Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2024 May 31;80(Pt 6):691–694. doi: 10.1107/S2056989024004833

Synthesis and crystal structure of the cluster (Et4N)[(Tp*)MoFe3S33-NSiMe3)(N3)3]

Yue Li a,, Jia Wei a,, Jie Han b, Xu-Dong Chen a,*
Editor: S-L Zhengc
PMCID: PMC11151308  PMID: 38845704

This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo–Fe–S cluster family, which may be a good reference for understanding the structure and function of the nitro­genase FeMo cofactor.

Keywords: crystal structure, Mo–Fe–S cluster, FeMo cofactor, synthesis

Abstract

The title compound, tetra­ethyl­ammonium tri­azido­tri-μ3-sulfido-[μ3-(tri­methyl­sil­yl)aza­nediido][tris­(3,5-di­methyl­pyrazol-1-yl)hydro­borato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S33-NSiMe3)(N3)3] [Tp* = tris­(3,5-di­methyl­pyrazol-1-yl)hydro­bor­ate(1−)], crystallizes as needle-like black crystals in space group P Inline graphic . In this cluster, the Mo site is in a distorted octa­hedral coordination model, coordinating three N atoms on the Tp* ligand and three μ3-bridging S atoms in the core. The Fe sites are in a distorted tetra­hedral coordination model, coordinating two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo–Fe–S cluster family, which may be a good reference for understanding the structure and function of the nitro­genase FeMo cofactor. The residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] function was applied. The solvent contribution is not included in the reported mol­ecular weight and density.

1. Chemical context

Nitro­gen is abundant in the atmosphere in the form of di­nitro­gen gas, but this type of nitro­gen cannot be metabolized by organisms directly (Jia & Quadrelli, 2014; MacKay & Fryzuk, 2004). It must be fixed by nitro­genase in some selected microorganisms (Dos Santos et al., 2012). Nitro­genase can transform N2 to NH3, and then the biochemical N cycle sets off (Cheng, 2008; Canfield et al., 2010). The exploration of synthetic structural analogs of nitro­genase is therefore a crucial area in modern science research.

The FeMo cofactor is believed to be one of the most important parts in nitro­genase responsible for nitro­gen fixation. The FeMo cofactor contains a 2p atom in the center, which has been proven to be a carbide, resulting in the structure as [MoFe7S9C] (Spatzal et al., 2011; Lancaster et al., 2011). To mimic the structure of the FeMo cofactor, a large number of iron–sulfur clusters have been synthesized (Lee & Holm, 2004; Holm, 1977; Herskovitz et al., 1972; Liu et al., 1990; Nordlander et al., 1993). However, synthesizing heteroleptic analogs with a 2p atom in the core of the cluster is a tough challenge for researchers in this area (Sickerman et al., 2017). With the unremitting efforts of scientists, some synthetic homometallic or heterometallic iron–sulfur clusters with a 2p atom in the core have been synthesized. Lee’s group have used the dinuclear precursors for the selective synthesis of the homometallic cubane clusters [Fe4(N t Bu) n (S)4–n Cl4] z with (n, z = 3, 1−, 2, 2− or 1, 2−; Chen et al., 2010). Our group have developed core ligand metathesis and core ligand redox metathesis strategies and successfully synthesized versatile heterometallic iron–sulfur clusters containing a core 2p atom, including the [MFe3S22-Q)]1+ and [MFe3S33-Q)]2+ (M = W and Mo, Q = NR, OR) cubane clusters (Xu et al., 2018; He et al., 2022), and the [(Tp*)2W2Fe64-N)2S6 L 4]2− [Tp* = tris­(3,5-di­methyl­pyrazol-1-yl)-hydro­borate(1−), L = Cl or Br] double cubane clusters (Xu et al., 2019). Previously in our laboratory, the molybdenum–iron–sulfur cluster [(Tp*)MoFe3S33-NSiMe3)Cl3], which resembles one of the cubic subunits of the FeMo cofactor, was synthesized through a LEGO-like strategy. Based on this cluster, which has a μ3-bridging N atom in the core, we explored the effects of terminal ligands on the Fe sites of heterometallic heteroleptic iron–sulfur clusters. In this work, terminal ligand substitution using NaN3 was applied to produce the cluster [(Tp*)MoFe3S33-NSiMe3)(N3)3]. The synthesis and structural analysis of this compound may provide useful information for a better understanding of the structure and reactivity of the FeMo cofactor, as well as how the terminal ligand affects the physical property of the cluster (Xu et al., 2018; He et al., 2022). 1.

2. Structural commentary

This title cluster crystallized as the Et4N+ salt in the triclinic crystal system, space group P Inline graphic . The different metal atoms exhibit distinct coordination models in this cluster. The Mo site coordinates three N atoms of the Tp* ligand and three μ3-bridging S atoms in the core of the cluster, showing a distorted octa­hedral coordination sphere. Each Fe site coordinates two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and one N atom on the terminal ligand, resulting in a distorted tetra­hedral geometry. The cluster exhibits quasi-threefold symmetry in its crystal form, as a result of the steric constraint generated by the crystal packing. In the core of the cluster, the Mo—S bond lengths range from 2.3638 (13) to 2.3758 (14) Å, with an average value of 2.369 (2) Å. The Mo⋯Fe distances are between 2.7743 (12) Å and 2.8012 (13) Å, averaging 2.789 (1) Å. The Fe⋯Fe distances fall in the range 2.6123 (12) Å and 2.6368 (11) Å, with a mean value of 2.626 (1) Å. The Fe—S bond lengths range from 2.2678 (14) to 2.2923 (13) Å, with an average value of 2.282 (1) Å. The Fe—N(imide) bond lengths are in the range of 1.917 (2) Å to 1.9386 (19) Å, with an average value of 1.931 (2) Å. The Fe—N(azide) bond lengths are between 1.922 (2) and 1.937 (2) Å, with an average value of 1.930 (2) Å. The N—Si bond length is 1.753 (2) Å. The Fe—N—Fe angles range from 84.78 (7) to 86.29 (7)° with an average of 85.7 (1) °. The structure of the cluster [(Tp*)MoFe3S33-NSiMe3)(N3)3] is shown in Fig. 1 and some selected geometric parameters are listed in Table 1.

Figure 1.

Figure 1

Structure of the anionic cluster in the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table 1. Selected geometric parameters (Å, °).

Mo1—Fe1 2.7743 (12) Fe1—N2 1.937 (2)
Mo1—Fe2 2.8012 (13) Fe2—Fe3 2.6286 (11)
Mo1—Fe3 2.7920 (11) Fe2—S2 2.2906 (14)
Mo1—S1 2.3660 (15) Fe2—S3 2.2923 (13)
Mo1—S2 2.3638 (13) Fe2—N1 1.917 (2)
Mo1—S3 2.3758 (14) Fe2—N5 1.932 (2)
Fe1—Fe2 2.6368 (12) Fe3—S1 2.2824 (12)
Fe1—Fe3 2.6123 (12) Fe3—S3 2.2784 (14)
Fe1—S1 2.2794 (14) Fe3—N1 1.936 (2)
Fe1—S2 2.2678 (14) Fe3—N8 1.922 (2)
Fe1—N1 1.9386 (19) Si1—N1 1.7530 (19)
       
Fe1—N1—Fe2 86.29 (7) Fe2—N1—Fe3 86.02 (7)
Fe1—N1—Fe3 84.78 (7)    

3. Supra­molecular features

In the crystal, there are two sets of cluster counter-ions in each unit cell. The anionic clusters and the Et4N+ cations are arranged in alternating layers, where electrostatic inter­actions might be the dominant supra­molecular inter­actions. No significant hydrogen-bonding or π–π stacking inter­actions were identified in the crystal structure. The packing of the title compound is shown in Fig. 2.

Figure 2.

Figure 2

Crystal packing of the title compound. Hydrogen atoms are omitted for clarity.

4. Database survey

Heteroleptic cubane-type M–Fe–S–N clusters (M = Mo or W) are very rare. In the literature, there are currently only two types of M–Fe–S–N clusters (Xu et al., 2018; He et al., 2022; Zhang et al., 2023). Thus far, cubane-type Mo–Fe–S–N clusters with azide terminal ligands have not been synthesized successfully.

A search of the Cambridge Structural Database with WebCSD (updated to November 2023; Groom et al., 2016) revealed two types of heteroleptic cubane-type M–Fe–S–N clusters (M = Mo, W), viz. [(Tp*)WFe3S33-NSiMe3)L 3] [NIFBIQ (L= Cl); Xu et al., 2018; XIGKEH, XIGKAD, XIGKOR, XIGKIL, XIGKUX (L = SMe, SEt, SPh, SPhMe, N3 ); Zhang et al., 2023] and [(Tp*)MoFe3S33-NSiMe3)Cl3] (RAWLAG; He et al., 2022).

5. Synthesis and crystallization

All reactions and manipulations were performed in a glovebox under an atmosphere of dry N2. DMF was refluxed over CaH2 until dry and was distilled under an N2 atmosphere. Diethyl ether was refluxed over sodium metal and benzo­phenone until dry and was distilled under an N2 atmosphere. All solvents were stored in a glovebox over activated mol­ecular sieves (3 Å). NaN3 was stored in a glovebox under an atmosphere of dry N2. As shown in Fig. 3, NaN3 (7.8 mg, 0.12 mmol) was added into a DMF solution (3.0 mL) of (Et4N)[(Tp*)MoFe33-S)33-NSiMe3)Cl3] (29.4 mg, 0.03 mmol). After overnight stirring, the color of the reaction mixture changed to brownish yellow. Filtration was done through celite and the filtrate was diffused by diethyl ether at room temperature to give needle-like black crystals (10.9 mg, yield: 36%). 1H NMR (DMSO-d 6, 400 MHz, δ, ppm): 5.83 (s, 3H, CH), −0.01 (s, 9H, CH3), −8.15 (vbr, 9H, CH3). Other proton signals could not be located due to paramagnetic broadening. Elemental analysis: calculated for C26H51BFe3MoN17S3Si: C, 31.22; H, 5.14; N, 23.80. Found: C, 31.73; H, 5.35; N, 23.27. IR (cm−1): ν (N=N), 2059 (vs). UV (nm) λ: 245, 345, 555.

Figure 3.

Figure 3

Synthesis of (Et4N)[(Tp*)MoFe33-S)33-NSiMe3)(N3)3].

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2. Hydrogen atoms were added at idealized positions and refined using a riding model. The residual electron density of disordered solvent mol­ecules in the void space could not be reasonably modeled, thus the SQUEEZE (Spek, 2015) function was applied in PLATON (Spek, 2020). A total of 40 electrons in a volume of 146 Å3 were counted by SQUEEZE and removed per unit cell. This accounts for about one solvent mol­ecule (probably diethyl ether) per unit cell.

Table 2. Experimental details.

Crystal data
Chemical formula (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3]
M r 1000.40
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 10.689 (6), 11.321 (6), 19.030 (11)
α, β, γ (°) 75.306 (7), 84.362 (7), 86.829 (7)
V3) 2216 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.02 × 0.01 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.615, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31083, 10181, 8508
R int 0.022
(sin θ/λ)max−1) 0.654
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.071, 1.02
No. of reflections 10181
No. of parameters 482
No. of restraints 36
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.28

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024004833/oi2008sup1.cif

e-80-00691-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024004833/oi2008Isup2.hkl

e-80-00691-Isup2.hkl (807.7KB, hkl)
e-80-00691-sup3.docx (140.6KB, docx)

IR and UV data. DOI: 10.1107/S2056989024004833/oi2008sup3.docx

CCDC reference: 2353398

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Priority Academic Program Development of Jiangsu Higher Educational Institutions, the Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, the State Key Laboratory of Coordination Chemistry in Nanjing University, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province for financial support.

supplementary crystallographic information

Crystal data

(C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] Z = 2
Mr = 1000.40 F(000) = 1026
Triclinic, P1 Dx = 1.500 Mg m3
a = 10.689 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.321 (6) Å Cell parameters from 9959 reflections
c = 19.030 (11) Å θ = 2.3–27.5°
α = 75.306 (7)° µ = 1.45 mm1
β = 84.362 (7)° T = 296 K
γ = 86.829 (7)° Needle, dark black
V = 2216 (2) Å3 0.02 × 0.01 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer 10181 independent reflections
Radiation source: sealed tube 8508 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
Detector resolution: 8 pixels mm-1 θmax = 27.7°, θmin = 1.9°
φ and ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −14→14
Tmin = 0.615, Tmax = 0.746 l = −24→24
31083 measured reflections

Refinement

Refinement on F2 36 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0361P)2 + 0.6048P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
10181 reflections Δρmax = 0.34 e Å3
482 parameters Δρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Single-crystal X-ray diffraction data for the title compound was collected at 296 K on a Bruker APEX II CCD diffractometer operating at 50 kV and 30 mA using Mo-Kα radiation (λ = 0.71073 Å). Crystal was mounted on a loop using Parabar 10312 oil for data collection. Data was collected with a series of φ and/or ω scans. Data was integrated using SAINT and scaled with either a numerical or multiscan absorption correction using SADABS. Structure was solved using SHELXT and refined by full-matrix least-squares on F2 using the SHELXL and OLEX2 (Dolomanov et al., 2009) programs. All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mo1 0.37687 (2) 0.19344 (2) 0.70187 (2) 0.02871 (5)
Fe1 0.35280 (3) 0.34195 (3) 0.79844 (2) 0.03469 (7)
Fe2 0.51034 (3) 0.15159 (3) 0.82587 (2) 0.03669 (8)
Fe3 0.56554 (3) 0.34312 (3) 0.71799 (2) 0.03547 (8)
S1 0.37571 (5) 0.40934 (5) 0.67454 (3) 0.03587 (11)
S2 0.29666 (5) 0.14413 (5) 0.82569 (3) 0.03783 (12)
S3 0.59472 (5) 0.14523 (5) 0.71135 (3) 0.03843 (12)
Si1 0.59645 (6) 0.37702 (6) 0.88600 (3) 0.04076 (14)
N1 0.52635 (16) 0.32102 (16) 0.82195 (10) 0.0364 (4)
N2 0.2542 (2) 0.4505 (2) 0.84783 (13) 0.0617 (6)
N3 0.24283 (19) 0.47829 (19) 0.90328 (12) 0.0523 (5)
N4 0.2266 (3) 0.5107 (3) 0.95606 (16) 0.0911 (9)
N5 0.5950 (2) 0.0405 (2) 0.90254 (13) 0.0628 (6)
N6 0.65128 (19) 0.0383 (2) 0.95230 (11) 0.0530 (5)
N7 0.7116 (3) 0.0328 (3) 1.00051 (14) 0.0868 (9)
N8 0.7028 (2) 0.4497 (2) 0.67838 (13) 0.0599 (6)
N9 0.7403 (3) 0.5394 (3) 0.68504 (15) 0.0784 (7)
N10 0.7844 (5) 0.6258 (4) 0.6907 (3) 0.164 (2)
N11 0.17455 (15) 0.21022 (16) 0.67200 (9) 0.0348 (4)
N12 0.14031 (15) 0.14605 (16) 0.62444 (9) 0.0364 (4)
N13 0.34995 (16) −0.00852 (16) 0.70729 (10) 0.0386 (4)
N14 0.28322 (16) −0.03796 (16) 0.65579 (10) 0.0376 (4)
N15 0.41462 (16) 0.20726 (16) 0.58126 (9) 0.0366 (4)
N16 0.34604 (16) 0.13737 (17) 0.54964 (9) 0.0391 (4)
C1 0.5783 (3) 0.5462 (2) 0.86171 (17) 0.0630 (7)
H1A 0.611474 0.578126 0.812136 0.094*
H1B 0.623358 0.578596 0.893520 0.094*
H1C 0.490828 0.569406 0.866928 0.094*
C2 0.7669 (2) 0.3327 (3) 0.88212 (17) 0.0609 (7)
H2A 0.776677 0.245323 0.897247 0.091*
H2B 0.807741 0.368582 0.914024 0.091*
H2C 0.804121 0.361215 0.833093 0.091*
C3 0.5166 (3) 0.3129 (3) 0.97832 (14) 0.0679 (8)
H3A 0.431839 0.345395 0.980566 0.102*
H3B 0.561231 0.334619 1.014358 0.102*
H3C 0.515542 0.225503 0.987630 0.102*
C4 0.0628 (2) 0.3588 (2) 0.73746 (14) 0.0502 (6)
H4A −0.021138 0.392982 0.740781 0.075*
H4B 0.120560 0.423202 0.717294 0.075*
H4C 0.084442 0.315666 0.785218 0.075*
C5 0.06979 (19) 0.2730 (2) 0.68965 (12) 0.0395 (5)
C6 −0.0299 (2) 0.2471 (2) 0.65436 (13) 0.0473 (6)
H6 −0.112202 0.277794 0.657710 0.057*
C7 0.0164 (2) 0.1681 (2) 0.61406 (13) 0.0444 (5)
C8 −0.0496 (2) 0.1139 (3) 0.56439 (17) 0.0670 (8)
H8A −0.137189 0.137596 0.567114 0.100*
H8B −0.040632 0.026449 0.578982 0.100*
H8C −0.013188 0.142877 0.515209 0.100*
C9 0.4515 (3) −0.1292 (2) 0.81859 (16) 0.0667 (8)
H9A 0.529813 −0.088597 0.803667 0.100*
H9B 0.467871 −0.214272 0.840157 0.100*
H9C 0.403603 −0.093153 0.853637 0.100*
C10 0.3789 (2) −0.1161 (2) 0.75371 (13) 0.0441 (5)
C11 0.3304 (2) −0.2115 (2) 0.73203 (14) 0.0494 (6)
H11 0.337355 −0.294313 0.754884 0.059*
C12 0.2705 (2) −0.1603 (2) 0.67069 (13) 0.0432 (5)
C13 0.2017 (3) −0.2218 (2) 0.62601 (17) 0.0620 (7)
H13A 0.208509 −0.308701 0.644984 0.093*
H13B 0.237628 −0.200302 0.576362 0.093*
H13C 0.114672 −0.195770 0.627929 0.093*
C14 0.5931 (2) 0.3525 (3) 0.53659 (14) 0.0548 (6)
H14A 0.653782 0.306889 0.567743 0.082*
H14B 0.553101 0.414548 0.558056 0.082*
H14C 0.634626 0.390003 0.489801 0.082*
C15 0.4963 (2) 0.2684 (2) 0.52753 (12) 0.0430 (5)
C16 0.4801 (2) 0.2372 (3) 0.46324 (13) 0.0552 (6)
H16 0.524464 0.266948 0.418171 0.066*
C17 0.3864 (2) 0.1541 (3) 0.47857 (12) 0.0502 (6)
C18 0.3358 (3) 0.0878 (3) 0.42916 (15) 0.0789 (10)
H18A 0.339169 0.001538 0.451014 0.118*
H18B 0.385699 0.104993 0.383157 0.118*
H18C 0.250263 0.114463 0.421627 0.118*
B1 0.2358 (2) 0.0624 (2) 0.59292 (13) 0.0387 (5)
H1 0.194700 0.024994 0.560488 0.046*
N17 −0.05817 (17) 0.82275 (17) 0.86189 (12) 0.0459 (5)
C19 0.0230 (2) 0.7189 (2) 0.84364 (18) 0.0634 (7)
H19A 0.058171 0.745072 0.793400 0.076*
H19B 0.092600 0.703033 0.874210 0.076*
C20 −0.0436 (3) 0.6007 (3) 0.8532 (2) 0.0762 (9)
H20A −0.113210 0.615106 0.823468 0.114*
H20B −0.073955 0.570685 0.903417 0.114*
H20C 0.013988 0.541409 0.838652 0.114*
C21 −0.1151 (3) 0.7881 (3) 0.94073 (15) 0.0603 (7)
H21A −0.166352 0.856816 0.950127 0.072*
H21B −0.170281 0.720491 0.946621 0.072*
C22 −0.0203 (4) 0.7522 (4) 0.9976 (2) 0.1076 (13)
H22A 0.042863 0.812729 0.987749 0.161*
H22B 0.018634 0.674436 0.995761 0.161*
H22C −0.062494 0.746732 1.045169 0.161*
C23 0.0264 (2) 0.9312 (3) 0.84888 (19) 0.0695 (8)
H23A 0.093986 0.908884 0.880721 0.083*
H23B 0.064055 0.948195 0.799003 0.083*
C24 −0.0391 (3) 1.0463 (3) 0.8616 (2) 0.0892 (11)
H24A −0.109205 1.066948 0.832393 0.134*
H24B 0.018762 1.111840 0.848318 0.134*
H24C −0.068571 1.033470 0.912190 0.134*
C25 −0.1686 (2) 0.8524 (3) 0.81586 (16) 0.0618 (7)
H25A −0.219688 0.917170 0.830344 0.074*
H25B −0.219841 0.780891 0.826174 0.074*
C26 −0.1337 (4) 0.8915 (3) 0.73461 (19) 0.1038 (13)
H26A −0.208837 0.907254 0.709485 0.156*
H26B −0.083986 0.827723 0.719386 0.156*
H26C −0.086142 0.964464 0.723342 0.156*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.02915 (9) 0.03079 (9) 0.02823 (9) 0.00145 (6) −0.00491 (6) −0.01069 (7)
Fe1 0.03339 (15) 0.03888 (16) 0.03479 (16) 0.00628 (12) −0.00428 (12) −0.01577 (13)
Fe2 0.03843 (16) 0.03578 (16) 0.03790 (17) 0.00523 (12) −0.01024 (13) −0.01174 (13)
Fe3 0.03283 (15) 0.03801 (16) 0.03821 (17) −0.00029 (12) −0.00218 (12) −0.01491 (13)
S1 0.0392 (3) 0.0329 (3) 0.0357 (3) 0.0027 (2) −0.0061 (2) −0.0085 (2)
S2 0.0382 (3) 0.0434 (3) 0.0311 (3) −0.0030 (2) −0.0026 (2) −0.0077 (2)
S3 0.0333 (3) 0.0422 (3) 0.0451 (3) 0.0073 (2) −0.0064 (2) −0.0211 (2)
Si1 0.0429 (3) 0.0444 (3) 0.0423 (3) 0.0074 (3) −0.0129 (3) −0.0228 (3)
N1 0.0354 (9) 0.0407 (10) 0.0389 (10) 0.0042 (7) −0.0080 (7) −0.0199 (8)
N2 0.0562 (12) 0.0772 (15) 0.0643 (14) 0.0234 (11) −0.0097 (11) −0.0443 (13)
N3 0.0475 (11) 0.0576 (13) 0.0591 (13) 0.0150 (9) −0.0091 (10) −0.0297 (11)
N4 0.096 (2) 0.120 (2) 0.0768 (18) 0.0343 (18) −0.0206 (15) −0.0637 (18)
N5 0.0733 (15) 0.0528 (13) 0.0634 (15) 0.0100 (11) −0.0338 (12) −0.0089 (11)
N6 0.0509 (12) 0.0603 (13) 0.0405 (11) 0.0139 (10) −0.0056 (9) −0.0021 (10)
N7 0.0888 (19) 0.114 (2) 0.0518 (15) 0.0193 (17) −0.0253 (14) −0.0073 (15)
N8 0.0541 (12) 0.0585 (14) 0.0704 (15) −0.0208 (11) 0.0061 (11) −0.0223 (12)
N9 0.098 (2) 0.0624 (16) 0.0773 (18) −0.0253 (15) −0.0151 (15) −0.0145 (14)
N10 0.239 (5) 0.104 (3) 0.165 (4) −0.085 (3) −0.032 (4) −0.039 (3)
N11 0.0312 (8) 0.0413 (10) 0.0346 (9) 0.0004 (7) −0.0053 (7) −0.0139 (8)
N12 0.0334 (9) 0.0415 (10) 0.0381 (10) −0.0005 (7) −0.0106 (7) −0.0144 (8)
N13 0.0447 (10) 0.0340 (9) 0.0401 (10) 0.0009 (8) −0.0124 (8) −0.0118 (8)
N14 0.0390 (9) 0.0377 (10) 0.0410 (10) −0.0006 (7) −0.0081 (8) −0.0174 (8)
N15 0.0383 (9) 0.0442 (10) 0.0300 (9) −0.0022 (8) −0.0035 (7) −0.0138 (8)
N16 0.0418 (10) 0.0484 (11) 0.0327 (9) −0.0032 (8) −0.0058 (7) −0.0189 (8)
C1 0.0721 (18) 0.0512 (15) 0.0770 (19) 0.0073 (13) −0.0146 (15) −0.0358 (14)
C2 0.0464 (14) 0.0615 (17) 0.080 (2) 0.0057 (12) −0.0200 (13) −0.0239 (15)
C3 0.0783 (19) 0.086 (2) 0.0428 (15) 0.0183 (16) −0.0071 (13) −0.0261 (14)
C4 0.0371 (12) 0.0598 (15) 0.0596 (15) 0.0097 (11) −0.0028 (11) −0.0287 (13)
C5 0.0325 (10) 0.0442 (12) 0.0419 (12) 0.0022 (9) −0.0034 (9) −0.0117 (10)
C6 0.0305 (11) 0.0581 (15) 0.0547 (14) 0.0047 (10) −0.0090 (10) −0.0159 (12)
C7 0.0356 (11) 0.0502 (13) 0.0494 (13) −0.0029 (10) −0.0129 (10) −0.0121 (11)
C8 0.0521 (15) 0.081 (2) 0.081 (2) −0.0002 (14) −0.0302 (14) −0.0354 (17)
C9 0.099 (2) 0.0361 (13) 0.0663 (18) 0.0066 (13) −0.0411 (16) −0.0041 (12)
C10 0.0522 (13) 0.0347 (11) 0.0473 (13) 0.0011 (10) −0.0111 (10) −0.0114 (10)
C11 0.0583 (14) 0.0310 (11) 0.0597 (15) 0.0003 (10) −0.0100 (12) −0.0111 (11)
C12 0.0421 (12) 0.0377 (12) 0.0549 (14) −0.0028 (9) −0.0024 (10) −0.0216 (11)
C13 0.0659 (17) 0.0518 (15) 0.081 (2) −0.0043 (13) −0.0172 (15) −0.0343 (14)
C14 0.0540 (14) 0.0683 (17) 0.0406 (13) −0.0176 (13) 0.0077 (11) −0.0123 (12)
C15 0.0405 (12) 0.0547 (14) 0.0344 (12) −0.0026 (10) −0.0004 (9) −0.0133 (10)
C16 0.0565 (15) 0.0805 (19) 0.0298 (12) −0.0107 (13) 0.0057 (10) −0.0177 (12)
C17 0.0519 (14) 0.0704 (17) 0.0334 (12) −0.0046 (12) −0.0034 (10) −0.0220 (12)
C18 0.094 (2) 0.112 (3) 0.0445 (16) −0.026 (2) −0.0062 (15) −0.0395 (17)
B1 0.0408 (13) 0.0443 (14) 0.0372 (13) −0.0007 (10) −0.0088 (10) −0.0197 (11)
N17 0.0336 (9) 0.0420 (10) 0.0625 (13) 0.0003 (8) −0.0035 (9) −0.0145 (9)
C19 0.0444 (14) 0.0592 (17) 0.092 (2) 0.0125 (12) −0.0051 (14) −0.0315 (15)
C20 0.0679 (18) 0.0555 (17) 0.117 (3) 0.0133 (14) −0.0203 (18) −0.0416 (18)
C21 0.0664 (17) 0.0541 (16) 0.0604 (17) −0.0067 (13) 0.0031 (13) −0.0165 (13)
C22 0.145 (4) 0.109 (3) 0.078 (2) 0.006 (3) −0.047 (2) −0.028 (2)
C23 0.0474 (15) 0.0598 (17) 0.104 (2) −0.0187 (13) 0.0132 (15) −0.0286 (17)
C24 0.077 (2) 0.0534 (18) 0.138 (3) −0.0241 (16) 0.021 (2) −0.033 (2)
C25 0.0562 (15) 0.0550 (16) 0.0770 (19) 0.0117 (12) −0.0220 (14) −0.0183 (14)
C26 0.155 (4) 0.082 (3) 0.074 (2) 0.013 (2) −0.034 (2) −0.013 (2)

Geometric parameters (Å, º)

Mo1—Fe1 2.7743 (12) Fe1—N2 1.937 (2)
Mo1—Fe2 2.8012 (13) Fe2—Fe3 2.6286 (11)
Mo1—Fe3 2.7920 (11) Fe2—S2 2.2906 (14)
Mo1—S1 2.3660 (15) Fe2—S3 2.2923 (13)
Mo1—S2 2.3638 (13) Fe2—N1 1.917 (2)
Mo1—S3 2.3758 (14) Fe2—N5 1.932 (2)
Fe1—Fe2 2.6368 (12) Fe3—S1 2.2824 (12)
Fe1—Fe3 2.6123 (12) Fe3—S3 2.2784 (14)
Fe1—S1 2.2794 (14) Fe3—N1 1.936 (2)
Fe1—S2 2.2678 (14) Fe3—N8 1.922 (2)
Fe1—N1 1.9386 (19) Si1—N1 1.7530 (19)
Fe1—Mo1—Fe2 56.45 (3) C17—N16—B1 128.75 (18)
Fe1—Mo1—Fe3 55.98 (2) Si1—C1—H1A 109.5
Fe3—Mo1—Fe2 56.06 (2) Si1—C1—H1B 109.5
S1—Mo1—Fe1 51.91 (3) Si1—C1—H1C 109.5
S1—Mo1—Fe2 96.584 (17) H1A—C1—H1B 109.5
S1—Mo1—Fe3 51.73 (3) H1A—C1—H1C 109.5
S1—Mo1—S3 101.05 (2) H1B—C1—H1C 109.5
S2—Mo1—Fe1 51.63 (3) Si1—C2—H2A 109.5
S2—Mo1—Fe2 51.81 (4) Si1—C2—H2B 109.5
S2—Mo1—Fe3 95.96 (3) Si1—C2—H2C 109.5
S2—Mo1—S1 101.54 (2) H2A—C2—H2B 109.5
S2—Mo1—S3 101.72 (3) H2A—C2—H2C 109.5
S3—Mo1—Fe1 96.298 (18) H2B—C2—H2C 109.5
S3—Mo1—Fe2 51.77 (2) Si1—C3—H3A 109.5
S3—Mo1—Fe3 51.56 (3) Si1—C3—H3B 109.5
N11—Mo1—Fe1 98.22 (4) Si1—C3—H3C 109.5
N11—Mo1—Fe2 139.46 (4) H3A—C3—H3B 109.5
N11—Mo1—Fe3 139.11 (5) H3A—C3—H3C 109.5
N11—Mo1—S1 87.57 (5) H3B—C3—H3C 109.5
N11—Mo1—S2 87.78 (5) H4A—C4—H4B 109.5
N11—Mo1—S3 165.47 (5) H4A—C4—H4C 109.5
N11—Mo1—N13 81.98 (6) H4B—C4—H4C 109.5
N13—Mo1—Fe1 136.92 (5) C5—C4—H4A 109.5
N13—Mo1—Fe2 96.16 (4) C5—C4—H4B 109.5
N13—Mo1—Fe3 138.87 (5) C5—C4—H4C 109.5
N13—Mo1—S1 167.20 (4) N11—C5—C4 125.30 (19)
N13—Mo1—S2 85.49 (5) N11—C5—C6 109.4 (2)
N13—Mo1—S3 87.79 (5) C6—C5—C4 125.25 (19)
N15—Mo1—Fe1 140.00 (5) C5—C6—H6 126.6
N15—Mo1—Fe2 138.97 (5) C7—C6—C5 106.85 (19)
N15—Mo1—Fe3 99.00 (5) C7—C6—H6 126.6
N15—Mo1—S1 88.24 (5) N12—C7—C6 107.88 (19)
N15—Mo1—S2 165.03 (5) N12—C7—C8 123.1 (2)
N15—Mo1—S3 87.27 (5) C6—C7—C8 129.0 (2)
N15—Mo1—N11 81.28 (6) C7—C8—H8A 109.5
N15—Mo1—N13 82.90 (6) C7—C8—H8B 109.5
Fe2—Fe1—Mo1 62.29 (3) C7—C8—H8C 109.5
Fe3—Fe1—Mo1 62.35 (2) H8A—C8—H8B 109.5
Fe3—Fe1—Fe2 60.10 (3) H8A—C8—H8C 109.5
S1—Fe1—Mo1 54.78 (4) H8B—C8—H8C 109.5
S1—Fe1—Fe2 103.55 (2) H9A—C9—H9B 109.5
S1—Fe1—Fe3 55.12 (2) H9A—C9—H9C 109.5
S2—Fe1—Mo1 54.81 (3) H9B—C9—H9C 109.5
S2—Fe1—Fe2 55.06 (4) C10—C9—H9A 109.5
S2—Fe1—Fe3 103.60 (2) C10—C9—H9B 109.5
S2—Fe1—S1 107.36 (2) C10—C9—H9C 109.5
N1—Fe1—Mo1 95.61 (5) N13—C10—C9 124.7 (2)
N1—Fe1—Fe2 46.51 (6) N13—C10—C11 109.7 (2)
N1—Fe1—Fe3 47.58 (6) C11—C10—C9 125.6 (2)
N1—Fe1—S1 101.71 (6) C10—C11—H11 126.6
N1—Fe1—S2 100.35 (6) C12—C11—C10 106.9 (2)
N2—Fe1—Mo1 151.18 (7) C12—C11—H11 126.6
N2—Fe1—Fe2 140.51 (8) N14—C12—C11 107.39 (19)
N2—Fe1—Fe3 138.19 (8) N14—C12—C13 123.8 (2)
N2—Fe1—S1 114.78 (8) C11—C12—C13 128.8 (2)
N2—Fe1—S2 117.42 (9) C12—C13—H13A 109.5
N2—Fe1—N1 113.18 (9) C12—C13—H13B 109.5
Fe1—Fe2—Mo1 61.262 (19) C12—C13—H13C 109.5
Fe3—Fe2—Mo1 61.79 (3) H13A—C13—H13B 109.5
Fe3—Fe2—Fe1 59.49 (3) H13A—C13—H13C 109.5
S2—Fe2—Mo1 54.20 (2) H13B—C13—H13C 109.5
S2—Fe2—Fe1 54.26 (3) H14A—C14—H14B 109.5
S2—Fe2—Fe3 102.45 (2) H14A—C14—H14C 109.5
S2—Fe2—S3 106.67 (3) H14B—C14—H14C 109.5
S3—Fe2—Mo1 54.50 (4) C15—C14—H14A 109.5
S3—Fe2—Fe1 102.32 (3) C15—C14—H14B 109.5
S3—Fe2—Fe3 54.65 (3) C15—C14—H14C 109.5
N1—Fe2—Mo1 95.26 (5) N15—C15—C14 125.3 (2)
N1—Fe2—Fe1 47.19 (6) N15—C15—C16 109.4 (2)
N1—Fe2—Fe3 47.30 (6) C16—C15—C14 125.2 (2)
N1—Fe2—S2 100.22 (5) C15—C16—H16 126.5
N1—Fe2—S3 100.87 (6) C17—C16—C15 107.1 (2)
N1—Fe2—N5 114.41 (9) C17—C16—H16 126.5
N5—Fe2—Mo1 150.13 (7) N16—C17—C16 107.5 (2)
N5—Fe2—Fe1 143.49 (8) N16—C17—C18 123.6 (2)
N5—Fe2—Fe3 137.79 (8) C16—C17—C18 128.8 (2)
N5—Fe2—S2 119.35 (8) C17—C18—H18A 109.5
N5—Fe2—S3 113.06 (8) C17—C18—H18B 109.5
Fe1—Fe3—Mo1 61.67 (3) C17—C18—H18C 109.5
Fe1—Fe3—Fe2 60.41 (2) H18A—C18—H18B 109.5
Fe2—Fe3—Mo1 62.14 (3) H18A—C18—H18C 109.5
S1—Fe3—Mo1 54.47 (4) H18B—C18—H18C 109.5
S1—Fe3—Fe1 55.01 (4) N12—B1—H1 109.3
S1—Fe3—Fe2 103.72 (3) N14—B1—N12 108.87 (18)
S3—Fe3—Mo1 54.75 (3) N14—B1—N16 110.20 (18)
S3—Fe3—Fe1 103.47 (2) N14—B1—H1 109.3
S3—Fe3—Fe2 55.14 (4) N16—B1—N12 109.76 (18)
S3—Fe3—S1 106.74 (2) N16—B1—H1 109.3
N1—Fe3—Mo1 95.10 (6) C19—N17—C21 111.1 (2)
N1—Fe3—Fe1 47.65 (5) C19—N17—C23 106.64 (19)
N1—Fe3—Fe2 46.68 (6) C23—N17—C21 110.8 (2)
N1—Fe3—S1 101.67 (6) C25—N17—C19 111.1 (2)
N1—Fe3—S3 100.75 (6) C25—N17—C21 105.62 (19)
N8—Fe3—Mo1 151.35 (8) C25—N17—C23 111.6 (2)
N8—Fe3—Fe1 139.18 (7) N17—C19—H19A 108.5
N8—Fe3—Fe2 139.85 (8) N17—C19—H19B 108.5
N8—Fe3—S1 115.52 (8) H19A—C19—H19B 107.5
N8—Fe3—S3 116.62 (8) C20—C19—N17 115.3 (2)
N8—Fe3—N1 113.54 (9) C20—C19—H19A 108.5
Fe1—S1—Mo1 73.32 (2) C20—C19—H19B 108.5
Fe1—S1—Fe3 69.87 (3) C19—C20—H20A 109.5
Fe3—S1—Mo1 73.81 (2) C19—C20—H20B 109.5
Fe1—S2—Mo1 73.56 (2) C19—C20—H20C 109.5
Fe1—S2—Fe2 70.68 (2) H20A—C20—H20B 109.5
Fe2—S2—Mo1 73.98 (3) H20A—C20—H20C 109.5
Fe2—S3—Mo1 73.73 (3) H20B—C20—H20C 109.5
Fe3—S3—Mo1 73.690 (18) N17—C21—H21A 108.5
Fe3—S3—Fe2 70.21 (2) N17—C21—H21B 108.5
N1—Si1—C1 108.62 (11) H21A—C21—H21B 107.5
N1—Si1—C2 108.68 (11) C22—C21—N17 115.0 (3)
N1—Si1—C3 109.06 (13) C22—C21—H21A 108.5
C1—Si1—C2 109.26 (13) C22—C21—H21B 108.5
C1—Si1—C3 109.89 (14) C21—C22—H22A 109.5
C2—Si1—C3 111.28 (14) C21—C22—H22B 109.5
Fe1—N1—Fe2 86.29 (7) C21—C22—H22C 109.5
Fe1—N1—Fe3 84.78 (7) H22A—C22—H22B 109.5
Fe2—N1—Fe3 86.02 (7) H22A—C22—H22C 109.5
Si1—N1—Fe1 128.04 (9) H22B—C22—H22C 109.5
Si1—N1—Fe2 125.15 (10) N17—C23—H23A 108.6
Si1—N1—Fe3 131.52 (11) N17—C23—H23B 108.6
N3—N2—Fe1 141.17 (19) H23A—C23—H23B 107.6
N4—N3—N2 176.0 (3) C24—C23—N17 114.7 (2)
N6—N5—Fe2 142.0 (2) C24—C23—H23A 108.6
N7—N6—N5 176.8 (3) C24—C23—H23B 108.6
N9—N8—Fe3 138.5 (2) C23—C24—H24A 109.5
N10—N9—N8 175.9 (5) C23—C24—H24B 109.5
N12—N11—Mo1 119.02 (12) C23—C24—H24C 109.5
C5—N11—Mo1 134.92 (14) H24A—C24—H24B 109.5
C5—N11—N12 106.07 (16) H24A—C24—H24C 109.5
N11—N12—B1 121.02 (16) H24B—C24—H24C 109.5
C7—N12—N11 109.76 (17) N17—C25—H25A 108.6
C7—N12—B1 129.20 (18) N17—C25—H25B 108.6
N14—N13—Mo1 119.09 (12) N17—C25—C26 114.8 (3)
C10—N13—Mo1 135.19 (14) H25A—C25—H25B 107.5
C10—N13—N14 105.60 (17) C26—C25—H25A 108.6
N13—N14—B1 120.39 (17) C26—C25—H25B 108.6
C12—N14—N13 110.38 (17) C25—C26—H26A 109.5
C12—N14—B1 129.22 (18) C25—C26—H26B 109.5
N16—N15—Mo1 118.99 (13) C25—C26—H26C 109.5
C15—N15—Mo1 134.89 (14) H26A—C26—H26B 109.5
C15—N15—N16 106.07 (17) H26A—C26—H26C 109.5
N15—N16—B1 121.19 (17) H26B—C26—H26C 109.5
C17—N16—N15 109.92 (18)
Mo1—N11—N12—C7 179.77 (14) C3—Si1—N1—Fe3 −176.87 (13)
Mo1—N11—N12—B1 1.1 (2) C4—C5—C6—C7 177.8 (2)
Mo1—N11—C5—C4 1.8 (4) C5—N11—N12—C7 −0.8 (2)
Mo1—N11—C5—C6 −179.82 (16) C5—N11—N12—B1 −179.43 (19)
Mo1—N13—N14—C12 −176.06 (14) C5—C6—C7—N12 0.1 (3)
Mo1—N13—N14—B1 4.2 (2) C5—C6—C7—C8 −178.2 (3)
Mo1—N13—C10—C9 −4.3 (4) C7—N12—B1—N14 −117.7 (2)
Mo1—N13—C10—C11 175.44 (16) C7—N12—B1—N16 121.7 (2)
Mo1—N15—N16—C17 −177.10 (15) C9—C10—C11—C12 179.8 (3)
Mo1—N15—N16—B1 6.9 (2) C10—N13—N14—C12 0.6 (2)
Mo1—N15—C15—C14 −0.3 (4) C10—N13—N14—B1 −179.13 (19)
Mo1—N15—C15—C16 177.25 (17) C10—C11—C12—N14 0.3 (3)
N11—N12—C7—C6 0.4 (3) C10—C11—C12—C13 −179.4 (2)
N11—N12—C7—C8 178.9 (2) C12—N14—B1—N12 116.7 (2)
N11—N12—B1—N14 60.7 (3) C12—N14—B1—N16 −122.8 (2)
N11—N12—B1—N16 −60.0 (2) C14—C15—C16—C17 177.1 (2)
N11—C5—C6—C7 −0.7 (3) C15—N15—N16—C17 0.9 (2)
N12—N11—C5—C4 −177.5 (2) C15—N15—N16—B1 −175.06 (19)
N12—N11—C5—C6 0.9 (2) C15—C16—C17—N16 0.9 (3)
N13—N14—C12—C11 −0.6 (3) C15—C16—C17—C18 −177.4 (3)
N13—N14—C12—C13 179.1 (2) C17—N16—B1—N12 −119.9 (2)
N13—N14—B1—N12 −63.6 (2) C17—N16—B1—N14 120.2 (2)
N13—N14—B1—N16 56.8 (2) B1—N12—C7—C6 178.9 (2)
N13—C10—C11—C12 0.1 (3) B1—N12—C7—C8 −2.6 (4)
N14—N13—C10—C9 179.9 (2) B1—N14—C12—C11 179.1 (2)
N14—N13—C10—C11 −0.4 (3) B1—N14—C12—C13 −1.2 (4)
N15—N16—C17—C16 −1.2 (3) B1—N16—C17—C16 174.4 (2)
N15—N16—C17—C18 177.3 (3) B1—N16—C17—C18 −7.1 (4)
N15—N16—B1—N12 55.3 (2) C19—N17—C21—C22 58.4 (3)
N15—N16—B1—N14 −64.6 (2) C19—N17—C23—C24 177.9 (3)
N15—C15—C16—C17 −0.4 (3) C19—N17—C25—C26 −60.3 (3)
N16—N15—C15—C14 −177.8 (2) C21—N17—C19—C20 59.0 (3)
N16—N15—C15—C16 −0.3 (3) C21—N17—C23—C24 −61.0 (3)
C1—Si1—N1—Fe1 −59.18 (17) C21—N17—C25—C26 179.1 (2)
C1—Si1—N1—Fe2 −175.96 (13) C23—N17—C19—C20 179.9 (3)
C1—Si1—N1—Fe3 63.38 (16) C23—N17—C21—C22 −60.0 (3)
C2—Si1—N1—Fe1 −177.95 (14) C23—N17—C25—C26 58.6 (3)
C2—Si1—N1—Fe2 65.27 (16) C25—N17—C19—C20 −58.3 (3)
C2—Si1—N1—Fe3 −55.39 (17) C25—N17—C21—C22 179.0 (3)
C3—Si1—N1—Fe1 60.57 (17) C25—N17—C23—C24 56.3 (4)
C3—Si1—N1—Fe2 −56.21 (15)

Funding Statement

Funding for this research was provided by: National Natural Science Foundation of China (grant Nos. 92361303, 92261107 and 22071110); Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant No. KYCX22_1550).

References

  1. Bruker. (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Canfield, D. E., Glazer, A. N. & Falkowski, P. G. (2010). Science, 330, 192–196. [DOI] [PubMed]
  3. Chen, X.-D., Duncan, J. S., Verma, A. K. & Lee, S. C. (2010). J. Am. Chem. Soc. 132, 15884–15886. [DOI] [PubMed]
  4. Cheng, Q. (2008). J. Integr. Plant Biol. 50, 786–798. [DOI] [PubMed]
  5. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  6. Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C. & Dixon, R. (2012). BMC Genomics, 13, 162–173. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. He, J., Wei, J., Xu, G. & Chen, X.-D. (2022). Inorg. Chem. 61, 4150–4158. [DOI] [PubMed]
  9. Herskovitz, T., Averill, B. A., Holm, R. H., Ibers, J. A., Phillips, W. D. & Weiher, J. F. (1972). Proc. Natl Acad. Sci. USA, 69, 2437–2441. [DOI] [PMC free article] [PubMed]
  10. Holm, R. H. (1977). Acc. Chem. Res. 10, 427–434.
  11. Jia, H.-P. & Quadrelli, E. A. (2014). Chem. Soc. Rev. 43, 547–564. [DOI] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Lancaster, K. M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M. W., Neese, F., Bergmann, U. & DeBeer, S. (2011). Science, 334, 974–977. [DOI] [PMC free article] [PubMed]
  14. Lee, S. C. & Holm, R. H. (2004). Chem. Rev. 104, 1135–1158. [DOI] [PubMed]
  15. Liu, Q., Huang, L., Liu, H., Lei, X., Wu, D., Kang, B. & Lu, J. (1990). Inorg. Chem. 29, 4131–4137.
  16. MacKay, B. A. & Fryzuk, M. D. (2004). Chem. Rev. 104, 385–402. [DOI] [PubMed]
  17. Nordlander, E., Lee, S. C., Cen, W., Wu, Z. Y., Natoli, C. R., Di Cicco, A., Filipponi, A., Hedman, B., Hodgson, K. O. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 5549–5558.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Sickerman, N. S., Tanifuji, K., Hu, Y. & Ribbe, M. W. (2017). Chem. Eur. J. 23, 12425–12432. [DOI] [PubMed]
  21. Spatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L. A., Schleicher, E., Weber, S., Rees, D. C. & Einsle, O. (2011). Science, 334, 940–940. [DOI] [PMC free article] [PubMed]
  22. Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
  23. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  24. Xu, G., Wang, Z., Ling, R., Zhou, J., Chen, X.-D. & Holm, R. H. (2018). Proc. Natl Acad. Sci. 115, 5089–5092. [DOI] [PMC free article] [PubMed]
  25. Xu, G., Zhou, J., Wang, Z., Holm, R. H. & Chen, X. D. (2019). Angew. Chem. Int. Ed. 58, 16469–16473. [DOI] [PubMed]
  26. Zhang, H.-Y., Qiu, S.-J., Yang, H.-H., Wang, M.-T., Yang, J., Wang, H.-B., Liu, N.-H. & Chen, X.-D. (2023). Dalton Trans. 52, 7166–7174. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024004833/oi2008sup1.cif

e-80-00691-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024004833/oi2008Isup2.hkl

e-80-00691-Isup2.hkl (807.7KB, hkl)
e-80-00691-sup3.docx (140.6KB, docx)

IR and UV data. DOI: 10.1107/S2056989024004833/oi2008sup3.docx

CCDC reference: 2353398

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES