Skip to main content
Vaccines logoLink to Vaccines
. 2024 Apr 26;12(5):465. doi: 10.3390/vaccines12050465

New Onset and Exacerbation of Autoimmune Bullous Dermatosis Following COVID-19 Vaccination: A Systematic Review

Po-Chien Wu 1, I-Hsin Huang 1, Ching-Ya Wang 2, Ching-Chi Chi 1,3,*
Editor: Giuseppe Murdaca
PMCID: PMC11125893  PMID: 38793716

Abstract

Background: Cases of autoimmune bullous dermatosis (AIBD) have been reported following COVID-19 vaccination. Objective: We aimed to provide an overview of clinical characteristics, treatments, and outcomes of AIBDs following COVID-19 vaccination. Methods: We conducted a systematic review and searched the Embase, Cochrane Library, and Medline databases from their inception to 27 March 2024. We included all studies reporting ≥ 1 patient who developed new-onset AIBD or experienced flare of AIBD following at least one dose of any COVID-19 vaccine. Results: We included 98 studies with 229 patients in the new-onset group and 216 in the flare group. Among the new-onset cases, bullous pemphigoid (BP) was the most frequently reported subtype. Notably, mRNA vaccines were commonly associated with the development of AIBD. Regarding the flare group, pemphigus was the most frequently reported subtype, with the mRNA vaccines being the predominant vaccine type. The onset of AIBD ranged from 1 to 123 days post-vaccination, with most patients displaying favorable outcomes and showing improvement or resolution from 1 week to 8 months after treatment initiation. Conclusions: Both new-onset AIBD and exacerbation of pre-existing AIBD may occur following COVID-19 vaccination. Healthcare practitioners should be alert, and post-vaccination monitoring may be essential.

Keywords: autoimmune bullous dermatosis, bullous pemphigoid, mucous membrane pemphigoid, linear IgA bullous dermatosis, pemphigus vulgaris, pemphigus foliaceus, pemphigus erythematosus, pemphigus vegetans, COVID-19, vaccine

1. Introduction

To mitigate the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1,2,3], various vaccines have been rapidly developed, including mRNA vaccines (BioNTech/Pfizer (Comirnaty; BNT162b2) and Moderna (Spikevax; mRNA-1273)), viral-vectored vaccines (AstraZeneca (Covishield; AZD1222/ChAdOx1) and Johnson & Johnson (COVID-19 Vaccine Janssen; Ad26.COV2.S/JNJ-78436735)), and inactivated vaccines (Sinopharm (BBIBP-CorV) and Sinovac (CoronaVac)) [4,5,6]. With the introduction of global mass vaccination, reports of post-vaccination cutaneous adverse events have emerged, including injection site reactions, urticaria, and morbilliform eruptions [7,8,9,10,11]. Furthermore, cases of autoimmune bullous dermatosis (AIBD) have been documented [12,13,14,15].

AIBD is characterized by the presence of autoantibodies targeting specific adhesion molecules, such as desmoglein, BP180, or BP230, within the skin or mucosae [16]. Clinical manifestations of AIBD range from localized vesiculobullous eruption to widespread potentially life-threatening skin detachment [17]. Following COVID-19 vaccination, various subtypes of AIBD have been reported, including diseases with intraepidermal detachment, such as pemphigus vulgaris (PV), pemphigus foliaceus (PF), pemphigus erythematosus (PE), pemphigus vegetans (PVeg), as well as diseases with subepidermal detachment, such as bullous pemphigoid (BP), mucous membrane pemphigoid (MMP), and linear IgA bullous dermatosis (LABD) [6,18,19]. The potential association between COVID-19 vaccination and AIBD requires further investigation, and a comprehensive review of this topic is needed. Given the increasing number of COVID-19 vaccine administrations, we conducted a systematic review to provide an overview of the clinical characteristics, treatment, and outcomes of AIBDs following COVID-19 vaccination.

2. Methods

This systematic review was registered with PROSPERO (CRD42023390478), and it was performed in accordance with the updated Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [20,21,22]. Comprehensive searches were performed in the Embase, Cochrane Library, and Medline databases from their inception to 27 March 2024 using relevant terms, including ‘COVID-19’, ‘vaccine’, ‘autoimmune bullous dermatosis’, ‘vesiculobullous skin diseases’, ‘pemphigus’, ‘pemphigus vulgaris’, ‘pemphigus foliaceus’, ‘pemphigus erythematosus’, ‘bullous pemphigoid’, ‘mucous membrane pemphigoid’, and ‘linear IgA bullous dermatosis’. These terms were applied as free text, medical subject headings (MeSH in PubMed and Emtree in Embase), and abbreviations in the literature search. Boolean operators were used to combine keywords, and a primary search strategy was developed without language or publication data limitations (Table S1). Additionally, the reference lists of all identified articles were screened to identify further relevant studies.

We included studies reporting at least one patient who developed new-onset AIBD or experienced an exacerbation of AIBD following administration of at least one dose of any COVID-19 vaccine. Exacerbation was defined as the presence of increased body surface area involvement, the presence of vesiculobullous lesions or skin erythema, subjective worsening reported by the patient, worsening described in physical examination findings, or clinician assessment or plan indicating exacerbation, rebound, or worsening of AIBD compared to previous examination. Review articles, conference abstracts, and in vitro or animal model studies were excluded. Two experienced authors (Wu and Wang) independently conducted the literature search, data extraction, and quality assessments. Any discrepancies between the reviewers were resolved by a third author (Huang). The quality of case reports and series was assessed using the appraisal tool developed by Murad et al. [23], while observational studies were evaluated using the National Institute of Health quality assessment tool (Tables S2 and S3) [24].

Data extraction was performed independently by two authors (Wu and Wang) and included the following information from the included studies: author, year of publication, country, demographic information of patients (age and sex), blister sites, COVID-19 vaccination details (vaccine type and dose), onset time, classification of cases as new-onsets or exacerbations, AIBD subtype, other potential triggers, pathology examinations (Hematoxylin and Eosin stains and immunofluorescence study), enzyme-linked immunoassay (ELISA) results (such as BP180, BP 230, desmoglein [dsg] 1, and desmoglein 3), prior and post-exacerbation treatments, outcomes, and reactions to subsequent COVID-19 vaccination. The patient groups were further categorized based on the occurrence of new AIBD onset or exacerbation of AIBD, and all patients were classified according to AIBD subtypes.

3. Results

3.1. Literature Search

As shown in Figure 1, 333 studies were identified after searching three major databases and performing a manual search of the reference lists of identified studies. We excluded 91 studies as duplicates, and 75 studies were excluded for being unrelated to the study question after assessing the title or abstract. The full texts of the remaining 167 studies were reviewed, and 98 studies were identified as meeting the inclusion criteria for qualitative synthesis. A total of 74 studies reporting new-onset AIBD, 15 studies reporting exacerbation of AIBD, and 9 studies reporting both new onset and exacerbation of AIBD were included in this study (Table 1 and Table 2). The quality assessments of case reports and series consistently received scores ranging from five to seven according to the methodology proposed by Murad et al. [23]. For observational studies, all of the assessments were rated as ‘fair’ using the National Institute of Health quality assessment tool [24].

Figure 1.

Figure 1

PRISMA flowchart of the selection of studies.

Table 1.

Characteristics of the included studies reporting new onset of autoimmune bullous dermatosis.

Author, Year Country Age, Sex Blister Sites Vaccine (Dose) Onset Other Triggers Pathology DIF/IIF ELISA Treatment Outcome (Time) Further Vaccine
BP
Khalid 2021 [25] US 62 M 1st: trunk
2nd: trunk, limbs, genitalia
MOD (both) 1st: 14 d
2nd: 4 d
No new/change in meds, allergic hx eos NR NR NR NR Flare after both doses
Nakamura 2021 [26] Japan 83 F Trunk and limbs BNT (2nd) 3 d No DPP4i use SubE, eos DIF: IgG (linear)
IIF: NR
BP180+ SC, IVIG Improved (NR) NR
Pérez-López 2021 [27] Spain 78 F Face, trunk, and limbs BNT (both) 1st: 3 d
2nd: NR
NR NR NR NR TC, SC Improved (NR) Flare after both doses
Tomayko 2021 [28] US 97 F NR BNT (2nd) 2 d NR SubE, eos DIF: C3/IgG/IgA (linear)
IIF: NR
BP180+/230+ TC, DOX, NAM Improved (2 w) NR
US 75 M NR BNT (2nd) 10 d NR SubE, eos DIF: C3 (linear)
IIF: NR
BP180+ TC, SC, DOX, NAM Improved (3 w) NR
US 64 M NR BNT (2nd) 14 d NR SubE, eos DIF: C3 (linear)
IIF: NR
BP180+/230+ TC Improved (4 w) NR
US 82 M NR BNT (2nd) 1 d NR SubE, eos DIF: C3/IgG/IgA (linear)
IIF: NR
BP180−/230− TC Resolved (2 w) NR
US 95 F NR BNT (1st) 5 d NR SubE, eos DIF: C3/IgG/IgA (linear)
IIF: NR
BP180−/230− TC, DOX, NAM Resolved (8 w) No flare
US 87 M NR MOD (2nd) 21 d Alzheimer’s disease SubE, eos DIF: C3 (linear)
IIF: NR
BP180+/230+ SC, DOX, NAM Ongoing (105 d) NR
US 42 F NR MOD (2nd) 3 d NR SubE, eos DIF: C3/IgG/IgM (granular)
IIF: NR
BP180+/230+ TC, SC Ongoing (23 d) NR
US 85 M NR BNT (1st) 5 d NR SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR SC Ongoing (59 d) Not received
US 83 F NR MOD (1st) 8 d Major depression SubE, eos DIF: Negative
IIF: Negative
BP180−/230− TC, SC Ongoing (2 m) Not received
US 66 F NR BNT (both) 1st: 7 d
2nd: NR
NR SubE, eos DIF: Negative
IIF: Negative
BP180−/230− TC, SC Resolved (3 w) Flare after both doses
US 70 F NR MOD (1st) 9 d NR SubE, eos DIF: Negative
IIF: NR
NR SC Resolved (15 d) No flare
US 83 F NR BNT (2nd) 7 d Dementia SubE, eos NR NR TC, SC, DOX, NAM Ongoing (6 w) NR
Afacan 2022 [14] Turkey 88 F NR SINV (2nd) 30 d NR SubE DIF: C3/IgG (linear)
IIF: NR
NR TC, SC, MTX COVID-19 infection while tx NR
Turkey 82 F NR BNT (3rd) 14 d NR SubE DIF: C3/IgG (linear)
IIF: NR
NR TC, SC, Dapsone Improved (NR) NR
Turkey 65 M NR BNT (3rd) 14 d NR SubE DIF: C3/IgG (linear)
IIF: NR
NR TC, DOX Improved (NR) NR
Turkey 82 F NR SINV (2nd) 14 d NR SubE DIF: C3/IgG (linear)
IIF: NR
NR TC, SC Improved (NR) NR
Agharbi 2022 (1) [5] Morocco 77 M Scalp, trunk, and limbs AZ (1st) 1 d No past hx SubE DIF: IgG (linear)
IIF: IgG (linear)
NR TC, DOX Improved (NR) Not received
Alshammari 2022 [29] Saudi Arabia 78 M Limbs BNT (2nd) 1 d NR Eos DIF: C3/IgG/IgM (linear)
IIF: NR
NR TC, SC Died
(2 m)
NR
Avallone 2022 [30] Italy 72 M Trunk, lower limbs MOD (3rd) 20 d No predisposing factor SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR NR NR NR
Bailly-Caille 2022 [31] France 74 M Limbs MOD (both) 1st: 10 d
2nd: 2 d
No new meds SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180−/230−/COL7−/P200+ TC, Colchicine Resolved (6 m) NR
Bardazzi 2022 [32] Italy 76 F Back, right leg BNT (3rd) 12 d NR NR NR BP180+/230+ TC, SC Resolved (1 m) NR
Italy 79 F Trunk BNT (3rd) 9 d NR NR NR BP180+/230+ TC, SC, NAM Resolved (1 m) NR
Birabaharan 2022 [33] US 57 pts NR NR NR NR NR NR NR NR NR NR
Bostan 2022 [34] Turkey 67 M Generalized Inactivated (1st) 35 d Under vildagliptin, no past skin hx SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR Stop vildagliptin, SC, OMA Ongoing (8 m) Flare after both doses
Coto-Segura 2022 [19] Spain 86 M Trunk and limbs BNT (2nd) 17 d NR SubE, intraE, eos DIF: Negative
IIF: NR
NR TC, SC Resolved (NR) NR
Spain 85 M Trunk and limbs BNT (2nd) 8 d NR SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR TC, SC Resolved (NR) NR
Spain 84 M Trunk and limbs BNT (2nd) 7 d NR SubC, eos DIF: C3/IgG/IgM (linear)
IIF: NR
NR TC, SC Resolved (NR) NR
Daines 2022 [35] US 70s M Trunk, limbs, palms BNT (2nd) 1 d No new meds, DPP4i use SubE, eos DIF: C3/IgG (linear)
IIF: positive
BP180+/230− TC, SC, CYSP, MTX Improved
(5 m)
NR
Darrigade 2022 [36] France 4 pts NR NR NR NR NR NR NR NR NR NR
Dell’Antonia 2022 [37] Italy 83 M 1st: legs
2nd: trunk and limbs
BNT (both) 1st: 7 d
2nd: 3 d
No new meds or family hx, DPP4i use SubE, eos, lym DIF: C3 (linear)
IIF: NR
NR TC, SC Resolved (3 w) Flare after both doses
Desai 2022 [38] US 73 F 1st: NR
2nd: face, trunk, limbs
MOD (both) 1st: 1 d
2nd: 1 d
No allergic hx, recent illness, or family hx, no new meds SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR SC, MMF Improved (7 d) Flare after both doses
Fu 2022 [39] Taiwan 77 M Trunk and hands MOD (2nd) 21 d NR SubE, neu DIF: C3/IgG (linear)
IIF: negative
NR SC, CTX Improved (5 w) NR
Gambichler 2022 [40] Germany 80 M 1st: lower legs
2nd: trunk
BNT (both) 1st: 14 d
2nd: NR
No new meds SubE DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+/230+ SC NR Flare after both doses
Germany 89 M Entire integument BNT (1st) 2 d No new meds SubE DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+/230+ SC NR NR
Guo 2022 [13] China 67 F Generalized SINV (1st) 7 d No new meds, no family hx SubE, eos DIF: C3 (linear)
IIF: IgG (linear)
BP180+ TC, SC Improved (2 w) Flare after both doses
China 66 F Generalized SINV (1st) 10 d No past hx, no new meds SubE, eos, neu DIF: C3 (linear)
IIF: IgG (linear)
BP180+ TC, SC Improved (2 w) NR
Hali (1) 2022 [41] Morocco 51 M Trunk, lower limbs, oral mucosa AZ (2nd) 7 d No past hx, no new meds SubE, eos DIF: C3 (linear)
IIF: IgG (linear)
BP180+ SC Resolved (4 w) NR
Morocco 54 F Trunk, limbs, oral mucosa AZ (1st) 3 d No past hx, no new meds SubE, eos DIF: C3/IgG (linear)
IIF: C3/IgG (linear)
NR TC Improved (NR) Not received
Morocco 68 M 1st: vaccination site
2nd: trunk, limbs, oral, genital mucosa
AZ (both) 1st: 14 d
2nd: 7 d
No new meds, no family hx SubE, eos DIF: C3 (linear)
IIF: NR
NR SC Improved (1 m) NR
Hung 2022 [15] Taiwan 39 M Trunk, hands, and feet MOD (1st) 1 m NR SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
NR SC, DOX Resolved (NR) NR
Larson 2021 [42] US 76 M Legs BNT (both) 1st: 21 d
2nd: NR
No new meds, DPP4i use SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
NR TC, SC, DOX, NAM Improved (NR) Flare after both doses
US 84 M Trunk and limbs MOD (2nd) 14 d No new/change in meds, DPP4i use IntraE, eos DIF: C3/IgG (linear)
IIF: NR
NR TC, SC Improved (NR) NR
McMahon 2022 [4] US 12 pts Trunk, limbs, oral/genital mucosa MOD (n = 4)
BNT (n = 8)
NR NR SubE, eos DIF: C3/IgG (linear) (n = 5);
DIF: IgG (linear) (n = 1)
IIF: NR
BP180+ (n = 1) NR NR NR
Maronese 2022 (1) [43] Italy 84 F NR BNT (1st) 25 d NR SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+/230− TC, SC, DOX Resolved (3 m) NR
Italy 83 M NR BNT (1st) 32 d NR SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+/230+ TC, SC, DOX Resolved (3 m) NR
Italy 56 F NR MOD (1st) 7 d NR SubE, eos DIF: negative
IIF: IgG (linear)
BP180+/230+ TC, DOX Resolved (3 m) NR
Italy 79 M NR BNT (1st) 4 d NR SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+/230− TC, DOX Resolved (3 m) NR
Italy 86 M NR BNT (1st) 37 d NR SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+/230− TC Resolved (3 m) NR
Italy 91 M NR BNT (1st) 28 d NR SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180−/230− TC, SC Resolved (3 m) NR
Italy 86 M NR BNT (1st) 36 d NR SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR TC, SC, DOX Resolved (3 m) NR
Italy 84 F NR MOD (1st) 7 d NR SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+/230− TC, SC, DOX Resolved (3 m) NR
Italy 84 M NR BNT (1st) 23 d NR SubE, eos DIF: C3 (linear)
IIF: NR
BP180−/230− SC Resolved (3 m) NR
Italy 82 F NR BNT (1st) 34 d NR SubE, eos DIF: C3/IgG (linear)
IIF: NR
BP180−/230− SC Improved (3 m) NR
Italy 76 M NR BNT (1st) 34 d NR SubE, eos DIF: C3 (linear)
IIF: NR
BP180−/230− SC NR NR
Italy 78 M NR BNT (1st) 4 d NR SubE, eos DIF: NR
IIF: IgG (linear)
BP180+/230+ TC Resolved (3 m) NR
Italy 90 F NR BNT (1st) 28 d NR SubE, eos DIF: IgG (linear)
IIF: IgG (linear)
BP180+/230− TC, SC Improved (3 m) NR
Italy 90 M NR BNT (1st) 64 d NR SubE, eos DIF: C3 (linear)
IIF: negative
BP180−/230− SC Resolved (3 m) NR
Italy 72 M NR BNT (1st) 16 d NR SubE, eos DIF: C3 (linear)
IIF: negative
BP180+/230− TC, SC, MTX Improved (3 m) NR
Italy 80 M NR BNT (1st) 6 d NR SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
NR TC, SC Improved (3 m) NR
Italy 77 F NR AZ (1st) 3 d NR SubE, eos DIF: C3 (linear)
IIF: IgG (linear)
BP180+/230+ MTX Resolved (3 m) NR
Italy 60 F NR BNT (1st) 75 d NR SubE, eos DIF: C3 (granular)
IIF: IgG (linear)
BP180+/230+ SC Resolved (3 m) NR
Italy 70 F NR BNT (1st) 27 d NR SubE, eos DIF: C3 (linear)
IIF: IgG (linear)
BP180−/230− SC Improved (3 m) NR
Italy 72 F NR AZ (1st) 7 d NR SubE, eos NR NR SC, Dapsone Improved (3 m) NR
Italy 85 M NR BNT (1st) 27 d NR SubE, eos NR NR SC Ongoing (3 m) NR
Maronese 2022 (2) [44] Italy 85 M NR BNT (2nd) 28 d DPP4i use SubE, eos DIF: C3 (linear)
IIF: IgG (linear)
BP180+/230+ Stop DPP4i, TC, DOX Improved (1 m) NR
Italy 84 F NR BNT (1st) 28 d DPP4i use for years NR NR BP180−/230− Stop DPP4i, TC, SC, DOX Improved (1 m) NR
Italy 86 M NR BNT (2nd) 14 d DPP4i use for years NR NR BP180+/230− Stop DPP4i, TC, SC, DOX Improved (1 m) NR
Nakahara 2022 [45] Japan 71 M Neck and arms BNT (2nd) 40 d DPP4i use for years SubE, lym DIF: IgG (linear)
IIF: IgG (linear)
BP180+/COL7− Stop DPP4i, TC, SC, HCQ Resolved (4 w) NR
Nida 2022 [46] US 70 M Trunk and hands BNT (2nd) 2 d New meds of pimavanserin for PD SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR TC, SC Improved
(NR)
NR
Pauluzzi 2022 [47] Italy 46 M Trunk and upper limbs BNT (1st) 15 d No past hx, no new meds SubE, eos DIF: C3 (linear)
IIF: NR
BP180+ SC, AZA Improved (7 w) Not received
Russo 2022 [48] Italy 75 M Cutaneous BNT (1st) 2 d DPP4i use NR NR NR Stop DPP4i, TC Improved (NR) NR
Savoldy 2022 [49] US 78 M 1st: back
2nd: trunk, limbs
NR (both) 1st: 7 d
2nd: NR
No new meds, but polypharmacy SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR TC, SC, DOX, Dupi Improved (3 m) Flare after both doses
Schmidt 2022 [50] Switzerland 84 F Both: trunk and limbs MOD (both) 1st: days
2nd: NR
No new meds, but polypharmacy SubE, eos NR BP180+/230+ NR NR Flare after both doses
Shakoei 2022 [51] Iran 85 F Trunk and limbs SINP (1st) 20 d No allergic, past hx, no new meds NR NR NR TC, DOX Improved (NR) NR
Iran 91 M Mucocutaneous SINP (1st) 19 d No allergic, past hx, no new meds NR NR NR TC, RIX Improved (NR) NR
Shanshal 2022 [52] The UK 90 F Both: trunk, limbs BNT (both) 1st: 7 d
2nd: NR
No past skin hx, no new meds SubE, eos DIF: C3 (linear)
IIF: IgG (linear)
NR 1st: TC
2nd: SC
Ongoing
(2 m)
Flare after both doses
Wan 2022 [53] Canada 50 F 3rd: face, neck, trunk, limbs, oral and genital mucosa BNT (2nd)
MOD (3rd)
2nd: 14 d
3rd: 1 d
No new meds SubE, eos, lym DIF: C3/IgG (linear)
IIF: NR
NR SC, MTX Improved (16 w) NR
Canada 82 M Limbs BNT (both) 1st: 10 d
2nd: 3 d
No new meds SubE, eos, neu, lym DIF: C3/IgG (linear)
IIF: NR
NR TC Resolved (2 w) Flare after both doses, no flare after the 3rd dose of MOD
Young 2022 [54] Malta 68 M Trunk and oral mucosa BNT (both) 1st: 3 d
2nd: NR
No past hx SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR SC, TC Resolved (3 m) Flare after both doses
Zhang 2022 [55] China 23 M Generalized SINP (3rd) 1 d NR SubE, eos DIF: C3/IgG (linear)
IIF: positive
BP180+/230+ SC Improved (7 d) NR
China 81 M Limbs and oral mucosa SINP (3rd) 15 d NR SubE DIF: C3/IgG (linear)
IIF: NR
BP180+ SC, IVIG Improved (NR) NR
Baffa 2023 [56] Italy 91 F Trunk, limbs, and oral mucosa BNT (2nd) 10 d No new meds SubE, eos DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+ TC, SC, AZA, RIX, Dupi Resolved (3 m) NR
Cowan 2023 [57] Australia 82 M NR AZ (2nd) 31 d NR NR NR NR NR NR NR
Australia 62 M NR BNT (3rd) 123 d NR NR NR NR NR NR NR
Australia 71 M NR AZ (2nd) 26 d NR NR NR NR NR NR NR
Australia 60 F NR AZ (2nd) 5 d NR NR NR NR NR NR NR
Dawoud 2023 [58] Saudi Arabia 86 M Generalized AZ (1st) 1 m NR SubE, eos DIF: C3/IgG (linear)
IIF: NR
BP180+/230+ TC, DOX, SC Improved (7 w) NR
Saudi Arabia 76 M Hands and feet BNT (1st) 2 wk NR SubE, eos DIF: C3/IgG (linear)
IIF: NR
BP180+/230+ TC, DOX, SC Improved (7 w) NR
Hsieh 2023 [12] Taiwan 94 F Feet, palms, thigh MOD (1st) 18 d No new meds Lym, eos DIF: C3 (linear)
IIF: negative
BP180+ TC, SC, KMnO4 Improved (NR) NR
Mulianto 2023 [59] Indonesia 11 M Generalized SINV (NR) 4 d No allergic history or family hx SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR SC, ERY Improved (2 m) NR
Sun 2023 [60] Portugal 79 F Trunk, limbs, mucosa BNT (2nd) 3 d No past skin hx, no new meds SubE, eos, neu DIF: C3/IgG (linear)
IIF: NR
BP180+ TC, SC, IVIG, DOX, MMF Improved (2 w) NR
Topal 2023 [61] Turkey 6 pts (>50 y, 4 F, 2 M) NR BNT (2nd) (n = 1)
SINV (1st) (n = 2)
SINV (2nd) (n = 3)
NR NR NR NR NR NR NR NR
Üstün 2023 [62] Turkey 41 F Trunk, limbs BNT (1st) 2 wk No hx of infection or drug use SubE, eos DIF: C3/IgG (linear)
IIF: NR
NR TC, SC Resolved (3.5 m) NR
Diab 2024 [63] Iran 70 F NR SINP (1st) 20 d NR NR NR NR SC Improved (60 d) NR
Iran 77 F NR SINP (2nd) 30 d NR NR NR NR SC, RIX Improved (45 d) NR
Yamamoto 2024 [64] Japan 72 M Thigh BNT (3rd) 1 d NR SubE, eos DIF: C3/IgG
IIF: NR
BP180+ SC Improved (NR) NR
PGes
Mustin 2023 [65] Georgia 36 F Trunk and limbs BNT (2nd) 10 d Pregnancy, no past skin hx SpD DIF: C3/IgG (linear)
IIF: IgG (linear)
BP180+/BP230− TC, SC, IVIG Resolved (7 m) NR
MMP
Darrigade 2022 [36] France 1 pt NR NR NR NR NR NR NR NR NR NR
Rungraungrayabkul 2023 [66] Thailand 74 F Oral mucosa BNT (1st) 3 wk No past medical hx, no meds SubE DIF: C3/IgG (linear)
IIF: NR
NR TC, DOX Improved (2 w) Not received
Calabria 2024 [67] Italy 72 F Oral mucosa BNT (3rd) 9 d Breast cancer treated with aromatase inhibitor, osteoporosis treated with denosumab SubE DIF: IgA/IgG (linear), C3 (granular)
IIF: NR
BP180+/BP230− TC, SC Resolved (6 w) NR
LABD
Coto-Segura 2022 [19] Spain 71 M Thighs BNT (2nd) 3 d No concomitant meds SubE, eos DIF: IgA (linear) NR TC Resolved (NR) NR
Hali (2) 2022 [68] Morocco 61 M Trunk, lower limbs, and oral and genital mucosa AZ (2nd) 3 d No infection, no new meds SubE, eos, lym DIF: IgA (linear)
IIF: IgA (linear)
Dsg1−/3−/BP180− SC Improved (NR) NR
Han 2022 [69] US 86 F Neck, trunk, and limbs MOD (3rd) 1 d New meds of oral terbinafine for tinea pedis SubE, neu DIF: IgA (linear)
IIF: NR
NR TC, SC Resolved (20 d) NR
Nahm 2023 [70] US 66 M Trunk and limbs MOD (3rd) 5 d No new meds SubE, eos, neu DIF: IgA/IgM (linear)
IIF: IgA
BP180−/230− TC, SC, Dapsone Resolved (3 m) NR
PV
Solimani 2021 [71] Asian 40 F Trunk, back, and oral mucosa BNT (both) 1st: 5 d
2nd: 3 d
No skin disease hx, no new meds IntraE, lym, plasma cells DIF: IgG (IC)
IIF: NR
Dsg1+/3+ SC, AZA Improved (NR) Flare after both doses
Agharbi 2022 (2) [72] Morocco 72 F Head, neck, trunk, limbs, and oral mucosa BNT (2nd) 7 d No past hx, no new meds SupraB, lym DIF: C3/IgG (IC)
IIF: positive
Dsg1+/3+ SC, AZA Resolved (3 w) NR
Akoglu 2022 [6] Turkey 69 F Mucocutaneous SINV (2nd) 7 d No COVID-19 infection/exposure or meds SupraB DIF: IgG (IC)
IIF: NR
Dsg1+/3+ TC, MTX Resolved (12 w) NR
Aryanian 2022 [73] Iran 43 M Scalp, face, and oral mucosa AZ (2nd) 2 d No past hx, no new meds NR NR NR SC, AZA Improved (NR) NR
Calabria 2022 [74] Italy 60 F Oral mucosa BNT (2nd) 7 d NR SupraB, lym, eos DIF: IgG (IC)
IIF: NR
Dsg1−/3+ SC, RIX Improved (3 w) NR
Corrá 2022 [75] Italy 61 F Face and lower trunk BNT (3rd) 3 d No past skin hx SupraB DIF: C3/IgG (IC)
IIF: IgG (IC)
Dsg1+/3+ SC NR NR
Italy 73 F Oral mucosa BNT (3rd) 28 d No new meds NR DIF: C3/IgG (IC)
IIF: IgG (IC)
Dsg1−/3+ SC, RIX NR NR
Italy 63 F Oral mucosa AZ (both) 1st: 28 d
2nd: 4 d
No past skin hx IntraE DIF: C3/IgG (IC)
IIF: IgG (IC)
Dsg1+/3+ SC, RIX Improved (8 w) Flare after both doses
Das 2022 [76] India NR NR AZ (2nd) 14 d NR NR NR NR NR NR NR
Hali (1)2022 [41] Morocco 58 F Face, trunk, lower limbs, oral and genital mucosa BNT (1st) 1 m NR IntraE, lym, eos DIF: C3/IgG (IC)
IIF: NR
NR SC Improved
(NR)
NR
Hatami 2022 [77] Iran 34 M Oral mucosa AZ (NR) days No past hx NR NR NR SC, AZA NR NR
Knecht 2022 [78] Switzerland 89 M Trunk, left arm, oral mucosa BNT (2nd) 30 d Worsened post urology procedure under GA, no past hx SupraB, lym, his DIF: IgG (IC)
IIF: NR
Dsg1+/3+ SC, RIX Resolved (10 w) NR
Koutlas 2022 [79] US 60 M Oral mucosa MOD (2nd) 7 d No past hx SupraB DIF: C3/IgG (IC)
IIF: IgG (IC)
Dsg1−/3− SC, RIX Resolved (1 m) NR
Norimatsu 2022 [80] Japan 86 M Face, back, upper limbs BNT (2nd) 1 d No new meds SupraB DIF: IgG (IC)
IIF: NR
Dsg1+/3+ TC, SC Improved (42 d) NR
Saffarian 2022 [81] US 76 F Scalp, upper trunk, oral and genital mucosa SINP (2nd) 30 d No past skin hx, no new meds, no DPP4i use SupraB, eos, lym DIF: C3/IgG (IC)
IIF: NR
Dsg1−/3− SC, RIX Improved (NR) NR
Shakoei 2022 [51] Iran 30 F Oral mucosa SINP (1st) 16 d No past hx, no new meds NR NR NR SC, RIX Improved (NR) NR
Singh 2022 [82] India 44 M Face, neck, trunk, oral mucosa AZ (2nd) 7 d No past hx, no new meds SupraB NR Dsg3+ SC, AZA, IVIG Improved (1 m) NR
Thongprasom 2022 [83] Thailand 38 F Oral mucosa AZ (1st) 7 d No allergic hx NR NR NR TC, steroid mouthwash Improved (1 w) NR
Cowan 2023 [57] Australia 49 F NR BNT (3rd) 92 d NR NR NR NR NR NR NR
Hui 2023 [84] China 49 F 1st: scalp
2nd: whole body, oral mucosa
SINV (both) 1st: 2 d
2nd: NR
No past hx IntraE, eos DIF: IgG (IC)
IIF: NR
Dsg1+/3+ SC, AZA, IVIG, MTX, RTX Improved (8 w) NR
Khalayli 2023 [85] Syria 50 F Limbs, oral and genital mucosa mRNA (2nd) 10 d No past hx, no family hx SupraB DIF: IgG
IIF: NR
NR TC, SC Improved (3 w) NR
Norimatsu 2023 [80] Japan 86 M Lumbar region, left arm, face BNT (2nd) 1 d Concurrent w/hypopharyngeal and gastric ca IntraE DIF: IgG (IC)
IIF: NR
Dsg1+/3+ TC, SC Improved
(42 d)
NR
Diab 2024 [63] Iran 45 M Oral mucosa BIV1 (2nd) 20 d NR NR NR NR SC, RIX Improved (60 d) NR
PF
Alami 2022 [86] Morocco 44 M Face, trunk and limbs SINP (both) 1st: 7 d
2nd: NR
No past hx, no new meds IntraE DIF: IgG (IC)
IIF: NR
Dsg1+/3−/ICSA+ SC, AZA NR Flare after both doses
Corrá 2022 [75] Italy 80 M Face and trunk BNT (3rd) 17 d No past skin hx, no new meds SubC, neu DIF: Negative
IIF: IgG (IC)
Dsg1+ SC, RIX, MMF NR NR
Italy 66 F Trunk BNT (2nd) 28 d No past skin hx SubC, neu DIF: IgG (IC)
IIF: Negative
Negative SC, MMF NR No flare
Gui 2022 [87] US 67 F Trunk MOD (2nd) 14 d No past skin hx IntraE DIF: C3/IgG (IC)
IIF: positive
Dsg1+/3− TC, SC Improved (2 m) NR
Hali (1) 2022 [41] Morocco 50 F Scalp and trunk BNT (2nd) 15 d No past hx, no new meds SubC, eos DIF: C3/IgG (IC)
IIF: positive
NR SC Resolved (3 w) NR
Lua 2022 [88] Singapore 83 M Scalp, face, trunk, and limbs BNT (2nd) 2 d No past skin hx SpD, eos, plasma cells DIF: C3 (IC)
IIF: IgG (IC)
Dsg1+/3− SC Improved
(NR)
NR
Pourani 2022 [89] Iran 75 M Face and trunk SINP (3rd) 14 d No new meds, no hx of COVID-19 pneumonia IntraE DIF: C3/IgG (IC)
IIF: NR
NR TC, RIX Improved (4 w) NR
Reis 2022 [90] Caucasian 35 F Scalp, upper trunk BNT (2nd) 2 w No past hx SubC DIF: C3/IgG (IC)
IIF: positive
Dsg1+/3− TC, SC Improved (8 m) NR
Rouatbi 2022 [91] Tunisia 70 M Scalp, trunk, and limbs BNT (3rd) 7 d No past skin hx IntraE DIF: C3/IgG (IC)
IIF: NR
Dsg1+/3− TC, SC Improved
(3 w)
NR
Tunisia 48 M 1st: scalp
2nd: face, trunk
AZ (both) 1st: 5 d
2nd: NR
No past hx, no new meds IntraE DIF: C3/IgG (IC)
IIF: NR
Dsg1+/3− TC, SC Resolved (6 m) Flare after both doses
Yildirici 2022 [92] Turkey 65 M 1st: scalp, trunk
2nd: neck and trunk
BNT (both) 1st: 30 d
2nd: 14 d
Valsartan-hydrochlorothiazide started 4 m ago IntraE, neu DIF: C3/IgG (IC)
IIF: NR
Dsg1+/3− SC, AZA Improved (2 w) Flare after both doses
Almasi-Nasrabadi 2023 [93] The UK 62 F Face, trunk, and limbs AZ (both) 1st: 7 d
2nd: 2 d
No past hx, no new meds SubC, neu DIF: IgG (IC)
IIF: NR
NR SC, MMF Improved (NR) Flare after both doses
Pham 2023 [94] Vietnam 53 F Face, trunk, limbs AZ (4th) 3 w HTN, no new meds, no family hx SupraB, lym, neu DIF: C3/IgG (IC)
IIF: NR
NR SC, RIX Improved (1 m) NR
Vietnam 30 F Face, neck, trunk MOD (2nd) 2 m No family hx SupraB DIF: C3/IgG (IC)
IIF: NR
NR TC, SC, TCI Resolved (4 m) NR
Weschawalit 2023 [95] Thailand NR NR AZ (NR) NR NR SubC, neu, eos DIF: C3/IgG (IC)
IIF: NR
NR NR NR NR
Diab 2024 [63] Iran 30 F Trunk SINP (2nd) 14 d NR IntraE NR NR RIX Improved (30 d) NR
PE
Falcinelli 2022 [96] Italy 63 F Scalp, face, and upper trunk BNT (2nd) 2 d NR SubC DIF: IgG (IC)
IIF: NR
NR SC NR NR
PVeg
Gui 2022 [87] Asian 25 M Face, trunk, limbs, oral and genital mucosa BNT (2nd) 30 d No past hx SupraB, acan DIF: C3/IgG (IC)
IIF: IgG (IC)
Dsg1+/3+ TC, ILOBTX, SC, MMF Resolved (6 m) NR
IgA pemphigus
Lansang 2023 [97] Canada 64 M Back, left leg MOD (NR) 20 d No new meds SpD, eos, acantholysis DIF: C3/IgA/IgG (IC)
IIF: NR
NR TC, IMT Improved (NR) NR
Not specified
Kianfar 2022 [98] Iran 5 pts NR NR (1st) (n = 3)
NR (2nd) (n = 2)
NR NR NR NR NR NR NR NR

acan, acanthosis; AZ, the Oxford-AstraZeneca vaccine; AZA, azathioprine; BIV1, BIV1-CovIran vaccine; BNT, the Pfizer BioNTech (BNT162b2) vaccine; BP, bullous pemphigoid; COL, collagen; CTX, cyclophosphamide; CYSP, cyclosporine; d, day; DIF, direct immunofluorescence; DOX, doxycycline; DPP4i, dipeptidyl peptidase-IV inhibitor; Dsg, desmoglein; Dupi, dupilumab; ELISA, enzyme-linked immunosorbent assay; eos, eosinophils infiltration; ERY, erythromycin; GA, general anesthesia; HCQ, hydroxychloroquine; his, histiocytes infiltration; hx, history; IC, honey-comb-like intercellular pattern; ICSA, anti-intercellular cement substance antibodies; IgG, immunoglobulin G; IIF, indirect immunofluorescence; ILOBTX, intralesional injections of onabotulinum toxin; IntraE, intraepidermal acantholysis; IVIG, intravenous immunoglobulin; IMT, intramuscular triamcinolone; LABD, linear IgA bullous dermatosis; linear, linear pattern along dermo-epidermal junction; lym, lymphocytes infiltration; meds, medications; MMF, mocophenolate mofetil; MMP, mucous membrane pemphigoid; MOD, the mRNA-1273 vaccine; MTX, methotrexate; NAM, nicotinamide; neu, neutrophils infiltration; NR, not recorded; OMA, omalizumab; PD, Parkinson’s disease; PE, pemphigus erythematosus; PF, pemphigus foliaceus; pts, patients; PGes, pemphigoid gestationis; PV, pemphigus vulgaris; PVeg, pemphigus vegetans; SC, systemic corticosteroids; SINP, the Sinopharm BBIBP-CorV vaccine; SINV, the Sinovac CoronaVac vaccine; SpD, spongiotic dermatitis; SubC, subcorneal acantholysis; subE, subepidermal acantholysis; SupraB, suprabasal acantholysis; TC, topical corticosteroids; TCI, topical calcineurin inhibitor; w, week; y, year.

Table 2.

Characteristics of the included studies reporting exacerbation of autoimmune bullous dermatosis.

Author, Year Country Age, Sex Blister Sites Vaccine (Dose) Onset Other Triggers Pathology DIF/IIF ELISA Prior tx Tx after Flare Outcome (Time) Further Vaccine
BP
Damiani 2021 [18] Italy 63 F Trunk MOD (1st) 1 d NR NR NR NR SC SC NR No flare
Italy 84 M Widespread, oral mucosa MOD (both) 14 d NR NR NR NR SC, AZA SC NR Flare after both doses
Italy 82 F Arms, legs BNT (1st) 3 d NR NR NR NR SC, MMF SC NR No flare
Tomayko 2021 [28] US 83 M NR BNT (1st) 7 d NR NR NR NR NR TC, SC Ongoing (45 d) Not received
Afacan 2022 [14] Turkey 74 F NR SINV (1st) 7 d NR SubE DIF: C3/IgG (linear)
IIF: NR
NR NR TC, SC, DOX, MTX Improved (NR) NR
Turkey 65 F NR SINV (2nd) 7 d NR SubE DIF: C3/IgG (linear)
IIF: NR
NR NR TC, MTX Improved (NR) NR
Turkey 71 M NR SINV (2nd) 45 d NR SubE DIF: C3/IgG (linear)
IIF: NR
NR NR TC, SC, AZA Improved (NR) NR
Bardazzi 2022 [32] Italy 57 F Trunk, arms MOD (3rd) 7 d NR NR NR BP180+/230+ NR TC, SC, NAM Resolved (1 m) NR
Italy 62 M Trunk, arms BNT (3rd) 7 d NR NR NR BP180+/230+ NR TC, SC, NAM Resolved (1 m) NR
Happaerts 2022 [99] Caucasian 75 M Right arm and left buttock AZ (1st) 10 d Intake of NSAID once, concomitant AHA, history of COVID-19 pneumonia NR NR NR SC, NAM, DOX SC, EMI,
rFVII, RIX
Died (15 d) Not received
Juay 2022 [100] Singapore 70 F NR BNT (1st) 14 d No new meds, no infection NR NR NR SC TC, SC NR NR
Martora 2022 [101] Italy 4 pts
(60–80 *, 3M1F)
NR BNT (2nd) (n = 3)
MOD(1st) (n = 1)
5–8 d * NR NR NR NR SC+AZA (n = 2)
AZA (n = 2)
SC±AZA Improved (NR) No flare
Massip 2022 [102] France 3 pts NR NR 1.5–3 d * NR NR NR NR NR NR NR NR
Cowan 2023 [57] Australia 82 M NR AZ (NR) 92 d NR NR NR NR NR NR NR NR
Australia 83 M NR BNT (NR) 90 d NR NR NR NR NR NR NR NR
Australia 86 F NR BNT (NR) 91 d NR NR NR NR NR NR NR NR
Rasner 2023 [103] USA 88 M Trunk, limbs BNT (2nd) 1 d No COVID-19 infection NR IIF: IgG BP180-; BP230+ TC, SC SC Improved (5 w) NR
USA 69 M Limbs MOD (2nd) 14 d Erythrodermic psoriasis, COVID-19 infection 4 m before NR NR NR CsA, ADA TC, ADA Resolved (6 w) NR
EBA
Minakawa 2023 [104] Japan 20 F Face, trunk, upper arms, lip mRNA (1st) 2 d No medical hx SubE, neu DIF: C3/IgG/IgM (linear)
IIF: IgG/IgM
BP180-/BP230-/type VII collagen- SC SC Improved (1 w) NR
PV
Damiani 2021 [18] Italy 40 M Back and upper limbs MOD (1st) 3 d NR NR NR NR RIX SC, MMF NR No flare
Italy 80 M Back BNT (1st) 3 d NR NR NR NR SC, MMF SC NR No flare
Akoglu 2022 [6] Turkey 58 F Mucocutaneous SINV (both) days No COVID-19 infection/exposure or medical tx SupraB DIF: IgG (IC)
IIF: NR
Dsg1+/3+ Multiple IMMs SC, IVIG Resolved (NR) Flare after both doses
Turkey 31 F Scalp, genital and oral mucosa BNT (1st) 7 d No COVID-19 infection/exposure or medical tx SupraB DIF: IgG (IC)
IIF: NR
Dsg1+/3+ TC SC Resolved (8 w) NR
Avallone 2022 [105] Italy 46 M Trunk, arms, oral mucosa BNT (both) 1st: 5 d
2nd: 5 d
NR SupraB DIF: IgG (IC)
IIF: NR
Dsg1+/3+ SC, AZA SC, RIX Ongoing (NR) Flare after both doses
Hatami 2022 [77] Iran 61 M Scalp and trunk AZ (NR) 7 d NR NR NR NR RIX SC NR NR
Martora 2022 (2) [106] Italy 7 pts
(55–71 *, 4M3F)
NR BNT (1st) (n = 2)
BNT (2nd) (n = 3)
MOD (1st) (n = 2)
5–11 d * NR NR NR NR SC (n = 1), AZA(n = 6) SC NR NR
Ong 2022 [107] Asian 46 F Scalp, trunk, limbs, and oral mucosa MOD (1st) 7 d NR NR NR Dsg1+/3+ RIX SC Improved (NR) No flare
Saleh 2022 [108] Egypt 35 F NR SINP (2nd) 5 d NR NR NR NR SC RIX Improved (NR) NR
Shakoei 2022 [51] Iran 28 F Mucocutaneous SINP (1st) 14 d No new meds NR NR NR SC SC, RIX Improved (NR) NR
Chen 2023 [109] Taiwan 39 M Trunk, limbs, oral mucosa BNT (1st) 7 d NR IntraE DIF: IgG (IC)
IIF: NR
NR TC SC, RIX, AZA Improved (NR) Not received
Cowan 2023 [57] Australia 32 F NR BNT (NR) 6 d NR NR NR NR NR NR NR NR
Australia 73 M NR BNT (NR) 15 d NR NR NR NR NR NR NR NR
Ligrone 2023 [110] Italy 56 F Generalized MOD (3rd) 5 d NR IntraE, supraB DIF: IgG (IC)
IIF: NR
Dsg1+/3+ SC SC, RIX Improved (3 w) NR
PF
Salmi 2022 [111] Oman NR NR BNT (NR) 2 d NR NR NR NR NR NR NR NR
Rasner 2023 [103] USA 50 F NR BNT (both) 1st: 1 w NR NR IIF: negative Dsg1+ Not received TC, SC Improved (10 w) NR
Pemphigus
Massip 2022 [102] France 2 pts NR NR 18 d NR NR NR NR NR NR NR NR
Özgen 2022 [112] Turkey 18 pts NR SINV (n = 7)
BNT (n = 11)/
1st (n = 15)
2nd (n = 3)
NR NR NR NR NR NR NR NR NR
Not specified
Kasperkiewicz 2023 [113] US 84 pts NR NR (3rd) NR NR NR NR NR NR NR NR NR
Kianfar 2022 [98] Iran 66 pts NR NR NR NR NR NR NR NR NR NR NR

*, range; AHA, acquired hemophilia A; AZA, azathioprine; BNT, the Pfizer BioNTech (BNT162b2) vaccine; BP, bullous pemphigoid; d, day; DIF, direct immunofluorescence; DOX, doxycycline; DPP4i, dipeptidyl peptidase-IV inhibitor; dsg, desmoglein; EBA, epidermolysis bullosa acquisita; ELISA, enzyme-linked immunosorbent assay; EMI, emicizumab; IC, intercellular pattern; IgG, immunoglobulin G; IIF, indirect immunofluorescence; IMMs, immunomodulators; IVIG, intravenous immunoglobulin; JJ, recombinant adenoviral vector-based Johnson & Johnson vaccine; LABD, linear IgA bullous dermatosis; MMF, mycophenolate mofetil; MOD, the mRNA-1273 vaccine; NAM, nicotinamide; NSAID, nonsteroidal anti-inflammatory drug; PF, pemphigus foliaceus; pts, patients; PV, pemphigus vulgaris; PVeg, pemphigus vegetans; rFVII, recombinant activated factor VII; RIX, rituximab; SC, systemic corticosteroids; SINP, the Sinopharm BBIBP-CorV vaccine; SINV, the Sinovac CoronaVac vaccine; SupraB, suprabasal acantholysis; Tx, treatment; w, week; y, year.

3.2. Patient Characteristics

Detailed patient information is presented in Table 1 and Table 2. The characteristics of the included studies are summarized in Table 3. The new-onset group comprised 229 patients, mostly from America, with ages ranging from 11 to 97 years. Although most studies did not report patients’ sex, a slight male predominance was noted among those that did. The most frequently encountered diagnosis in the group was BP in 174 patients, followed by PV in 23 and PF in 16.

Table 3.

Summary of characteristics of the included studies.

AIBD Type Study (n) Patient (n) Country Age * Sex Vaccine Dose Onset * Outcome Time to Improvement/Resolution * Further Vaccine
New onset
BP 47 174 Asia 30 (17.24%)
Africa 4 (2.30%)
America 90 (51.72%)
Europe 46 (26.44%)
Oceania 4 (2.30%)
11–97 M 58 (57.43%)
F 43 (42.57%)
NR 73
AZ 10 (8.93%)
MOD 19 (16.96%)
SINV 10 (8.93%)
SINP 6 (5.36%)
Inactivated 1 (0.89%)
BNT 66 (58.93%)
NR 62
1st 44 (44.00%)
2nd 32 (32.00%)
3rd 9 (9.00%)
Both 15 (15.00%)
NR 74
1 d–123 d Died 1 (1.18%)
Improved 44 (51.76%)
Resolved 31 (36.47%)
Ongoing 8 (9.41%)
Other 1 (1.18%)
NR 89
1 w–6 m No flare (2nd) 2 (9.52%)
Flare (both) 14 (66.67%)
Not received 5 (23.81%)
NR 153
PGes 1 1 Europe 1 (100.00%) 36 F 1 (100.00%) BNT 1 (100.00%) 2nd 1 (100.00%) 10 d Resolved 1 (100.00%) 7 m NR 1
MMP 3 3 Asia 1 (33.33%)
Europe 2 (66.67%)
72–74 F 2 (100.00%)
NR 1
BNT 2 (100.00%)
NR 1
1st 1 (50.00%)
3rd 1 (50.00%)
NR 1
9 d–3 w Improved 1 (50.00%)
Resolved 1 (50.00%)
NR 1
2 w–6 w Not received 1 (100.00%)
NR 2
LABD 4 4 Africa 1 (25.00%)
America 2 (50.00%)
Europe 1 (25.00%)
61–86 M 3 (75.00%)
F 1 (25.00%)
AZ 1 (25.00%)
MOD 2 (50.00%)
BNT 1 (25.00%)
2nd 2 (50.00%)
3rd 2 (50.00%)
1 d–5 d Improved 1 (75.00%)
Resolved 3 (25.00%)
20 d–3 m NR 4
PV 21 23 Asia 13 (56.52%)
Africa 2 (8.70%)
America 2 (8.70%)
Europe 5 (21.74%)
Oceania 1 (4.35%)
30–89 M 8 (36.36%)
F 14 (63.64%)
NR 1
AZ 6 (26.09%)
MOD 1 (4.35%)
SINV 2 (8.70%)
SINP 2 (8.70%)
BNT 10 (43.48%)
BIV1 1 (4.35%)
mRNA 1 (4.35%)
1st 3 (13.64%)
2nd 13 (59.09%)
3rd 3 (13.64%)
Both 3 (13.64%)
NR 1
1 d–92 d Improved 14 (77.78%)
Resolved 4 (22.22%)
NR 5
1 w–12 w Flare (both) 2 (100.00%)
NR 21
PF 13 16 Asia 7 (43.75%)
Africa 4 (25.00%)
America 1 (6.25%)
Europe 4 (25.00%)
30–83 M 7 (46.67%)
F 8 (53.33%)
NR 1
AZ 4 (25.00%)
MOD 2 (12.5%)
SINP 3 (18.75%)
BNT 7 (43.75%)
2nd 7 (46.67%)
3rd 3 (20.00%)
4th 1 (6.67%)
Both 4 (26.67%)
NR 1
2 d–2 m Improved 9 (75.00%)
Resolved 3 (25.00%)
NR 4
2 w–8 m No flare (2nd) 1 (20.00%)
Flare (both) 4 (80.00%)
NR 11
PE 1 1 Europe 1 (100%) 63 F 1 (100.00%) BNT 1 (100.00%) 2nd 1 (100.00%) 2 d NR 1 NR NR 1
PVeg 1 1 Asia 1 (100%) 25 M 1 (100.00%) BNT 1 (100.00%) 2nd 1 (100.00%) 30 d Resolved 1 (100.00%) 6 m NR 1
IgA pemphigus 1 1 America 1 (100.00%) 64 M 1 (100.00%) MOD 1 (100.00%) NR 1 20 d Improved 1 (100.00%) NR NR 1
Not specified 1 5 Asia 5 (100.00%) NR NR 5 NR 5 1st 3 (60.00%)
2nd 2 (40.00%)
NR NR 5 NR NR 5
Total 83 229 Asia 57 (24.89%)
Africa 11 (4.80%)
America 96 (41.92%)
Europe 60 (26.20%)
Oceania 5 (2.18%)
11–97 M 78 (52.70%)
F 70 (47.30%)
NR 81
AZ 21 (13.04%)
MOD 25 (15.53%)
SINV 12 (7.45%)
SINP 11 (6.83%)
Inactivated 1 (0.62%)
BNT 89 (55.28%)
BIV1 1 (0.62%)
mRNA 1 (0.62%)
NR 68
1st 51 (33.77%)
2nd 59 (39.07%)
3rd 18 (11.92%)
4th 1 (0.66%)
Both 22 (14.57%)
NR 78
1 d–123 d Died 1 (0.81%)
Improved 70 (56.45%)
Ongoing 8 (6.45%)
Other 1 (0.81%)
Resolved 44 (35.48%)
NR 105
1 w–8 m No flare (2nd) 3 (10.34%)
Flare (both) 20 (68.97%)
Not received 6 (20.69%)
NR 200
Flare
BP 10 23 Asia 4 (17.39%)
America 3 (13.04%%)
Europe 13 (56.52%)
Oceania 3 (13.04%)
57–88 M 12 (60.00%)
F 8 (40.00%)
NR 3
AZ 2 (10.00%)
MOD 5 (25.00%)
SINV 3 (15.00%)
BNT 10 (50.00%)
NR 3
1st 7 (41.18%)
2nd 7 (41.18%)
3rd 2 (11.76%)
Both 1 (5.88%)
NR 6
1 d–92 d Died 1 (7.69%)
Improved 8 (61.54%)
Ongoing 1 (7.69%)
Resolved 3 (23.08%)
NR 10
1 m–45 d No flare (2nd) 6 (66.67%)
Flare (both) 1 (11.11%)
Not received 2 (22.22%)
NR 14
EBA 1 1 Asia 1 (100.00%) 20 F 1 (100.00%) mRNA 1 (100.00%) 1st 1 (100.00%) 2 d Improved 1 (100.00%) 1 w NR 1
PV 12 20 Asia 6 (30.00%)
Africa 1 (5.00%)
Europe 11 (55.00%)
Oceania 2 (10.00%)
28–80 M 10 (50.00%)
F 10 (50.00%)
AZ 1 (5.00%)
MOD 5 (25.00%)
SINV 1 (5.00%)
SINP 2 (10.00%)
BNT 11 (55.00%)
1st 10 (58.82%)
2nd 4 (23.53%)
3rd 1 (5.88%)
Both 2 (11.76%)
NR 3
3 d–15 d Improved 5 (62.50%)
Ongoing 1 (12.50%)
Resolved 2 (25.00%)
NR 12
3 w–8 w No flare (2nd) 3 (50.00%)
Flare (both) 2 (33.33%)
Not received 1 (16.67%)
NR 14
PF 2 2 Asia 1 (50.00%)
America 1 (50.00%)
50 F 1 (100.00%)
NR 1
BNT 2 (100.00%) Both 1 (100.00%)
NR 1
2 d–1 w Improved 1 (100.00%)
NR 1
10 w NR 2
Pemphigus 2 20 Asia 18 (90.00%)
Europe 2 (10.00%)
NR NR 20 SINV 7 (38.89%)
BNT 11 (61.11%)
NR 2
1st 15 (83.33%)
2nd 3 (16.67%)
NR 2
18 d NR 20 NR NR 20
Not specified 2 150 Asia 66 (44.00%)
America 84 (56.00%)
NR NR 150 NR 150 3rd 84 (100.00%)
NR 66
NR NR 150 NR NR 150
Total 24 216 Asia 96 (44.44%)
Africa 1 (0.46%)
America 88 (40.74%)
Europe 26 (12.04%)
Oceania 5 (2.31%)
20–88 M 22 (52.38%)
F 20 (47.62%)
NR 174
AZ 3 (4.92%)
MOD 10 (16.39%)
SINV 11 (18.03%)
SINP 2 (3.28%)
BNT 34 (55.74%)
mRNA 1 (1.64%)
NR 155
1st 33 (23.91%)
2nd 14 (10.14%)
3rd 87 (63.04%)
Both 4 (2.90%)
NR 78
1 d–92 d Died 1 (4.35%)
Improved 15 (65.22%)
Ongoing 2 (8.70%)
Resolved 5 (21.74%)
NR 193
1 w–10 w No flare (2nd) 9 (60.00%)
Flare (both) 3 (20.00%)
Not received 3 (20.00%)
NR 201

*, range; AIBD, autoimmune bullous dermatosis; BP, bullous pemphigoid; LABD, linear IgA bullous dermatosis; PV, pemphigus vulgaris; PF, pemphigus foliaceus; PGes, pemphigoid gestationis; PVeg, pemphigus vegetans; DIF, direct immunofluorescence; Ab, antibody; d, day; w, week; y, year.

The flare group included 216 patients, with ages ranging from 20 to 88 years, who primarily had pemphigus (specific subtype unspecified). Most patients were from Asia (44%) and America (41%). Similarly to the new-onset group, most studies did not provide information on patients’ sex, but a slight male predominance existed among those that did.

3.3. Vaccine Type, Vaccine Dose, and Time to AIBD Onset Following Vaccination

In the new-onset group, 55% of patients received the BioNTech/Pfizer vaccine, followed by the Moderna vaccine (16%) and the Oxford-AstraZeneca vaccine (13%). However, it is noteworthy that the vaccine type was not reported for a large number of patients. Most cases of new-onset AIBD occurred after the second (39%) or first vaccine dose (34%), while 15% of AIBD patients experienced onset following both doses. The onset times varied widely, ranging from 1 to 123 days after vaccination.

In the flare group, most patients were administered the BioNTech/Pfizer vaccine (56%), followed by the Sinovac vaccine (18%) and the Moderna vaccine (16%). Flares were most frequently reported after the third vaccine dose (63%), followed by the first dose (24%) and the second dose (10%). The onset of AIBD symptoms ranged from 1 day to 92 days following vaccination.

3.4. Other Potential Non-Vaccine Triggers

In the new-onset group, most studies did not provide information on other potential non-vaccine triggers. However, some BP patients had pre-existing neurological or psychiatric disorders, such as dementia, depression, or Alzheimer’s disease, which are known to be associated with the development of BP [28,114,115]. Additionally, dipeptidyl peptidase 4 (DPP-4) inhibitors, a well-established risk factor for BP [116], were used by some patients [34,44,45,48]. In the majority of cases, patients denied any new medication use.

In the flare group, the information regarding other potential triggers was unavailable in most studies. Nevertheless, two patients had a history of COVID-19 infection prior to receiving the COVID-19 vaccines, and subsequently experienced a BP eruption [99,103].

3.5. The Assessment of Naranjo Scores for New-Onset AIBD or AIBD Flares

To evaluate the potential causal relationship between COVID-19 vaccination and AIBD development, we applied the Naranjo scores to all cases (Tables S4 and S5) [117]. In the new-onset group, 87% of cases were categorized as ‘possible’, and 13% as ‘probable’. In the flare group, 92% of cases were classified as ‘possible’, and 8% as ‘probable’. Notably, all cases deemed ‘probable’ in causality had experienced a disease flare following both doses of COVID-19 vaccines, contributing to the overall score for these cases [6,13,25,37,38,40,41,42,49,50,53,54,68,71,75,86,91].

3.6. Treatment and Outcomes for New-Onset AIBD or AIBD Flares

In the new onset group, BP patients with limited involvement were treated with topical corticosteroids, while those with more extensive involvements received a variety of systemic immunomodulators, including corticosteroids, doxycycline, nicotinamide, methotrexate, azathioprine, cyclosporine, mycophenolate mofetil, cyclophosphamide, dapsone, colchicine, or hydroxychloroquine [5,6,14,15,28,31,32,35,38,39,42,43,44,45,49,51,53,56,70,71,72,73,75,77,82,86,87,92,93]. DPP-4 inhibitors were suspended in patients using these medications [34,44,45,48]. Intravenous immunoglobulin G (IVIG) was administered in selected cases, and biologics, such as dupilumab and omalizumab, were utilized [26,34,49,55,56]. Rituximab was introduced in three cases, leading to significant improvement [51,56,63]. Most patients with pemphigus were managed with systemic corticosteroids and immunomodulators, with rituximab administered in 29% of cases [51,63,74,75,78,79,81,89]. In one case of PVeg, intralesional injections of onabotulinum toxin, corticosteroids, and mycophenolate mofetil were used, resulting in resolution after 6 months [87]. The majority of patients demonstrated improvement (56%) or resolution (35%) after treatment, with resolution times ranging from 1 week to 8 months. One case of BP showed improvement after prednisolone treatment, but the patient died due to pulmonary embolism one month after discharge [29]. Disease flare after both vaccine doses was observed in 69% of reported cases, but most studies lacked data on subsequent vaccinations.

In the flare group, the predominant treatment approach involved topical or systemic corticosteroids supplemented by immunomodulators, such as doxycycline, nicotinamide, methotrexate, azathioprine, or mycophenolate mofetil, in refractory cases [6,18,30,105,106]. Additional corticosteroid therapy was used in most patients experiencing a flare of AIBD, with further immunosuppressants utilized for treatment-resistant cases [14,18,32,106]. Rituximab was administered in six cases, resulting in four cases experiencing disease improvement; one case died 15 days after the administration of COVID-19 vaccination due to sepsis, and one case had ongoing treatment and no final outcome was reported [51,99,105,108,109,110]. The majority of cases showed improvement (65%) or resolution (22%) after treatment, with resolution times ranging from 1 to 10 weeks. Only three of the reported cases (20%) experienced a similar flare following their initial COVID-19 vaccination and exhibited disease exacerbation after the second dose [6,18,30,105].

4. Discussion

In this systematic review, we have compiled all available reports of new-onset AIBD or AIBD flares following COVID-19 vaccination. Our analysis included 98 studies, encompassing 229 patients in the new-onset group and 216 patients in the flare group. Among the new-onset cases, BP was the most frequently reported subtype, while pemphigus was the most commonly reported subtype in the flare group. As we know, clinical relapse is commonly seen in pemphigus, with a relapse rate as high as 82% [118]. The chronic and relapsing features of pemphigus may contribute to the larger number of flare cases relative to BP. Notably, both new onset and exacerbation of AIBDs were frequently observed following the administration of mRNA vaccines. However, we should recognize that mRNA vaccines were the most frequently administered vaccine worldwide. Onset time varied widely among both new-onset and flare groups, ranging from 1 to 123 days. Most patients achieved favorable outcomes, with improvement or resolution occurring within 1 week to 8 months after treatment initiation.

The potential association between vaccination and AIBD has been investigated in the previous research [119]. Various vaccines, including influenza, tetanus and diphtheria, hepatitis B, herpes zoster, and quadrivalent human papillomavirus, have been reported to be associated with AIBD development [120]. With the substantial increase in COVID-19 vaccinations, the link between newly developed vaccines and AIBD has been reexamined. The theory of molecular mimicry between specific basement membrane proteins and the spike protein of SARS-CoV-2 has been proposed as a potential cause [121]. Additionally, mRNA vaccines are suggested to activate pro-inflammatory pathways by interacting with toll-like receptors, potentially leading to increased production of interleukin (IL) -4, IL-17, interferon-γ, and tumor necrosis factor-α cytokines [71,79,122]. Because autoreactive T cells and the dysregulation of T helper (Th)1 and Th2 responses play a crucial role in both pemphigus and pemphigoid [123], the vaccine trigger and cytokine modulation may promote an imbalance between Th2 responses against cutaneous antigens, fostering the generation of autoreactive B cells and contributing to AIBD development [122]. Vaccine-induced inflammation may also disrupt the basement membrane, leading to the production of anti-basement membrane antibodies [121]. Furthermore, human leukocyte antigen (HLA) molecules, including alleles HLA-DQB1*0503 and HLA-DRB1*0402 in pemphigus, as well as HLA-DQB1*0301 in pemphigoid, may represent key predisposing factors for drug-induced AIBDs [124]. However, none of the included cases underwent HLA examinations, necessitating further investigations.

On the contrary, Birabaharan et al. conducted a cohort study involving over 1.5 million individuals who received mRNA COVID-19 vaccinations, which revealed no difference in the risk of new-onset BP within a 6-month period between vaccinated patients and those who remained unvaccinated [33]. Another investigation by Kasperkiewicz et al. demonstrated that circulating anti-SARS-CoV-2 antibodies did not cross-react with the main AIBD autoantigens, including dsg 1, dsg 3, envoplakin, BP180, BP230, and type VII collagen [125]. This perspective is consistent with the findings of previous systematic reviews, which posited that the hypothesized causal relationship is likely to be a relatively rare occurrence [126,127]. In our study, we not only included a substantially larger sample size compared to previous studies, but we also employed the Naranjo score to investigate causality. Patients with severe or extensive AIBD are usually advised against re-exposure to the same vaccine. However, in our study, 23 patients who experienced new onset or exacerbation of AIBD were re-exposed to the same vaccine, leading to recurrence. This implicates COVID-19 vaccines as the likely causative agents, supported by the high Naranjo rating score of 7. Our research provides evidence suggesting a potential association between COVID-19 vaccination and the development of AIBD to some extent, as indicated by the short onset interval and the absence of other triggers in most cases. These findings are in accordance with the previous literature, underscoring that mRNA vaccines were the most commonly reported vaccine type in both new onset and exacerbation of AIBD cases, followed by inactivated and viral-vectored vaccines [127].

It is worth noting that some studies reported potential non-vaccine triggers, such as neurological or psychiatric disorders, use of DPP-4 inhibitor, polypharmacy, or a history of COVID-19 infection [28,34,43,44,46,49,50,92,99]. The etiology and pathogenesis of AIBD remain largely elusive. However, the occurrence of exacerbation of AIBD has been reported in association with specific triggering factors, including medications, physical stimuli, infections, and organ transplantations [128]. We outlined these cases and assigned lower scores on the Naranjo score, which consequently decreased the overall rating. Only 13% of the new-onset AIBD patients and 8% of AIBD flare cases were rated as probable according to the Naranjo score. Nevertheless, it is essential to acknowledge that most studies did not report such triggers, limiting the calculation of the Naranjo score. Given that the existing data predominantly consist of anecdotal, single-case reports with a low level of evidence, real-world, population-based studies are warranted to elucidate a definitive link between COVID-19 vaccinations and risk of AIBD. However, this should not dissuade the current vaccination recommendations for patients with AIBD, given the favorable risk–benefit ratio.

Our study has certain limitations. Firstly, most of the included studies were case reports, case series, and retrospective observational studies from database collections. Some studies lacked comprehensive documentation of patients’ clinical conditions, while others were deficient in critical information, including vaccine dosage, additional triggers, laboratory findings, treatment modalities, and disease outcomes. Secondly, not all studies presented results of skin biopsies, immunofluorescence studies, or ELISA tests, thereby raising questions about the accuracy of disease diagnoses in some cases. Thirdly, essential parameters for assessing disease severity in AIBD patients, such as the bullous pemphigoid disease area index (BPDAI), the pemphigus area and activity score (PAAS), and the percentage of body surface area affected, were not reported among all studies. These parameters are pivotal for evaluating disease severity before vaccination, after vaccination, and following treatment. Fourthly, only a limited number of cases provided information regarding whether patients received subsequent vaccine doses, and the duration of follow-up was relatively short. In our analysis, most patients in the new-onset and flare groups showed improvement or resolution. However, given the chronic and relapsing nature of AIBD, future long-term follow-up studies are imperative to establish a stronger evidence base, and ongoing monitoring is essential for these patients [129].

5. Conclusions

In conclusion, both new-onset AIBD and exacerbation of pre-existing AIBD may occur following COVID-19 vaccination. Healthcare practitioners should raise concerns for AIBD when administering COVID-19 vaccines, and post-vaccination monitoring may be essential. Current evidence continues to favor COVID-19 vaccination in individuals with AIBD, owing to its significant protective benefits against SARS-CoV-2. More studies are imperative to elucidate the underlying mechanisms of the association between COVID-19 vaccines and the development of AIBD.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/vaccines12050465/s1, Table S1: Search strategy; Table S2: Quality assessment of case reports; Table S3: Quality assessment of observational cohort and cross-sectional studies; Table S4: The assessment of Naranjo score for cases of new onset autoimmune bullous dermatosis; Table S5: The assessment of Naranjo score for cases of exacerbation of autoimmune bullous dermatosis.

Author Contributions

Conceptualization: C.-C.C.; Data curation: C.-Y.W. and C.-C.C.; Methodology: P.-C.W., I.-H.H. and C.-C.C.; Investigation: I.-H.H. and C.-Y.W.; Analysis and software: P.-C.W.; Writing—original draft preparation: P.-C.W. and I.-H.H.; Writing—review and editing: C.-C.C. and C.-Y.W.; Visualization: P.-C.W. and C.-Y.W.; Supervision: C.-C.C. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

No new data were generated in support of this research.

Conflicts of Interest

The authors declare no conflicts of interest.

Funding Statement

This research received no external funding.

Footnotes

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  • 1.Wiersinga W.J., Rhodes A., Cheng A.C., Peacock S.J., Prescott H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324:782–793. doi: 10.1001/jama.2020.12839. [DOI] [PubMed] [Google Scholar]
  • 2.Chi C.C. Aiming at a bright future. Dermatol. Sin. 2022;40:1–2. doi: 10.4103/ds.ds_17_22. [DOI] [Google Scholar]
  • 3.World Health Organization (WHO) WHO Coronavirus (COVID-19) Dashboard. [(accessed on 25 April 2023)]. Available online: https://covid19.who.int/
  • 4.McMahon D.E., Kovarik C.L., Damsky W., Rosenbach M., Lipoff J.B., Tyagi A., Chamberlin G., Fathy R., Nazarian R.M., Desai S.R., et al. Clinical and pathologic correlation of cutaneous COVID-19 vaccine reactions including V-REPP: A registry-based study. J. Am. Acad. Dermatol. 2022;86:113–121. doi: 10.1016/j.jaad.2021.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Agharbi F.Z., Eljazouly M., Basri G., Faik M., Benkirane A., Albouzidi A., Chiheb S. Bullous pemphigoid induced by the AstraZeneca COVID-19 vaccine. Ann. Dermatol. Venereol. 2022;149:56–57. doi: 10.1016/j.annder.2021.07.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Akoglu G. Pemphigus vulgaris after SARS-CoV-2 vaccination: A case with new-onset and two cases with severe aggravation. Dermatol. Ther. 2022;35:e15396. doi: 10.1111/dth.15396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.McMahon D.E., Amerson E., Rosenbach M., Lipoff J.B., Moustafa D., Tyagi A., Desai S.R., French L.E., Lim H.W., Thiers B.H., et al. Cutaneous reactions reported after Moderna and Pfizer COVID-19 vaccination: A registry-based study of 414 cases. J. Am. Acad. Dermatol. 2021;85:46–55. doi: 10.1016/j.jaad.2021.03.092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Freeman E.E., Sun Q., McMahon D.E., Singh R., Fathy R., Tyagi A., Blumenthal K., Hruza G.J., French L.E., Fox L.P. Skin reactions to COVID-19 vaccines: An American Academy of Dermatology/International League of Dermatological Societies registry update on reaction location and COVID vaccine type. J. Am. Acad. Dermatol. 2022;86:e165–e167. doi: 10.1016/j.jaad.2021.11.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Hung W.-K., Chi C.-C., Wang S.-H. AZ arm: Delayed cutaneous reaction to ChAdOx1 nCoV-19 (AZD1222) vaccine. Dermatol. Sin. 2022;40:52–53. doi: 10.4103/ds.ds_4_22. [DOI] [Google Scholar]
  • 10.Lin P.T., Chi C.C. Erythrodermic psoriasis following ChAdOx1 nCOV-19 vaccination: A case report. Dermatol. Sin. 2022;40:62–63. doi: 10.4103/ds.ds_11_22. [DOI] [Google Scholar]
  • 11.Grieco T., Maddalena P., Sernicola A., Muharremi R., Basili S., Alvaro D., Cangemi R., Rossi A., Pellacani G. Cutaneous adverse reactions after COVID-19 vaccines in a cohort of 2740 Italian subjects: An observational study. Dermatol. Ther. 2021;34:e15153. doi: 10.1111/dth.15153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Hsieh T.S., Chen J.S., Tsai T.F. Dyshidrotic bullous pemphigoid developing after Moderna mRNA-1273 vaccination. Dermatol. Sin. 2023;41:52–53. doi: 10.4103/ds.DS-D-22-00121. [DOI] [Google Scholar]
  • 13.Guo Z., Wang Y., Tang H., Fan M., Wang W., Ding Y., Shen S., Zhou W., Zhang Y., Wang Z. Bullous Pemphigoid After Vaccination With the Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine: Two Cases in China. Wound. Manag. Prev. 2022;68:22–25. doi: 10.25270/wmp.2022.11.2225. [DOI] [PubMed] [Google Scholar]
  • 14.Afacan E., Edek Y.C., Ilter N., Gulekon A. Can COVID-19 vaccines cause or exacerbate bullous pemphigoid? A report of seven cases from one center. Int. J. Dermatol. 2022;61:626–627. doi: 10.1111/ijd.16086. [DOI] [PubMed] [Google Scholar]
  • 15.Hung W.K., Chi C.C. Incident bullous pemphigoid in a psoriatic patient following mRNA-1273 SARS-CoV-2 vaccination. J. Eur. Acad. Dermatol. Venereol. 2022;36:e407–e409. doi: 10.1111/jdv.17955. [DOI] [PubMed] [Google Scholar]
  • 16.Witte M., Zillikens D., Schmidt E. Diagnosis of Autoimmune Blistering Diseases. Front. Med. 2018;5:296. doi: 10.3389/fmed.2018.00296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Holtsche M.M., Boch K., Schmidt E. Autoimmune bullous dermatoses. J. Dtsch. Dermatol. Ges. 2023;21:405–412. doi: 10.1111/ddg.15046. [DOI] [PubMed] [Google Scholar]
  • 18.Damiani G., Pacifico A., Pelloni F., Iorizzo M. The first dose of COVID-19 vaccine may trigger pemphigus and bullous pemphigoid flares: Is the second dose therefore contraindicated? J. Eur. Acad. Dermatol. Venereol. 2021;35:e645–e647. doi: 10.1111/jdv.17472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Coto-Segura P., Fernandez-Prada M., Mir-Bonafe M., Garcia-Garcia B., Gonzalez-Iglesias I., Alonso-Penanes P., Gonzalez-Guerrero M., Gutierrez-Palacios A., Miranda-Martinez E., Martinon-Torres F. Vesiculobullous skin reactions induced by COVID-19 mRNA vaccine: Report of four cases and review of the literature. Clin. Exp. Dermatol. 2022;47:141–143. doi: 10.1111/ced.14835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kuo L.T., Shao S.H., Chi C.C. Ten essential steps for performing a systematic review: A quick tutorial. Dermatol. Sin. 2022;40:204–206. doi: 10.4103/1027-8117.362992. [DOI] [Google Scholar]
  • 22.Shao S.C., Kuo L.T., Huang Y.T., Lai P.C., Chi C.C. Using Grading of Recommendations Assessment, Development, and Evaluation (GRADE) to rate the certainty of evidence of study outcomes from systematic reviews: A quick tutorial. Dermatol. Sin. 2023;41:3–7. doi: 10.4103/ds.DS-D-22-00154. [DOI] [Google Scholar]
  • 23.Murad M.H., Sultan S., Haffar S., Bazerbachi F. Methodological quality and synthesis of case series and case reports. BMJ Evid. Based Med. 2018;23:60–63. doi: 10.1136/bmjebm-2017-110853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.National Institutes of Health Study Quality Assessment Tools. [(accessed on 16 January 2023)]; Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools.
  • 25.Khalid M., Lipka O., Becker C. Moderna COVID-19 vaccine induced skin rash. Vis. J. Emerg. Med. 2021;25:101108. doi: 10.1016/j.visj.2021.101108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Nakamura K., Kosano M., Sakai Y., Saito N., Takazawa Y., Omodaka T., Kiniwa Y., Okuyama R. Case of bullous pemphigoid following coronavirus disease 2019 vaccination. J. Dermatol. 2021;48:e606–e607. doi: 10.1111/1346-8138.16170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Perez-Lopez I., Moyano-Bueno D., Ruiz-Villaverde R. Bullous pemphigoid and COVID-19 vaccine. Med. Clin. 2021;157:e333–e334. doi: 10.1016/j.medcli.2021.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Tomayko M.M., Damsky W., Fathy R., McMahon D.E., Turner N., Valentin M.N., Rallis T., Aivaz O., Fox L.P., Freeman E.E. Subepidermal blistering eruptions, including bullous pemphigoid, following COVID-19 vaccination. J. Allergy Clin. Immunol. 2021;148:750–751. doi: 10.1016/j.jaci.2021.06.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Alshammari F., Abuzied Y., Korairi A., Alajlan M., Alzomia M., AlSheef M. Bullous pemphigoid after second dose of mRNA- (Pfizer-BioNTech) COVID-19 vaccine: A case report. Ann. Med. Surg. 2022;75:103420. doi: 10.1016/j.amsu.2022.103420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Avallone G., Cavallo F., Astrua C., Caldarola G., Conforti C., De Simone C., di Meo N., di Stefani A., Genovese G., Maronese C.A., et al. Cutaneous adverse reactions following SARS-CoV-2 vaccine booster dose: A real-life multicentre experience. J. Eur. Acad. Dermatol. Venereol. 2022;36:e876–e879. doi: 10.1111/jdv.18386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Bailly-Caille B., Jouen F., Dompmartin A., Morice C. A case report of anti-P200 pemphigoid following COVID-19 vaccination. JAAD Case Rep. 2022;23:83–86. doi: 10.1016/j.jdcr.2022.03.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Bardazzi F., Carpanese M.A., Abbenante D., Filippi F., Sacchelli L., Loi C. New-onset bullous pemphigoid and flare of pre-existing bullous pemphigoid after the third dose of the COVID-19 vaccine. Dermatol. Ther. 2022;35:e15555. doi: 10.1111/dth.15555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Birabaharan M., Kaelber D.C., Orme C.M., Paravar T., Karris M.Y. Evaluating risk of bullous pemphigoid after mRNA COVID-19 vaccination. Br. J. Dermatol. 2022;187:271–273. doi: 10.1111/bjd.21240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Bostan E., Yel B., Akdogan N., Gokoz O. New-onset bullous pemphigoid after inactivated COVID-19 vaccine: Synergistic effect of the COVID-19 vaccine and vildagliptin. Dermatol. Ther. 2022;35:e15241. doi: 10.1111/dth.15241. [DOI] [PubMed] [Google Scholar]
  • 35.Daines B., Madigan L.M., Vitale P.A., Khalighi M., Innes M. A new eruption of bullous pemphigoid following mRNA COVID-19 vaccination. Dermatol. Online J. 2022;28:11. doi: 10.5070/D328458525. [DOI] [PubMed] [Google Scholar]
  • 36.Darrigade A.S., Oules B., Sohier P., Jullie M.L., Moguelet P., Barbaud A., Soria A., Vignier N., Lebrun-Vignes B., Sanchez-Pena P., et al. Sweet-like syndrome and multiple COVID arm syndrome following COVID-19 vaccines: ‘specific’ patterns in a series of 192 patients. Br. J. Dermatol. 2022;187:615–617. doi: 10.1111/bjd.21692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Dell’Antonia M., Anedda S., Usai F., Atzori L., Ferreli C. Bullous pemphigoid triggered by COVID-19 vaccine: Rapid resolution with corticosteroid therapy. Dermatol. Ther. 2022;35:e15208. doi: 10.1111/dth.15208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Desai A.D., Shah R., Haroon A., Wassef C. Bullous Pemphigoid Following the Moderna mRNA-1273 Vaccine. Cureus. 2022;14:e24126. doi: 10.7759/cureus.24126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Fu P.A., Chen C.W., Hsu Y.T., Wei K.C., Lin P.C., Chen T.Y. A case of acquired hemophilia A and bullous pemphigoid following SARS-CoV-2 mRNA vaccination. J. Formos. Med. Assoc. 2022;121:1872–1876. doi: 10.1016/j.jfma.2022.02.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Gambichler T., Hamdani N., Budde H., Sieme M., Skrygan M., Scholl L., Dickel H., Behle B., Ganjuur N., Scheel C., et al. Bullous pemphigoid after SARS-CoV-2 vaccination: Spike-protein-directed immunofluorescence confocal microscopy and T-cell-receptor studies. Br. J. Dermatol. 2022;186:728–731. doi: 10.1111/bjd.20890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Hali F., Sr., Araqi L., Jr., Marnissi F., Meftah A., Chiheb S. Autoimmune Bullous Dermatosis Following COVID-19 Vaccination: A Series of Five Cases. Cureus. 2022;14:e23127. doi: 10.7759/cureus.23127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Larson V., Seidenberg R., Caplan A., Brinster N.K., Meehan S.A., Kim R.H. Clinical and histopathological spectrum of delayed adverse cutaneous reactions following COVID-19 vaccination. J. Cutan. Pathol. 2022;49:34–41. doi: 10.1111/cup.14104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Maronese C.A., Caproni M., Moltrasio C., Genovese G., Vezzoli P., Sena P., Previtali G., Cozzani E., Gasparini G., Parodi A., et al. Bullous Pemphigoid Associated With COVID-19 Vaccines: An Italian Multicentre Study. Front. Med. 2022;9:841506. doi: 10.3389/fmed.2022.841506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Maronese C.A., Di Zenzo G., Genovese G., Barei F., Monestier A., Pira A., Moltrasio C., Marzano A.V. Reply to “New-onset bullous pemphigoid after inactivated COVID-19 vaccine: Synergistic effect of the COVID-19 vaccine and vildagliptin”. Dermatol. Ther. 2022;35:e15496. doi: 10.1111/dth.15496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Nakahara Y., Yamane M., Sunada M., Aoyama Y. SARS-CoV-2 vaccine-triggered conversion from systemic lupus erythematosus (SLE) to bullous SLE and dipeptidyl peptidase 4 inhibitors-associated bullous pemphigoid. J. Dermatol. 2022;50:162–165. doi: 10.1111/1346-8138.16687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Nida S.S., Tobon G.J., Wilson M., Chauhan K. A patient develops bullous rash after receiving the second dose of COVID-19 vaccine. Cureus. 2022;14:e29786. doi: 10.7759/cureus.29786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Pauluzzi M., Stinco G., Errichetti E. Bullous pemphigoid in a young male after COVID-19 mRNA vaccine: A report and brief literature review. J. Eur. Acad. Dermatol. Venereol. 2022;36:e257–e259. doi: 10.1111/jdv.17891. [DOI] [PubMed] [Google Scholar]
  • 48.Russo R., Gasparini G., Cozzani E., D’Agostino F., Parodi A. Absolving COVID-19 Vaccination of Autoimmune Bullous Disease Onset. Front. Immunol. 2022;13:834316. doi: 10.3389/fimmu.2022.834316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Savoldy M.A., Tadicherla T., Moureiden Z., Ayoubi N., Baldwin B.T. The Successful Treatment of COVID-19-Induced Bullous Pemphigoid With Dupilumab. Cureus. 2022;14:e30541. doi: 10.7759/cureus.30541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Schmidt V., Blum R., Mohrenschlager M. Biphasic bullous pemphigoid starting after first dose and boosted by second dose of mRNA-1273 vaccine in an 84-year-old female with polymorbidity and polypharmacy. J. Eur. Acad. Dermatol. Venereol. 2022;36:e88–e90. doi: 10.1111/jdv.17722. [DOI] [PubMed] [Google Scholar]
  • 51.Shakoei S., Kalantari Y., Nasimi M., Tootoonchi N., Ansari M.S., Razavi Z., Etesami I. Cutaneous manifestations following COVID-19 vaccination: A report of 25 cases. Dermatol. Ther. 2022;35:e15651. doi: 10.1111/dth.15651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Shanshal M. Dyshidrosiform Bullous Pemphigoid Triggered by COVID-19 Vaccination. Cureus. 2022;14:e26383. doi: 10.7759/cureus.26383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Wan V., Chen D., Shiau C.J., Jung G.W. Association between COVID-19 vaccination and bullous pemphigoid—A case series and literature review. SAGE Open Med. Case Rep. 2022;10:2050313X221131868. doi: 10.1177/2050313X221131868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Young J., Mercieca L., Ceci M., Pisani D., Betts A., Boffa M.J. A case of bullous pemphigoid after the SARS-CoV-2 mRNA vaccine. J. Eur. Acad. Dermatol. Venereol. 2022;36:e13–e16. doi: 10.1111/jdv.17676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Zhang Y., Lang X., Guo S., He H., Cui H. Bullous pemphigoid after inactivated COVID-19 vaccination: Case report. Dermatol. Ther. 2022;35:e15595. doi: 10.1111/dth.15595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Baffa M.E., Maglie R., Montefusco F., Pipito C., Senatore S., Antiga E. Severe bullous pemphigoid following COVID-19 vaccination resistant to rituximab and successfully treated with dupilumab. J. Eur. Acad. Dermatol. Venereol. 2023;37:e135–e137. doi: 10.1111/jdv.18673. [DOI] [PubMed] [Google Scholar]
  • 57.Cowan T.L., Huang C., Murrell D.F. Autoimmune blistering skin diseases triggered by COVID-19 vaccinations: An Australian case series. Front. Med. 2023;9:1117176. doi: 10.3389/fmed.2022.1117176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Dawoud N.M., Aslam H., Alshehri M.A., Dawoud M.M. COVID-19 Vaccine-Triggered Bullous Pemphigoid: Two New Cases from Saudi Arabia. Indian J. Dermatol. 2023;68:590. doi: 10.4103/ijd.ijd_519_23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Mulianto N., Hashfi A.F. Bullous pemphigoid associated with COVID-19 vaccine in child: A case report. J. Pak. Assoc. Dermatol. 2023;33:730–735. [Google Scholar]
  • 60.Sun L., Brazão C., Mancha D., Soares-de-Almeida L., Filipe P. Reply to: ‘Severe bullous pemphigoid following COVID-19 vaccination resistant to rituximab and successfully treated with dupilumab’ by Baffa et al. J. Eur. Acad. Dermatol. Venereol. 2023;37:e578–e580. doi: 10.1111/jdv.18893. [DOI] [PubMed] [Google Scholar]
  • 61.Oguz Topal I., Tokmak A., Kurmuş G.I., Kalkan G., Demirseren D.D., Tosun M., Emre S., Özkök Akbulut T., Kaya Özden H., Koska M., et al. Skin manifestations following anti-COVID-19 vaccination: A multicentricstudy from Turkey. J. Cosmet. Dermatol. 2023;22:354–363. doi: 10.1111/jocd.15570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Üstün P., Satılmış A., Kılıç İ.İ., Adışen E. COVID-19 Vaccine Induced Bullous Pemphigoid: Case Report and Review of the Literature. J. Turk. Acad. Dermatol. 2023;17:27–30. doi: 10.4274/jtad.galenos.2022.70883. [DOI] [Google Scholar]
  • 63.Diab R., Rakhshan A., Salarinejad S., Pourani M.R., Ansar P., Abdollahimajd F. Clinicopathological characteristics of cutaneous complications following COVID-19 vaccination: A case series. J. Cosmet. Dermatol. 2024;23:725–730. doi: 10.1111/jocd.16042. [DOI] [PubMed] [Google Scholar]
  • 64.Yamamoto S., Koga H., Tsutsumi M., Ishii N., Nakama T. Bullous pemphigoid associated with prodromal-phase by repeated COVID-19 vaccinations. J. Dermatol. 2024;51:e6–e7. doi: 10.1111/1346-8138.16940. [DOI] [PubMed] [Google Scholar]
  • 65.Mustin D.E., Huffaker T.B., Feldman R.J. New-Onset Pemphigoid Gestationis Following COVID-19 Vaccination. Cutis. 2023;111:E2–E4. doi: 10.12788/cutis.0772. [DOI] [PubMed] [Google Scholar]
  • 66.Rungraungrayabkul D., Rattanasiriphan N., Juengsomjit R. Mucous Membrane Pemphigoid Following the Administration of COVID-19 Vaccine. Head Neck Pathol. 2023;17:587–588. doi: 10.1007/s12105-023-01539-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Calabria E., Antonelli A., Lavecchia A., Giudice A. Oral mucous membrane pemphigoid after SARS-CoV-2 vaccination. Oral Diseases. 2024;30:782–783. doi: 10.1111/odi.14468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Hali F., Kerouach A., Alatawna H., Chiheb S., Lakhdar H. Linear IgA bullous dermatosis following Oxford AstraZeneca COVID-19 vaccine. Clin. Exp. Dermatol. 2022;47:611–613. doi: 10.1111/ced.15007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Han J., Russo G., Stratman S., Psomadakis C.E., Rigo R., Owji S., Luu Y., Mubasher A., Gonzalez B.R., Ungar J., et al. Toxic epidermal necrolysis-like linear IgA bullous dermatosis after third Moderna COVID-19 vaccine in the setting of oral terbinafine. JAAD Case Rep. 2022;24:101–104. doi: 10.1016/j.jdcr.2022.04.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70.Nahm W.J., Juarez M., Wu J., Kim R.H. Eosinophil-rich linear IgA bullous dermatosis induced by mRNA COVID-19 booster vaccine. J. Cutan. Pathol. 2023;50:24–28. doi: 10.1111/cup.14305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Solimani F., Mansour Y., Didona D., Dilling A., Ghoreschi K., Meier K. Development of severe pemphigus vulgaris following SARS-CoV-2 vaccination with BNT162b2. J. Eur. Acad. Dermatol. Venereol. 2021;35:e649–e651. doi: 10.1111/jdv.17480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Agharbi F.Z., Basri G., Chiheb S. Pemphigus vulgaris following second dose of mRNA-(Pfizer-BioNTech) COVID-19 vaccine. Dermatol. Ther. 2022;35:e15769. doi: 10.1111/dth.15769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Aryanian Z., Balighi K., Azizpour A., Kamyab Hesari K., Hatami P. Coexistence of Pemphigus Vulgaris and Lichen Planus following COVID-19 Vaccination. Case Rep. Dermatol. Med. 2022;2022:2324212. doi: 10.1155/2022/2324212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Calabria E., Canfora F., Mascolo M., Varricchio S., Mignogna M.D., Adamo D. Autoimmune mucocutaneous blistering diseases after SARS-CoV-2 vaccination: A Case report of Pemphigus Vulgaris and a literature review. Pathol. Res. Pract. 2022;232:153834. doi: 10.1016/j.prp.2022.153834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Corra A., Barei F., Genovese G., Zussino M., Spigariolo C.B., Mariotti E.B., Quintarelli L., Verdelli A., Caproni M., Marzano A.V. Five cases of new-onset pemphigus following vaccinations against coronavirus disease 2019. J. Dermatol. 2022;50:229–233. doi: 10.1111/1346-8138.16554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Das P., Arora S., Singh G.K., Bellad P., Rahman R., Bahuguna A., Sapra D., Shrivastav R., Gupta A. A study of COVID-19 vaccine (Covishield) induced dermatological adverse effects from India. J. Eur. Acad. Dermatol. Venereol. 2022;36:e402–e404. doi: 10.1111/jdv.17951. [DOI] [PubMed] [Google Scholar]
  • 77.Hatami P., Balighi K., Nicknam Asl H., Aryanian Z. COVID vaccination in patients under treatment with rituximab: A presentation of two cases from Iran and a review of the current knowledge with a specific focus on pemphigus. Dermatol. Ther. 2022;35:e15216. doi: 10.1111/dth.15216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Knechtl G.V., Seyed Jafari S.M., Berger T., Rammlmair A., Feldmeyer L., Borradori L. Development of pemphigus vulgaris following mRNA SARS-CoV-19 BNT162b2 vaccination in an 89-year-old patient. J. Eur. Acad. Dermatol. Venereol. 2022;36:e251–e253. doi: 10.1111/jdv.17868. [DOI] [PubMed] [Google Scholar]
  • 79.Koutlas I.G., Camara R., Argyris P.P., Davis M.D.P., Miller D.D. Development of pemphigus vulgaris after the second dose of the mRNA-1273 SARS-CoV-2 vaccine. Oral Dis. 2022;28((Suppl. S2)):2612–2613. doi: 10.1111/odi.14089. [DOI] [PubMed] [Google Scholar]
  • 80.Norimatsu Y., Yoshizaki A., Yamada T., Akiyama Y., Toyama S., Sato S. Pemphigus vulgaris with advanced hypopharyngeal and gastric cancer following SARS-CoV-2 vaccination. J Dermatol. 2022;50:e74–e75. doi: 10.1111/1346-8138.16539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Saffarian Z., Samii R., Ghanadan A., Vahidnezhad H. De novo severe pemphigus vulgaris following SARS-CoV-2 vaccination with BBIBP-CorV. Dermatol. Ther. 2022;35:e15448. doi: 10.1111/dth.15448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Singh A., Bharadwaj S.J., Chirayath A.G., Ganguly S. Development of severe pemphigus vulgaris following ChAdOx1 nCoV-19 vaccination and review of literature. J. Cosmet. Dermatol. 2022;21:2311–2314. doi: 10.1111/jocd.14945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Thongprasom K., Pengpis N., Phattarataratip E., Samaranayake L. Oral pemphigus after COVID-19 vaccination. Oral. Dis. 2022;28((Suppl. S2)):2597–2598. doi: 10.1111/odi.14034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Hui H.Z., Wang Y.J., Cheng J.R., Mao H., Guo H.X., Diao Q.C., Shi B.J. Rituximab for COVID-19 Vaccine-Associated Pemphigus Vulgaris. Am. J. Ther. 2023;30:E544–E546. doi: 10.1097/MJT.0000000000001620. [DOI] [PubMed] [Google Scholar]
  • 85.Khalayli N., Omar A., Kudsi M. Pemphigus vulgaris after the second dose of COVID-19 vaccination: A case report. J. Med. Case Rep. 2023;17:322. doi: 10.1186/s13256-023-04055-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Alami S., Benzekri L., Senouci K., Meziane M. Pemphigus foliaceus triggered after inactivated SARS-CoV-2 vaccine: Coincidence or causal link? Dermatol. Ther. 2022;35:e15775. doi: 10.1111/dth.15775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Gui H., Young P.A., So J.Y., Pol-Rodriguez M., Rieger K.E., Lewis M.A., Winge M.C.G., Bae G.H. New-onset pemphigus vegetans and pemphigus foliaceus after SARS-CoV-2 vaccination: A report of 2 cases. JAAD Case Rep. 2022;27:94–98. doi: 10.1016/j.jdcr.2022.07.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Lua A.C.Y., Ong F.L.L., Choo K.J.L., Yeo Y.W., Oh C.C. An unusual presentation of pemphigus foliaceus following COVID-19 vaccination. Australas. J. Dermatol. 2022;63:128–130. doi: 10.1111/ajd.13755. [DOI] [PubMed] [Google Scholar]
  • 89.Pourani M., Bidari-Zerehpoosh F., Ayatollahi A., Robati R.M. New onset of pemphigus foliaceus following BBIBP COVID-19 vaccine. Dermatol. Ther. 2022;35:e15816. doi: 10.1111/dth.15816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Reis J., Nogueira M., Figueiras O., Coelho A., Cunha Velho G., Raposo I. Pemphigus foliaceous after mRNA COVID-19 vaccine. Eur. J. Dermatol. 2022;32:428–429. doi: 10.1684/ejd.2022.4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Rouatbi J., Aounallah A., Lahouel M., Sriha B., Belajouza C., Denguezli M. Two cases with new onset of pemphigus foliaceus after SARS-CoV-2 vaccination. Dermatol. Ther. 2022;35:e15827. doi: 10.1111/dth.15827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Yildirici S., Yayli S., Demirkesen C., Vural S. New onset of pemphigus foliaceus following BNT162b2 vaccine. Dermatol. Ther. 2022;35:e15381. doi: 10.1111/dth.15381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Almasi-Nasrabadi M., Ayyalaraju R.S., Sharma A., Elsheikh S., Ayob S. New onset pemphigus foliaceus following AstraZeneca COVID-19 vaccination. J. Eur. Acad. Dermatol. Venereol. 2023;37:e1–e3. doi: 10.1111/jdv.18484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Pham N.N., Nguyen T.T.P., Vu T.T.P., Nguyen H.T. Pemphigus Foliaceus after COVID-19 Vaccination: A Report of Two Cases. Case Rep. Dermatol. Med. 2023;2023:1218388. doi: 10.1155/2023/1218388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Weschawalit S., Pongcharoen P., Suthiwartnarueput W., Srivilaithon W., Daorattanachai K., Jongrak P., Chakkavittumrong P. Cutaneous Adverse Events After COVID-19 Vaccination. Clin. Cosmet. Investig. Dermatol. 2023;16:1473–1484. doi: 10.2147/CCID.S410690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Falcinelli F., Lamberti A., Cota C., Rubegni P., Cinotti E. Reply to ‘development of severe pemphigus vulgaris following SARS-CoV-2 vaccination with BNT162b2’ by Solimani F et al. J. Eur. Acad. Dermatol. Venereol. 2022;36:e976–e978. doi: 10.1111/jdv.18398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97.Lansang R.P., Amdemichael E., Sajic D. IgA pemphigus following COVID-19 vaccination: A case report. SAGE Open Med. Case Rep. 2023;11:2050313X231181022. doi: 10.1177/2050313X231181022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Kianfar N., Dasdar S., Salehi Farid A., Balighi K., Mahmoudi H., Daneshpazhooh M. Exacerbation of Autoimmune Bullous Diseases After Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination: Is There Any Association? Front. Med. 2022;9:957169. doi: 10.3389/fmed.2022.957169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Happaerts M., Vanassche T. Acquired hemophilia following COVID-19 vaccination: Case report and review of literature. Res. Pract. Thromb. Haemost. 2022;6:e12785. doi: 10.1002/rth2.12785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Juay L., Chandran N.S. Three cases of vesiculobullous non-IgE-mediated cutaneous reactions to tozinameran (Pfizer-BioNTech COVID-19 vaccine) J. Eur. Acad. Dermatol. Venereol. 2021;35:e855–e857. doi: 10.1111/jdv.17581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Martora F., Ruggiero A., Battista T., Fabbrocini G., Megna M. Bullous pemphigoid and COVID-19 vaccination: Management and treatment reply to ‘Bullous pemphigoid in a young male after COVID-19 mRNA vaccine: A report and brief literature review’ by Pauluzzi et al. J. Eur. Acad. Dermatol. Venereol. 2023;37:e35–e36. doi: 10.1111/jdv.18503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Massip E., Marcant P., Font G., Faiz S., Duvert-Lehembre S., Alcaraz I., Vermersch-Langlin A., Veron M., Macaire C., Faure K., et al. Cutaneous manifestations following COVID-19 vaccination: A multicentric descriptive cohort. J. Eur. Acad. Dermatol. Venereol. 2022;36:e253–e255. doi: 10.1111/jdv.17883. [DOI] [PubMed] [Google Scholar]
  • 103.Rasner C.J., Schultz B., Bohjanen K., Pearson D.R. Autoimmune bullous disorder flares following severe acute respiratory syndrome coronavirus 2 vaccination: A case series. J. Med. Case Rep. 2023;17:408. doi: 10.1186/s13256-023-04146-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Minakawa S., Matsuzaki Y., Yao S., Sagara C., Akasaka E., Koga H., Ishii N., Hashimoto T., Sawamura D. Case report: A case of epidermolysis bullosa acquisita with IgG and IgM anti-basement membrane zone antibodies relapsed after COVID-19 mRNA vaccination. Front. Med. 2023;10:1093827. doi: 10.3389/fmed.2023.1093827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Avallone G., Giordano S., Astrua C., Merli M., Senetta R., Conforti C., Ribero S., Marzano A.V., Quaglino P. Reply to ‘The first dose of COVID-19 vaccine may trigger pemphigus and bullous pemphigoid flares: Is the second dose therefore contraindicated?’ by Damiani G et al. J. Eur. Acad. Dermatol. Venereol. 2022;36:e433–e435. doi: 10.1111/jdv.17959. [DOI] [PubMed] [Google Scholar]
  • 106.Martora F., Fabbrocini G., Nappa P., Megna M. Reply to ‘Development of severe pemphigus vulgaris following SARS-CoV-2 vaccination with BNT162b2’ by Solimani et al. J. Eur. Acad. Dermatol. Venereol. 2022;36:e750–e751. doi: 10.1111/jdv.18302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Ong S.K., Darji K., Chaudhry S.B. Severe flare of pemphigus vulgaris after first dose of COVID-19 vaccine. JAAD Case Rep. 2022;22:50–52. doi: 10.1016/j.jdcr.2022.01.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Saleh M.A., Saleh N.A. Pemphigus vulgaris relapse during the coronavirus disease pandemic. Dermatol. Ther. 2022;35:e15354. doi: 10.1111/dth.15354. [DOI] [PubMed] [Google Scholar]
  • 109.Chen H.C., Ma S.H., Wang L.H., Chang Y.T., Wu C.Y. Pemphigus aggravation following Pfizer-BioNTech vaccination: A case report and review of literature. Int. J. Rheum. Dis. 2023;26:1187–1190. doi: 10.1111/1756-185X.14581. [DOI] [PubMed] [Google Scholar]
  • 110.Ligrone L., Lembo S., Cillo F., Spennato S., Fabbrocini G., Raimondo A. A severe relapse of pemphigus vulgaris after SARS-CoV-2 vaccination. J. Eur. Acad. Dermatol. Venereol. 2023;37:e1369–e1371. doi: 10.1111/jdv.19414. [DOI] [PubMed] [Google Scholar]
  • 111.Al Salmi A., Al Khamisani M., Al Shibli A., Al Maqbali S. Adverse cutaneous reactions reported post COVID-19 vaccination in Al Buraimi governorate, Sultanate of Oman. Dermatol. Ther. 2022;35:e15820. doi: 10.1111/dth.15820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Ozgen Z., Aksoy H., Akin Cakici O., Koku Aksu A.E., Erdem O., Kara Polat A., Gurel M.S. COVID-19 severity and SARS-CoV-2 vaccine safety in pemphigus patients. Dermatol. Ther. 2022;35:e15417. doi: 10.1111/dth.15417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Kasperkiewicz M., Strong R., Yale M., Dunn P., Woodley D.T. Safety of the COVID-19 vaccine booster in patients with immunobullous diseases: A cross-sectional study of the International Pemphigus and Pemphigoid Foundation. J. Eur. Acad. Dermatol. Venereol. 2023;37:e9–e10. doi: 10.1111/jdv.18493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Huang I.H., Wu P.C., Liu C.W., Huang Y.C. Association between bullous pemphigoid and psychiatric disorders: A systematic review and meta-analysis. J. Dtsch. Dermatol. Ges. 2022;20:1305–1312. doi: 10.1111/ddg.14852. [DOI] [PubMed] [Google Scholar]
  • 115.Taghipour K., Chi C.C., Vincent A., Groves R.W., Venning V., Wojnarowska F. The association of bullous pemphigoid with cerebrovascular disease and dementia: A case-control study. Arch. Dermatol. 2010;146:1251–1254. doi: 10.1001/archdermatol.2010.322. [DOI] [PubMed] [Google Scholar]
  • 116.Liu S.D., Chen W.T., Chi C.C. Association between medication use and bullous pemphigoid: A systematic review and meta-analysis. JAMA Dermatol. 2020;156:891–900. doi: 10.1001/jamadermatol.2020.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Murayama H., Sakuma M., Takahashi Y., Morimoto T. Improving the assessment of adverse drug reactions using the Naranjo Algorithm in daily practice: The Japan Adverse Drug Events Study. Pharmacol. Res. Perspect. 2018;6:e00373. doi: 10.1002/prp2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Ujiie I., Ujiie H., Iwata H., Shimizu H. Clinical and immunological features of pemphigus relapse. Br. J. Dermatol. 2019;180:1498–1505. doi: 10.1111/bjd.17591. [DOI] [PubMed] [Google Scholar]
  • 119.Vadala M., Poddighe D., Laurino C., Palmieri B. Vaccination and autoimmune diseases: Is prevention of adverse health effects on the horizon? EPMA J. 2017;8:295–311. doi: 10.1007/s13167-017-0101-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Kasperkiewicz M., Woodley D.T. Association between vaccination and autoimmune bullous diseases: A systematic review. J. Am. Acad. Dermatol. 2022;86:1160–1164. doi: 10.1016/j.jaad.2021.04.061. [DOI] [PubMed] [Google Scholar]
  • 121.Aashish, Rai A., Khatri G., Priya, Hasan M.M. Bullous pemphigoid following COVID-19 vaccine: An autoimmune disorder. Ann. Med. Surg. 2022;80:104266. doi: 10.1016/j.amsu.2022.104266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Cozzani E., Gasparini G., Russo R., Parodi A. May bullous pemphigoid be worsened by COVID-19 vaccine? Front. Med. 2022;9:931872. doi: 10.3389/fmed.2022.931872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Hertl M., Eming R., Veldman C. T cell control in autoimmune bullous skin disorders. J. Clin. Investig. 2006;116:1159–1166. doi: 10.1172/JCI28547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Sernicola A., Mazzetto R., Tartaglia J., Ciolfi C., Miceli P., Alaibac M. Role of Human Leukocyte Antigen Class II in Antibody-Mediated Skin Disorders. Medicina. 2023;59:1950. doi: 10.3390/medicina59111950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Kasperkiewicz M., Bednarek M., Tukaj S. Case Report: Circulating Anti-SARS-CoV-2 Antibodies Do Not Cross-React With Pemphigus or Pemphigoid Autoantigens. Front. Med. 2021;8:807711. doi: 10.3389/fmed.2021.807711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Kasperkiewicz M. Association between COVID-19 vaccination and autoimmune bullous diseases: A random coincidence or rare event. J. Eur. Acad. Dermatol. Venereol. 2022;36:e665–e666. doi: 10.1111/jdv.18202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Kasperkiewicz M., Woodley D.T. Association between vaccination and immunobullous disorders: A brief, updated systematic review with focus on COVID-19. J. Eur. Acad. Dermatol. Venereol. 2022;36:e498–e500. doi: 10.1111/jdv.18030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Moro F., Fania L., Sinagra J.L.M., Salemme A., Di Zenzo G. Bullous pemphigoid: Trigger and predisposing factors. Biomolecules. 2020;10:1432. doi: 10.3390/biom10101432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Chen Y.N., Chi C.C. Levels of evidence and study designs: A brief introduction to dermato-epidemiologic research methodology. Dermatol. Sin. 2023;41:199–205. doi: 10.4103/ds.DS-D-23-00159. [DOI] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Data Availability Statement

No new data were generated in support of this research.


Articles from Vaccines are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES