Chinese herbal medicine Puerariae Radix (Ge-Gen): A review. J. Chinese Pharm. Sci. 2014;23:347–360. doi: 10.5246/jcps.2014.06.048. [DOI] [Google Scholar]
- 18.Chen X., Li R., Liang T., Zhang K., Gao Y., Xu L. Puerarin improves metabolic function leading to hepatoprotective effects in chronic alcohol-induced liver injury in rats. Phytomedicine. 2013;20:849–852. doi: 10.1016/j.phymed.2013.04.001. [DOI] [PubMed] [Google Scholar]
- 19.Lv Y., Wang S., Liang P., Wang Y., Zhang X., Jia Q., Fu J., Han S., He L. Screening and evaluation of anti-SARS-CoV-2 components from Ephedra sinica by ACE2/CMC-HPLC-IT-TOF-MS approach. Anal. Bioanal. Chem. 2021;413:2995–3004. doi: 10.1007/s00216-021-03233-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Zhao Z., Xiao Y., Xu L., Liu Y., Jiang G., Wang W., Li B., Zhu T., Tan Q., Tang L., et al. Glycyrrhizic Acid Nanoparticles as Antiviral and Anti-inflammatory Agents for COVID-19 Treatment. ACS Appl. Mater. Interfaces. 2021;13:20995–21006. doi: 10.1021/acsami.1c02755. [DOI] [PubMed] [Google Scholar]
- 21.Wang L., Yang R., Yuan B., Liu Y., Liu C. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb. Acta Pharm. Sin. B. 2015;5:310–315. doi: 10.1016/j.apsb.2015.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Yu S., Zhu Y., Xu J., Yao G., Zhang P., Wang M., Zhao Y., Lin G., Chen H., Chen L., et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine. 2021;85:153364. doi: 10.1016/j.phymed.2020.153364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Medina M.B. Simple and rapid method for the analysis of phenolic compounds in beverages and grains. J. Agric. Food Chem. 2011;59:1565–1571. doi: 10.1021/jf103711c. [DOI] [PubMed] [Google Scholar]
- 24.Silva V., Genta G., Möller M.N., Masner M., Thomson L., Romero N., Radi R., Fernandes D.C., Laurindo F.R., Heinzen H., et al. Antioxidant activity of uruguayan propolis. In vitro and cellular assays. J. Agric. Food Chem. 2011;59:6430–6437. doi: 10.1021/jf201032y. [DOI] [PubMed] [Google Scholar]
- 25.Li J., Fang L., Zhang Y., Wang X., Zhang Q. Research progress on chemical constituents and pharmacological activities of Herba Ephedrae. Mod. Chin. Med. 2012;14:21–27. (In Chinese) [Google Scholar]
- 26.Shang X., Pan H., Li M., Miao X., Ding H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2011;138:1–21. doi: 10.1016/j.jep.2011.08.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Liang C., Wang S., Chen S., Wang Y., Li J., Chang Y. Research development on chemical composition and pharmacology of Polygoni Cuspidati Rhizoma et Radix. Chin. Tradit. Herb. Drugs. 2022;53:1264–1276. (In Chinese) [Google Scholar]
- 28.Zhu W., Li J., Meng X., Zhang P., Wu W., Liu R. Research advances in chemical constituents and pharmacological activities of Pueraria genus. China J. Chin. Mater. Medica. 2021;46:1311–1331. doi: 10.19540/j.cnki.cjcmm.20201124.601. (In Chinese) [DOI] [PubMed] [Google Scholar]
- 29.Gong X., Liu W., Cao L., Yu J., Si D., Li J., Tu P., Li J., Song Y. Rapid chemome profiling of chemical components of Lonicerae Japonicae Flos using DI-MS /MSALL. Chin. J. Chin. Mater. Med. 2021;46:2220–2228. doi: 10.19540/j.cnki.cjcmm.20210220.302. (In Chinese) [DOI] [PubMed] [Google Scholar]
- 30.Miao S., Zhang Q., Bi X., Cui J., Wang M. A review of the phytochemistry and pharmacological activities of Ephedra herb. Chin. J. Nat. Med. 2020;18:321–344. doi: 10.1016/S1875-5364(20)30040-6. [DOI] [PubMed] [Google Scholar]
- 31.Li Z. Master’s Thesis. Beijing University of Chemical Technology; Beijing, China: 2004. Test of Thrombolysis Effect and Study on Chemical Composition of Non-Ephedrine Alkaloids Part in Ephedra sinica Stapf. (In Chinese) [Google Scholar]
- 32.Zang X., Shang M., Xu F., Liang J., Wang X., Mikage M., Cai S. A-type proanthocyanidins from the stems of Ephedra sinica (Ephedraceae) and their antimicrobial activities. Molecules. 2013;18:5172–5189. doi: 10.3390/molecules18055172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Li R. Master’s Thesis. Chengdu University of Traditional Chinese Medicine; Chengdu, China: 2015. Chinese Formula Mahuangtang Chemical Composition Analysis and Spectrum-Effect Relation Research. (In Chinese) [Google Scholar]
- 34.Lin K. Master’s Thesis. Chongqing Medical University; Chongqing, China: 2006. Studies on Fingerprint for Herba Ephedrae and Determination for Alkaloids Contents in Herba Ephedrae with HPLC. (In Chinese) [Google Scholar]
- 35.Song W., Qiao X., Chen K., Wang Y., Ji S., Feng J., Li K., Lin Y., Ye M. Biosynthesis-Based Quantitative Analysis of 151 Secondary Metabolites of Licorice to Differentiate Medicinal Glycyrrhiza Species and Their Hybrids. Anal. Chem. 2017;89:3146–3153. doi: 10.1021/acs.analchem.6b04919. [DOI] [PubMed] [Google Scholar]
- 36.Xiong L., Jin Y., Wang Y., Zhao H., Li J., Pu G., Zhang L., Yang H., Zhang Y., Zhang L. Research progress on chemical constituents, pharmacological activities and in vivo metabolism of phenolic acids in Lonicera japonica Thunb. Chin. Tradit. Pat. Med. 2022;44:864–871. (In Chinese) [Google Scholar]
- 37.Zhang Y., Huang X., Chen Y., Li J., Yu K. Chemical constituents and their biosynthesis mechanisms of Polygonum cuspidatum. Chin. J. Chin. Mater. Med. 2020;45:4364–4372. doi: 10.19540/j.cnki.cjcmm.20200525.201. (In Chinese) [DOI] [PubMed] [Google Scholar]
- 38.Cai Z., Liao H., Wang C., Chen J., Tan M., Mei Y., Wei L., Chen H., Yang R., Liu X. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA. Phytochem. Anal. 2020;31:786–800. doi: 10.1002/pca.2943. [DOI] [PubMed] [Google Scholar]
- 39.Li N., Zhang C., Zhong G., Xiu L., Liu H., Chen S., Chen F., Li M., Liao W., Ren Y. Research progress on chemical constituents and pharmacological effects of different varieties of Glycyrrhizae Radix et Rhizoma and predictive analysis of quality markers. Chin. Tradit. Herbal. Drugs. 2021;52:7680–7692. (In Chinese) [Google Scholar]
- 40.Ma P. Ph.D. Thesis. Peking Union Medical College; Beijing, China: 2013. Pharmacognostic Studies of Polygonum cuspidatum Sieb. Et Zucc.(Polydonaceae) (In Chinese) [Google Scholar]
- 41.Wu J., Wang C., Yu H. Chemical Constituents and Pharmacological Effect of Lonicerae Japonicae Flos. Chin. J. Exp. Tradit. Med. Form. 2019;25:225–234. (In Chinese) [Google Scholar]
- 42.Xiang C., Qiao X., Ye M., Guo D. Classification and distribution analysis of components in Glycyrrhiza using licorice compounds database. Acta Pharm. Sin. 2012;47:1023–1030. (In Chinese) [PubMed] [Google Scholar]
- 43.Tan G., Zhu Z., Zhang H., Zhao L., Liu Y., Dong X., Lou Z., Zhang G., Chai Y. Analysis of phenolic and triterpenoid compounds in licorice and rat plasma by high-performance liquid chromatography diode-array detection, time-of-flight mass spectrometry and quadrupole ion trap mass spectrometry. Rapid. Commun. Mass Spectrom. 2010;24:209–218. doi: 10.1002/rcm.4373. [DOI] [PubMed] [Google Scholar]
- 44.Wang X., Qin Y., Sun J., Hua l., Luo W. Research progress on chemical constituents, pharmacological actives, clinical applications and quality control of Polygoni cuspidati folium. Asia-Pac. Tradit. Med. 2019;15:196–200. (In Chinese) [Google Scholar]
- 45.Zhang Y., Yang J., Song J., Gao S., Zhang Q., Wang B., Zhao Y. Discussion on mechanism of Ephedra Herba in treatment of heart failure based on network pharmacology. Drug Eval. Res. 2021;44:2189–2202. (In Chinese) [Google Scholar]
- 46.Liu G., Wu Y., Liu Y., Li X., Yang W. Chemical Constituents in Glycyrrhiza uralensis: A Review. Mod. Chin. Med. 2021;23:2006–2016. (In Chinese) [Google Scholar]
- 47.Cheng M., Zhang J., Yang L., Shen S., Li P., Yao S., Qu H., Li J., Yao C., Wei W., et al. Recent advances in chemical analysis of licorice (Gan-Cao) Fitoterapia. 2021;149:104803. doi: 10.1016/j.fitote.2020.104803. [DOI] [PubMed] [Google Scholar]
- 48.Li K., Ji S., Song W., Kuang Y., Lin Y., Tang S., Cui Z., Qiao X., Yu S., Ye M. Glycybridins A-K, Bioactive Phenolic Compounds from Glycyrrhiza glabra. J. Nat. Prod. 2017;80:334–346. doi: 10.1021/acs.jnatprod.6b00783. [DOI] [PubMed] [Google Scholar]
- 49.Montoro P., Maldini M., Russo M., Postorino S., Piacente S., Pizza C. Metabolic profiling of roots of liquorice (Glycyrrhiza glabra) from different geographical areas by ESI/MS/MS and determination of major metabolites by LC-ESI/MS and LC-ESI/MS/MS. J. Pharm. Biomed. Anal. 2011;54:535–544. doi: 10.1016/j.jpba.2010.10.004. [DOI] [PubMed] [Google Scholar]
- 50.Frattaruolo L., Carullo G., Brindisi M., Mazzotta S., Bellissimo L., Rago V., Curcio R., Dolce V., Aiello F., Cappello A.R. Antioxidant and Anti-Inflammatory Activities of Flavanones from Glycyrrhiza glabra L. (licorice) Leaf Phytocomplexes: Identification of Licoflavanone as a Modulator of NF-kB/MAPK Pathway. Antioxidants. 2019;8:186. doi: 10.3390/antiox8060186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Cao Y. Master’s Thesis. Jilin Agricultural University; Jilin, China: 2015. Research on Chemical Components and α-glucosidase Inhibiting Activity of Huzhang. (In Chinese) [Google Scholar]
- 52.Qiu Z., Liu Z., Pang J., Wu H., Liu X., Yang Z., Li X., Chen J. A network pharmacology study with molecular docking to investigate the possibility of licorice against posttraumatic stress disorder. Metab. Brain Dis. 2021;36:1763–1777. doi: 10.1007/s11011-021-00816-2. [DOI] [PubMed] [Google Scholar]
- 53.Lu Y., Ding H., Shi Z., Lin H., Zhang G. Study on the mechanism of action of Ephedra Herba Decoction against influenza A virus based on network pharmacology. TMR Modern Herb. Med. 2022;5:0502001. doi: 10.53388/MHM2022A0502001. [DOI] [Google Scholar]
- 54.Qiao X., Song W., Ji S., Wang Q., Guo D., Ye M. Separation and characterization of phenolic compounds and triterpenoid saponins in licorice (Glycyrrhiza uralensis) using mobile phase-dependent reversed-phase×reversed-phase comprehensive two-dimensional liquid chromatography coupled with mass spectrometry. J. Chromatogr. A. 2015;1402:36–45. doi: 10.1016/j.chroma.2015.05.006. [DOI] [PubMed] [Google Scholar]
- 55.Qiao X., Liu C., Ji S., Lin X., Guo D., Ye M. Simultaneous determination of five minor coumarins and flavonoids in Glycyrrhiza uralensis by solid-phase extraction and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Planta Med. 2014;80:237–242. doi: 10.1055/s-0033-1360272. [DOI] [PubMed] [Google Scholar]
- 56.Li X., Liu H., Shao Y., Ma G., Song D., Xu G., Wang Z. Wide Identification of the Compounds in Licorice and Exploration of the Mechanism for Prostatitis Treatment by Combining UHPLC-LTQ-Orbitrap MS with Network Pharmacology. ChemistrySelect. 2019;4:3011–3017. doi: 10.1002/slct.201802661. [DOI] [Google Scholar]
- 57.Wang K., Meng Y., Lu X., Pang X., Wang Y., Ji S., Deng Z., Ma P. Study on the Mechanism of Mahuang (Ephedrae Herba)-Xingren (Armeniacae Semen Amarum) in the Treatment of Bronchial Asthma. J. Liaoning Univ. Tradit. Chin. Med. 2021;23:205–212. (In Chinese) [Google Scholar]
- 58.Fan J., Kuang Y., Dong Z., Yi Y., Zhou Y., Li B., Qiao X., Ye M. Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and α-Glucosidase Inhibitors. J. Nat. Prod. 2020;83:814–824. doi: 10.1021/acs.jnatprod.9b00262. [DOI] [PubMed] [Google Scholar]
- 59.Chin Y.W., Jung H.A., Liu Y., Su B.N., Castoro J.A., Keller W.J., Pereira M.A., Kinghorn A.D. Antioxidant constituents of the roots and stolons of licorice (Glycyrrhiza glabra) J. Agric. Food Chem. 2007;55:4691–4697. doi: 10.1021/jf0703553. [DOI] [PubMed] [Google Scholar]
- 60.Mitscher L.A., Park Y.H., Clark D., Beal J.L. Antimicrobial agents from higher plants. Antimicrobial isoflavanoids and related substances from Glycyrrhiza glabra L. var. typica. J. Nat. Prod. 1980;43:259–269. doi: 10.1021/np50008a004. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Data Availability Statement
The data presented in this study are available in article and Supplementary Materials. Additional data that support the findings of this study are also available on request from the corresponding author.