Skip to main content
IUCrData logoLink to IUCrData
. 2024 May 17;9(Pt 5):x240394. doi: 10.1107/S2414314624003948

Methyl 2-hy­droxy-4-iodo­benzoate

Marten J Kimble a,, Shea D Myers a,, Jason B Benedict b,*
Editor: W T A Harrisonc
PMCID: PMC11151288  PMID: 38846559

The title compound forms a sheet structure of dimers exhibiting intra- and inter­molecular hydrogen bonds.

Keywords: crystal structure, organic, co-former

Abstract

The structure of the title compound, C8H7IO3, at 90 K has monoclinic (P21/c) symmetry. The extended structure is layered and displays inter­molecular and intra­molecular hydrogen bonding arising from the same OH group. graphic file with name x-09-x240394-scheme1-3D1.jpg

Structure description

2-Hy­droxy­benzoic acid methyl ester (C8H8O3), commonly known as methyl salicylate, and its derivatives have been shown to display biological effects such as anti-inflammatory, anti-fungal, and process signaling (Yoon et al., 2019; Li et al., 2016; Park et al., 2007). It can also be found in various foods (Duthie & Wood, 2011). The title compound, 2-hy­droxy-4-iodo­benzoic acid methyl ester (methyl 4-iodo­salicylate, C8H7IO3) allows for an effective way of incorporating the said methyl salicylates within larger organic mol­ecules, using such methodologies as McClure protocols (Franchi et al., 2010; McClure et al., 2001), Stille (Yoon et al., 2019; Stille, 1986) and Suzuki–Miyaura reactions (Fracaroli et al., 2014; Miyaura et al., 1979), which take advantage of the iodine atom at the 4-position of the aromatic ring for the formation of carbon–carbon bonds. The iodine atom is also capable of forming supra­molecular synthons, which may be useful for crystal engineering (Desiraju, 1995; Cherukuvada et al., 2016; Mitchell et al., 2023).

At 90 K the title compound displays monoclinic (P21/c) symmetry with one mol­ecule in the asymmetric unit (Fig. 1). Inter­molecular hydrogen bonding inter­actions occur between the hy­droxy groups of one mol­ecule and the carbonyl oxygen atom of the methyl ester of an adjacent mol­ecule to form a centrosymmetric dimeric pair (Table 1, Fig. 2) with H⋯O = 2.53 (4) Å. An O3—H3⋯O2 intra­molecular hydrogen bond also exists with an H⋯O distance of 2.05 (4) Å. The C5⋯C8 [3.326 (3) Å] and O3⋯H1C (2.51 Å) inter­actions provide the only short contacts between the stacks of offset ( Inline graphic 02) parallel sheets, which make up the crystal (Fig. 3). These sheets, in turn, contain the inversion-generated hydrogen-bonded dimers (Fig. 2). The non-hydrogen atoms of the mol­ecule are essentially coplanar with no displacement from the mean mol­ecular plane greater than 0.132 Å (Fig. 4).

Figure 1.

Figure 1

The mol­ecular structure of the title compound showing 50% displacement ellipsoids. The intra­molecular hydrogen bond is indicated by a red dashed line.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.70 (4) 2.05 (4) 2.670 (3) 149 (4)
O3—H3⋯O2i 0.70 (4) 2.53 (4) 3.087 (2) 139 (4)

Symmetry code: (i) Inline graphic .

Figure 2.

Figure 2

The dimer of title compound showing intra- and inter­molecular hydrogen bonds depicted with blue dashed lines with corresponding O⋯H distances for each O—H⋯O inter­action.

Figure 3.

Figure 3

Packing diagram viewed perpendicular to ( Inline graphic 02).

Figure 4.

Figure 4

Packing diagram viewed along b-axis and parallel to ( Inline graphic 02).

Crystallization

Methyl 4-iodo­salicylate (32.8 mg, 0.118 mmol) was added to a 20 ml scintillation vial to which benzene (∼2 ml) was added, and the vial shaken until the compound dissolved. The resulting solution was then left undisturbed, lightly capped, and in the dark for one week to allow for crystal formation while the solvent slowly evaporated.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C8H7IO3
M r 278.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 90
a, b, c (Å) 4.3286 (8), 21.334 (4), 9.2941 (16)
β (°) 93.744 (4)
V3) 856.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.70
Crystal size (mm) 0.80 × 0.20 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.564, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 23320, 3651, 3315
R int 0.049
(sin θ/λ)max−1) 0.809
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.057, 1.11
No. of reflections 3651
No. of parameters 114
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.27, −1.92

Computer programs: APEX2 and SAINT V8.40B (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624003948/hb4468sup1.cif

x-09-x240394-sup1.cif (687.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624003948/hb4468Isup2.hkl

x-09-x240394-Isup2.hkl (291.3KB, hkl)
x-09-x240394-Isup3.cml (3.1KB, cml)

