Skip to main content
Cellular and Molecular Life Sciences: CMLS logoLink to Cellular and Molecular Life Sciences: CMLS
. 2006 Jan 2;63(2):207–219. doi: 10.1007/s00018-005-5236-7

Protein flexibility: its role in structure and mechanism revealed by molecular simulations

G Dodson 1,2, C S Verma 3,
PMCID: PMC11136336  PMID: 16389462

Abstract.

Computer simulations at the atomic level have arrived at a stage where they provide realistic modeling of flexibility in proteins (and the mobility of their associated solvent) that is important in understanding the nature of molecular motions. This can now be extended to the molecular and atomic motions that are associated with protein mechanisms. Moreover, the derived data agree reasonably accurately with experimental measurements of several kinetic and thermodynamic parameters. Fundamental insights emerge on the roles that this intrinsic flexibility plays in the thermodynamic characteristics of macromolecules in solution; these equip the investigator to probe the consequences of cognate interactions and ligand binding on entropy and enthalpy. Thus simulations can now provide a powerful tool for investigating protein mechanisms that complements the existing and the emerging experimental techniques.

Key words. Protein structure-function mechanism, flexibility, atomistic simulation, buried water, lipase, chaperone, prion

Footnotes

Received 29 May 2005; received after revision 23 August 2005; accepted 21 October 2005


Articles from Cellular and Molecular Life Sciences: CMLS are provided here courtesy of Springer

RESOURCES