Abstract
The human mitochondrial genome encodes 13 proteins, all subunits of the respiratory chain complexes and thus involved in energy metabolism. These genes are translated by 22 transfer RNAs (tRNAs), also encoded by the mitochondrial genome, which form the minimal set required for reading all codons. Human mitochondrial tRNAs gained interest with the rapid discovery of correlations between point mutations in their genes and various neuromuscular and neurodegenerative disorders. In this review, emerging fundamental knowledge on the structure/function relationships of these particular tRNAs and an overview of the large variety of mechanisms within translation, affected by mutations, are summarized. Also, initial results on wide-ranging molecular consequences of mutations outside the frame of mitochondrial translation are highlighted. While knowledge of mitochondrial tRNAs in both health and disease increases, deciphering the intricate network of events leading different genotypes to the variety of phenotypes requires further investigation using adapted model systems.
Keywords: tRNA, mutation, aminoacylation, tranlsation, structure, proteome, neurodegenerative disorders
Footnotes
Received 3 December 2002; received after revision 14 January 2003; accepted 27 January 2003