Supporting information file. DOI: 10.1107/S2414314624003948/hb4468Isup3.cml

CCDC reference: 2352344

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C8H7IO3 F(000) = 528
Mr = 278.04 Dx = 2.156 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 4.3286 (8) Å Cell parameters from 6811 reflections
b = 21.334 (4) Å θ = 2.9–34.1°
c = 9.2941 (16) Å µ = 3.70 mm1
β = 93.744 (4)° T = 90 K
V = 856.4 (3) Å3 Plate, pale yellow
Z = 4 0.80 × 0.20 × 0.02 mm

Data collection

Bruker APEXII CCD diffractometer 3315 reflections with I > 2σ(I)
φ and ω scans Rint = 0.049
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 35.1°, θmin = 2.4°
Tmin = 0.564, Tmax = 0.747 h = −6→6
23320 measured reflections k = −33→34
3651 independent reflections l = −14→15

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + 1.660P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
3651 reflections Δρmax = 1.27 e Å3
114 parameters Δρmin = −1.92 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The O-bound H atom was located in a difference map and its position was freely refined. The C-bound H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.05964 (3) 0.25795 (2) 0.54095 (2) 0.01430 (4)
O3 0.7859 (4) 0.39459 (9) 0.91310 (18) 0.0170 (3)
O1 0.4603 (4) 0.56516 (8) 0.72915 (18) 0.0180 (3)
O2 0.7790 (4) 0.51960 (9) 0.89865 (19) 0.0212 (4)
C6 0.2313 (5) 0.34266 (10) 0.6295 (2) 0.0127 (4)
C7 0.4516 (5) 0.34172 (10) 0.7453 (2) 0.0128 (4)
H7 0.522507 0.302965 0.785568 0.015*
C8 0.5675 (5) 0.39821 (10) 0.8018 (2) 0.0121 (3)
C1 0.5827 (6) 0.62513 (11) 0.7783 (3) 0.0203 (5)
H1A 0.499780 0.658300 0.713823 0.030*
H1B 0.809060 0.624553 0.777897 0.030*
H1C 0.522278 0.633151 0.876394 0.030*
C5 0.1189 (5) 0.39860 (11) 0.5688 (2) 0.0161 (4)
H5 −0.033554 0.398522 0.490504 0.019*
C3 0.4577 (5) 0.45534 (10) 0.7425 (2) 0.0123 (4)
C2 0.5823 (5) 0.51534 (11) 0.7990 (2) 0.0144 (4)
C4 0.2359 (5) 0.45406 (10) 0.6259 (2) 0.0156 (4)
H4 0.163744 0.492573 0.584857 0.019*
H3 0.836 (8) 0.4252 (17) 0.929 (4) 0.025 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01408 (6) 0.01099 (7) 0.01764 (7) −0.00031 (5) −0.00056 (4) −0.00134 (5)
O3 0.0173 (8) 0.0173 (8) 0.0153 (7) 0.0008 (6) −0.0061 (6) −0.0004 (6)
O1 0.0241 (8) 0.0104 (7) 0.0188 (8) −0.0031 (6) −0.0048 (6) 0.0007 (6)
O2 0.0210 (8) 0.0204 (9) 0.0211 (8) −0.0015 (6) −0.0083 (6) −0.0031 (6)
C6 0.0114 (8) 0.0128 (9) 0.0138 (9) −0.0012 (7) 0.0009 (7) −0.0017 (7)
C7 0.0128 (9) 0.0120 (9) 0.0136 (9) 0.0008 (7) 0.0011 (7) 0.0006 (7)
C8 0.0103 (8) 0.0155 (9) 0.0105 (8) 0.0020 (7) 0.0003 (6) 0.0010 (7)
C1 0.0282 (12) 0.0114 (10) 0.0211 (11) −0.0062 (8) 0.0005 (9) −0.0021 (8)
C5 0.0178 (10) 0.0137 (10) 0.0158 (9) −0.0004 (7) −0.0061 (7) 0.0005 (7)
C3 0.0132 (9) 0.0108 (9) 0.0128 (9) 0.0003 (7) −0.0010 (7) 0.0004 (7)
C2 0.0140 (9) 0.0152 (10) 0.0138 (9) −0.0006 (7) 0.0007 (7) −0.0011 (7)
C4 0.0179 (10) 0.0104 (9) 0.0177 (10) 0.0002 (7) −0.0053 (8) 0.0012 (7)

Geometric parameters (Å, º)

I1—C6 2.101 (2) C8—C3 1.407 (3)
O3—C8 1.357 (3) C1—H1A 0.9800
O3—H3 0.70 (4) C1—H1B 0.9800
O1—C1 1.447 (3) C1—H1C 0.9800
O1—C2 1.336 (3) C5—H5 0.9500
O2—C2 1.220 (3) C5—C4 1.379 (3)
C6—C7 1.391 (3) C3—C2 1.472 (3)
C6—C5 1.394 (3) C3—C4 1.400 (3)
C7—H7 0.9500 C4—H4 0.9500
C7—C8 1.395 (3)
C8—O3—H3 107 (3) H1A—C1—H1C 109.5
C2—O1—C1 115.15 (18) H1B—C1—H1C 109.5
C7—C6—I1 119.85 (16) C6—C5—H5 121.0
C7—C6—C5 121.9 (2) C4—C5—C6 118.0 (2)
C5—C6—I1 118.20 (15) C4—C5—H5 121.0
C6—C7—H7 120.3 C8—C3—C2 120.44 (19)
C6—C7—C8 119.4 (2) C4—C3—C8 118.89 (19)
C8—C7—H7 120.3 C4—C3—C2 120.63 (19)
O3—C8—C7 116.94 (19) O1—C2—C3 113.23 (18)
O3—C8—C3 123.3 (2) O2—C2—O1 122.9 (2)
C7—C8—C3 119.80 (19) O2—C2—C3 123.8 (2)
O1—C1—H1A 109.5 C5—C4—C3 122.0 (2)
O1—C1—H1B 109.5 C5—C4—H4 119.0
O1—C1—H1C 109.5 C3—C4—H4 119.0
H1A—C1—H1B 109.5
I1—C6—C7—C8 178.99 (15) C8—C3—C2—O1 178.4 (2)
I1—C6—C5—C4 −179.01 (17) C8—C3—C2—O2 −1.0 (3)
O3—C8—C3—C2 1.0 (3) C8—C3—C4—C5 0.9 (3)
O3—C8—C3—C4 178.8 (2) C1—O1—C2—O2 1.2 (3)
C6—C7—C8—O3 −178.90 (19) C1—O1—C2—C3 −178.26 (19)
C6—C7—C8—C3 0.9 (3) C5—C6—C7—C8 −0.8 (3)
C6—C5—C4—C3 −0.9 (4) C2—C3—C4—C5 178.8 (2)
C7—C6—C5—C4 0.8 (3) C4—C3—C2—O1 0.6 (3)
C7—C8—C3—C2 −178.8 (2) C4—C3—C2—O2 −178.8 (2)
C7—C8—C3—C4 −0.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2 0.70 (4) 2.05 (4) 2.670 (3) 149 (4)
O3—H3···O2i 0.70 (4) 2.53 (4) 3.087 (2) 139 (4)

Symmetry code: (i) −x+2, −y+1, −z+2.

Funding Statement

Funding for this research was provided by: National Science Foundation (award No. DMR-2003932).

References

  1. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cherukuvada, S., Kaur, R. & Guru Row, T. N. (2016). CrystEngComm, 18, 8528–8555.
  3. Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311–2327.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Duthie, G. G. & Wood, A. D. (2011). Food Funct. 2, 515–520. [DOI] [PubMed]
  6. Fracaroli, A. M., Furukawa, H., Suzuki, M., Dodd, M., Okajima, S., Gándara, F., Reimer, J. A. & Yaghi, O. M. (2014). J. Am. Chem. Soc. 136, 8863–8866. [DOI] [PubMed]
  7. Franchi, L., Rinaldi, M., Vignaroli, G., Innitzer, A., Radi, M. & Botta, M. (2010). Synthesis, pp. 3927–3933.
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Li, J., Yin, Y., Wang, L., Liang, P., Li, M., Liu, X., Wu, L. & Yang, H. (2016). Molecules, 21, 1544. [DOI] [PMC free article] [PubMed]
  10. McClure, M. S., Glover, B., McSorley, E., Millar, A., Osterhout, M. H. & Roschangar, F. (2001). Org. Lett. 3, 1677–1680. [DOI] [PubMed]
  11. Mitchell, T. B., Zhang, X., Jerozal, R. T., Chen, Y.-S., Wang, S. & Benedict, J. B. (2023). IUCrJ, 10, 694–699. [DOI] [PMC free article] [PubMed]
  12. Miyaura, N., Yamada, K. & Suzuki, A. (1979). Tetrahedron Lett. 20, 3437–3440.
  13. Park, S.-W., Kaimoyo, E., Kumar, D., Mosher, S. & Klessig, D. F. (2007). Science, 318, 113–116. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  15. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  16. Stille, J. K. (1986). Angew. Chem. Int. Ed. Engl. 25, 508–524.
  17. Yoon, M., Kim, M., Kim, M. H., Kang, J.-G., Sohn, Y. & Kim, I. T. (2019). Inorg. Chim. Acta, 495, 119008.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314624003948/hb4468sup1.cif

x-09-x240394-sup1.cif (687.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314624003948/hb4468Isup2.hkl

x-09-x240394-Isup2.hkl (291.3KB, hkl)
x-09-x240394-Isup3.cml (3.1KB, cml)

Supporting information file. DOI: 10.1107/S2414314624003948/hb4468Isup3.cml

CCDC reference: 2352344

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES