This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo–Fe–S cluster family, which may be a good reference for understanding the structure and function of the nitrogenase FeMo cofactor.
Keywords: crystal structure, Mo–Fe–S cluster, FeMo cofactor, synthesis
Abstract
The title compound, tetraethylammonium triazidotri-μ3-sulfido-[μ3-(trimethylsilyl)azanediido][tris(3,5-dimethylpyrazol-1-yl)hydroborato]triiron(+2.33)molybdenum(IV), (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] or (Et4N)[(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3] [Tp* = tris(3,5-dimethylpyrazol-1-yl)hydroborate(1−)], crystallizes as needle-like black crystals in space group P
. In this cluster, the Mo site is in a distorted octahedral coordination model, coordinating three N atoms on the Tp* ligand and three μ3-bridging S atoms in the core. The Fe sites are in a distorted tetrahedral coordination model, coordinating two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and another N atom on the terminal azide ligand. This type of heterometallic and heteroleptic single cubane cluster represents a typical example within the Mo–Fe–S cluster family, which may be a good reference for understanding the structure and function of the nitrogenase FeMo cofactor. The residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] function was applied. The solvent contribution is not included in the reported molecular weight and density.
1. Chemical context
Nitrogen is abundant in the atmosphere in the form of dinitrogen gas, but this type of nitrogen cannot be metabolized by organisms directly (Jia & Quadrelli, 2014 ▸; MacKay & Fryzuk, 2004 ▸). It must be fixed by nitrogenase in some selected microorganisms (Dos Santos et al., 2012 ▸). Nitrogenase can transform N2 to NH3, and then the biochemical N cycle sets off (Cheng, 2008 ▸; Canfield et al., 2010 ▸). The exploration of synthetic structural analogs of nitrogenase is therefore a crucial area in modern science research.
The FeMo cofactor is believed to be one of the most important parts in nitrogenase responsible for nitrogen fixation. The FeMo cofactor contains a 2p atom in the center, which has been proven to be a carbide, resulting in the structure as [MoFe7S9C] (Spatzal et al., 2011 ▸; Lancaster et al., 2011 ▸). To mimic the structure of the FeMo cofactor, a large number of iron–sulfur clusters have been synthesized (Lee & Holm, 2004 ▸; Holm, 1977 ▸; Herskovitz et al., 1972 ▸; Liu et al., 1990 ▸; Nordlander et al., 1993 ▸). However, synthesizing heteroleptic analogs with a 2p atom in the core of the cluster is a tough challenge for researchers in this area (Sickerman et al., 2017 ▸). With the unremitting efforts of scientists, some synthetic homometallic or heterometallic iron–sulfur clusters with a 2p atom in the core have been synthesized. Lee’s group have used the dinuclear precursors for the selective synthesis of the homometallic cubane clusters [Fe4(N
t
Bu)
n
(S)4–n
Cl4]
z
with (n, z = 3, 1−, 2, 2− or 1, 2−; Chen et al., 2010 ▸). Our group have developed core ligand metathesis and core ligand redox metathesis strategies and successfully synthesized versatile heterometallic iron–sulfur clusters containing a core 2p atom, including the [MFe3S2(μ2-Q)]1+ and [MFe3S3(μ3-Q)]2+ (M = W and Mo, Q = NR, OR) cubane clusters (Xu et al., 2018 ▸; He et al., 2022 ▸), and the [(Tp*)2W2Fe6(μ4-N)2S6
L
4]2− [Tp* = tris(3,5-dimethylpyrazol-1-yl)-hydroborate(1−), L = Cl− or Br−] double cubane clusters (Xu et al., 2019 ▸). Previously in our laboratory, the molybdenum–iron–sulfur cluster [(Tp*)MoFe3S3(μ3-NSiMe3)Cl3]−, which resembles one of the cubic subunits of the FeMo cofactor, was synthesized through a LEGO-like strategy. Based on this cluster, which has a μ3-bridging N atom in the core, we explored the effects of terminal ligands on the Fe sites of heterometallic heteroleptic iron–sulfur clusters. In this work, terminal ligand substitution using NaN3 was applied to produce the cluster [(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3]−. The synthesis and structural analysis of this compound may provide useful information for a better understanding of the structure and reactivity of the FeMo cofactor, as well as how the terminal ligand affects the physical property of the cluster (Xu et al., 2018 ▸; He et al., 2022 ▸).
2. Structural commentary
This title cluster crystallized as the Et4N+ salt in the triclinic crystal system, space group P
. The different metal atoms exhibit distinct coordination models in this cluster. The Mo site coordinates three N atoms of the Tp* ligand and three μ3-bridging S atoms in the core of the cluster, showing a distorted octahedral coordination sphere. Each Fe site coordinates two μ3-bridging S atoms, one μ3-bridging N atom from Me3SiN2−, and one N atom on the terminal ligand, resulting in a distorted tetrahedral geometry. The cluster exhibits quasi-threefold symmetry in its crystal form, as a result of the steric constraint generated by the crystal packing. In the core of the cluster, the Mo—S bond lengths range from 2.3638 (13) to 2.3758 (14) Å, with an average value of 2.369 (2) Å. The Mo⋯Fe distances are between 2.7743 (12) Å and 2.8012 (13) Å, averaging 2.789 (1) Å. The Fe⋯Fe distances fall in the range 2.6123 (12) Å and 2.6368 (11) Å, with a mean value of 2.626 (1) Å. The Fe—S bond lengths range from 2.2678 (14) to 2.2923 (13) Å, with an average value of 2.282 (1) Å. The Fe—N(imide) bond lengths are in the range of 1.917 (2) Å to 1.9386 (19) Å, with an average value of 1.931 (2) Å. The Fe—N(azide) bond lengths are between 1.922 (2) and 1.937 (2) Å, with an average value of 1.930 (2) Å. The N—Si bond length is 1.753 (2) Å. The Fe—N—Fe angles range from 84.78 (7) to 86.29 (7)° with an average of 85.7 (1) °. The structure of the cluster [(Tp*)MoFe3S3(μ3-NSiMe3)(N3)3]− is shown in Fig. 1 ▸ and some selected geometric parameters are listed in Table 1 ▸.
Figure 1.
Structure of the anionic cluster in the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
Table 1. Selected geometric parameters (Å, °).
Mo1—Fe1 | 2.7743 (12) | Fe1—N2 | 1.937 (2) |
Mo1—Fe2 | 2.8012 (13) | Fe2—Fe3 | 2.6286 (11) |
Mo1—Fe3 | 2.7920 (11) | Fe2—S2 | 2.2906 (14) |
Mo1—S1 | 2.3660 (15) | Fe2—S3 | 2.2923 (13) |
Mo1—S2 | 2.3638 (13) | Fe2—N1 | 1.917 (2) |
Mo1—S3 | 2.3758 (14) | Fe2—N5 | 1.932 (2) |
Fe1—Fe2 | 2.6368 (12) | Fe3—S1 | 2.2824 (12) |
Fe1—Fe3 | 2.6123 (12) | Fe3—S3 | 2.2784 (14) |
Fe1—S1 | 2.2794 (14) | Fe3—N1 | 1.936 (2) |
Fe1—S2 | 2.2678 (14) | Fe3—N8 | 1.922 (2) |
Fe1—N1 | 1.9386 (19) | Si1—N1 | 1.7530 (19) |
Fe1—N1—Fe2 | 86.29 (7) | Fe2—N1—Fe3 | 86.02 (7) |
Fe1—N1—Fe3 | 84.78 (7) |
3. Supramolecular features
In the crystal, there are two sets of cluster counter-ions in each unit cell. The anionic clusters and the Et4N+ cations are arranged in alternating layers, where electrostatic interactions might be the dominant supramolecular interactions. No significant hydrogen-bonding or π–π stacking interactions were identified in the crystal structure. The packing of the title compound is shown in Fig. 2 ▸.
Figure 2.
Crystal packing of the title compound. Hydrogen atoms are omitted for clarity.
4. Database survey
Heteroleptic cubane-type M–Fe–S–N clusters (M = Mo or W) are very rare. In the literature, there are currently only two types of M–Fe–S–N clusters (Xu et al., 2018 ▸; He et al., 2022 ▸; Zhang et al., 2023 ▸). Thus far, cubane-type Mo–Fe–S–N clusters with azide terminal ligands have not been synthesized successfully.
A search of the Cambridge Structural Database with WebCSD (updated to November 2023; Groom et al., 2016 ▸) revealed two types of heteroleptic cubane-type M–Fe–S–N clusters (M = Mo, W), viz. [(Tp*)WFe3S3(μ3-NSiMe3)L 3]− [NIFBIQ (L= Cl−); Xu et al., 2018 ▸; XIGKEH, XIGKAD, XIGKOR, XIGKIL, XIGKUX (L = SMe−, SEt−, SPh−, SPhMe−, N3 −); Zhang et al., 2023 ▸] and [(Tp*)MoFe3S3(μ3-NSiMe3)Cl3]− (RAWLAG; He et al., 2022 ▸).
5. Synthesis and crystallization
All reactions and manipulations were performed in a glovebox under an atmosphere of dry N2. DMF was refluxed over CaH2 until dry and was distilled under an N2 atmosphere. Diethyl ether was refluxed over sodium metal and benzophenone until dry and was distilled under an N2 atmosphere. All solvents were stored in a glovebox over activated molecular sieves (3 Å). NaN3 was stored in a glovebox under an atmosphere of dry N2. As shown in Fig. 3 ▸, NaN3 (7.8 mg, 0.12 mmol) was added into a DMF solution (3.0 mL) of (Et4N)[(Tp*)MoFe3(μ3-S)3(μ3-NSiMe3)Cl3] (29.4 mg, 0.03 mmol). After overnight stirring, the color of the reaction mixture changed to brownish yellow. Filtration was done through celite and the filtrate was diffused by diethyl ether at room temperature to give needle-like black crystals (10.9 mg, yield: 36%). 1H NMR (DMSO-d 6, 400 MHz, δ, ppm): 5.83 (s, 3H, CH), −0.01 (s, 9H, CH3), −8.15 (vbr, 9H, CH3). Other proton signals could not be located due to paramagnetic broadening. Elemental analysis: calculated for C26H51BFe3MoN17S3Si: C, 31.22; H, 5.14; N, 23.80. Found: C, 31.73; H, 5.35; N, 23.27. IR (cm−1): ν (N=N), 2059 (vs). UV (nm) λ: 245, 345, 555.
Figure 3.
Synthesis of (Et4N)[(Tp*)MoFe3(μ3-S)3(μ3-NSiMe3)(N3)3].
6. Refinement
Crystal data, data collection, and structure refinement details are summarized in Table 2 ▸. Hydrogen atoms were added at idealized positions and refined using a riding model. The residual electron density of disordered solvent molecules in the void space could not be reasonably modeled, thus the SQUEEZE (Spek, 2015 ▸) function was applied in PLATON (Spek, 2020 ▸). A total of 40 electrons in a volume of 146 Å3 were counted by SQUEEZE and removed per unit cell. This accounts for about one solvent molecule (probably diethyl ether) per unit cell.
Table 2. Experimental details.
Crystal data | |
Chemical formula | (C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] |
M r | 1000.40 |
Crystal system, space group | Triclinic, P
![]() |
Temperature (K) | 296 |
a, b, c (Å) | 10.689 (6), 11.321 (6), 19.030 (11) |
α, β, γ (°) | 75.306 (7), 84.362 (7), 86.829 (7) |
V (Å3) | 2216 (2) |
Z | 2 |
Radiation type | Mo Kα |
μ (mm−1) | 1.45 |
Crystal size (mm) | 0.02 × 0.01 × 0.01 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Krause et al., 2015 ▸) |
T min, T max | 0.615, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 31083, 10181, 8508 |
R int | 0.022 |
(sin θ/λ)max (Å−1) | 0.654 |
Refinement | |
R[F 2 > 2σ(F 2)], wR(F 2), S | 0.027, 0.071, 1.02 |
No. of reflections | 10181 |
No. of parameters | 482 |
No. of restraints | 36 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.28 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024004833/oi2008sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024004833/oi2008Isup2.hkl
IR and UV data. DOI: 10.1107/S2056989024004833/oi2008sup3.docx
CCDC reference: 2353398
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank the Priority Academic Program Development of Jiangsu Higher Educational Institutions, the Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, the State Key Laboratory of Coordination Chemistry in Nanjing University, and the Postgraduate Research & Practice Innovation Program of Jiangsu Province for financial support.
supplementary crystallographic information
Crystal data
(C8H20N)[Fe3MoS3(C15H22BN6)(C3H9NSi)(N3)3] | Z = 2 |
Mr = 1000.40 | F(000) = 1026 |
Triclinic, P1 | Dx = 1.500 Mg m−3 |
a = 10.689 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.321 (6) Å | Cell parameters from 9959 reflections |
c = 19.030 (11) Å | θ = 2.3–27.5° |
α = 75.306 (7)° | µ = 1.45 mm−1 |
β = 84.362 (7)° | T = 296 K |
γ = 86.829 (7)° | Needle, dark black |
V = 2216 (2) Å3 | 0.02 × 0.01 × 0.01 mm |
Data collection
Bruker APEXII CCD diffractometer | 10181 independent reflections |
Radiation source: sealed tube | 8508 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 8 pixels mm-1 | θmax = 27.7°, θmin = 1.9° |
φ and ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.615, Tmax = 0.746 | l = −24→24 |
31083 measured reflections |
Refinement
Refinement on F2 | 36 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0361P)2 + 0.6048P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
10181 reflections | Δρmax = 0.34 e Å−3 |
482 parameters | Δρmin = −0.28 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Single-crystal X-ray diffraction data for the title compound was collected at 296 K on a Bruker APEX II CCD diffractometer operating at 50 kV and 30 mA using Mo-Kα radiation (λ = 0.71073 Å). Crystal was mounted on a loop using Parabar 10312 oil for data collection. Data was collected with a series of φ and/or ω scans. Data was integrated using SAINT and scaled with either a numerical or multiscan absorption correction using SADABS. Structure was solved using SHELXT and refined by full-matrix least-squares on F2 using the SHELXL and OLEX2 (Dolomanov et al., 2009) programs. All non-hydrogen atoms were refined anisotropically. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Mo1 | 0.37687 (2) | 0.19344 (2) | 0.70187 (2) | 0.02871 (5) | |
Fe1 | 0.35280 (3) | 0.34195 (3) | 0.79844 (2) | 0.03469 (7) | |
Fe2 | 0.51034 (3) | 0.15159 (3) | 0.82587 (2) | 0.03669 (8) | |
Fe3 | 0.56554 (3) | 0.34312 (3) | 0.71799 (2) | 0.03547 (8) | |
S1 | 0.37571 (5) | 0.40934 (5) | 0.67454 (3) | 0.03587 (11) | |
S2 | 0.29666 (5) | 0.14413 (5) | 0.82569 (3) | 0.03783 (12) | |
S3 | 0.59472 (5) | 0.14523 (5) | 0.71135 (3) | 0.03843 (12) | |
Si1 | 0.59645 (6) | 0.37702 (6) | 0.88600 (3) | 0.04076 (14) | |
N1 | 0.52635 (16) | 0.32102 (16) | 0.82195 (10) | 0.0364 (4) | |
N2 | 0.2542 (2) | 0.4505 (2) | 0.84783 (13) | 0.0617 (6) | |
N3 | 0.24283 (19) | 0.47829 (19) | 0.90328 (12) | 0.0523 (5) | |
N4 | 0.2266 (3) | 0.5107 (3) | 0.95606 (16) | 0.0911 (9) | |
N5 | 0.5950 (2) | 0.0405 (2) | 0.90254 (13) | 0.0628 (6) | |
N6 | 0.65128 (19) | 0.0383 (2) | 0.95230 (11) | 0.0530 (5) | |
N7 | 0.7116 (3) | 0.0328 (3) | 1.00051 (14) | 0.0868 (9) | |
N8 | 0.7028 (2) | 0.4497 (2) | 0.67838 (13) | 0.0599 (6) | |
N9 | 0.7403 (3) | 0.5394 (3) | 0.68504 (15) | 0.0784 (7) | |
N10 | 0.7844 (5) | 0.6258 (4) | 0.6907 (3) | 0.164 (2) | |
N11 | 0.17455 (15) | 0.21022 (16) | 0.67200 (9) | 0.0348 (4) | |
N12 | 0.14031 (15) | 0.14605 (16) | 0.62444 (9) | 0.0364 (4) | |
N13 | 0.34995 (16) | −0.00852 (16) | 0.70729 (10) | 0.0386 (4) | |
N14 | 0.28322 (16) | −0.03796 (16) | 0.65579 (10) | 0.0376 (4) | |
N15 | 0.41462 (16) | 0.20726 (16) | 0.58126 (9) | 0.0366 (4) | |
N16 | 0.34604 (16) | 0.13737 (17) | 0.54964 (9) | 0.0391 (4) | |
C1 | 0.5783 (3) | 0.5462 (2) | 0.86171 (17) | 0.0630 (7) | |
H1A | 0.611474 | 0.578126 | 0.812136 | 0.094* | |
H1B | 0.623358 | 0.578596 | 0.893520 | 0.094* | |
H1C | 0.490828 | 0.569406 | 0.866928 | 0.094* | |
C2 | 0.7669 (2) | 0.3327 (3) | 0.88212 (17) | 0.0609 (7) | |
H2A | 0.776677 | 0.245323 | 0.897247 | 0.091* | |
H2B | 0.807741 | 0.368582 | 0.914024 | 0.091* | |
H2C | 0.804121 | 0.361215 | 0.833093 | 0.091* | |
C3 | 0.5166 (3) | 0.3129 (3) | 0.97832 (14) | 0.0679 (8) | |
H3A | 0.431839 | 0.345395 | 0.980566 | 0.102* | |
H3B | 0.561231 | 0.334619 | 1.014358 | 0.102* | |
H3C | 0.515542 | 0.225503 | 0.987630 | 0.102* | |
C4 | 0.0628 (2) | 0.3588 (2) | 0.73746 (14) | 0.0502 (6) | |
H4A | −0.021138 | 0.392982 | 0.740781 | 0.075* | |
H4B | 0.120560 | 0.423202 | 0.717294 | 0.075* | |
H4C | 0.084442 | 0.315666 | 0.785218 | 0.075* | |
C5 | 0.06979 (19) | 0.2730 (2) | 0.68965 (12) | 0.0395 (5) | |
C6 | −0.0299 (2) | 0.2471 (2) | 0.65436 (13) | 0.0473 (6) | |
H6 | −0.112202 | 0.277794 | 0.657710 | 0.057* | |
C7 | 0.0164 (2) | 0.1681 (2) | 0.61406 (13) | 0.0444 (5) | |
C8 | −0.0496 (2) | 0.1139 (3) | 0.56439 (17) | 0.0670 (8) | |
H8A | −0.137189 | 0.137596 | 0.567114 | 0.100* | |
H8B | −0.040632 | 0.026449 | 0.578982 | 0.100* | |
H8C | −0.013188 | 0.142877 | 0.515209 | 0.100* | |
C9 | 0.4515 (3) | −0.1292 (2) | 0.81859 (16) | 0.0667 (8) | |
H9A | 0.529813 | −0.088597 | 0.803667 | 0.100* | |
H9B | 0.467871 | −0.214272 | 0.840157 | 0.100* | |
H9C | 0.403603 | −0.093153 | 0.853637 | 0.100* | |
C10 | 0.3789 (2) | −0.1161 (2) | 0.75371 (13) | 0.0441 (5) | |
C11 | 0.3304 (2) | −0.2115 (2) | 0.73203 (14) | 0.0494 (6) | |
H11 | 0.337355 | −0.294313 | 0.754884 | 0.059* | |
C12 | 0.2705 (2) | −0.1603 (2) | 0.67069 (13) | 0.0432 (5) | |
C13 | 0.2017 (3) | −0.2218 (2) | 0.62601 (17) | 0.0620 (7) | |
H13A | 0.208509 | −0.308701 | 0.644984 | 0.093* | |
H13B | 0.237628 | −0.200302 | 0.576362 | 0.093* | |
H13C | 0.114672 | −0.195770 | 0.627929 | 0.093* | |
C14 | 0.5931 (2) | 0.3525 (3) | 0.53659 (14) | 0.0548 (6) | |
H14A | 0.653782 | 0.306889 | 0.567743 | 0.082* | |
H14B | 0.553101 | 0.414548 | 0.558056 | 0.082* | |
H14C | 0.634626 | 0.390003 | 0.489801 | 0.082* | |
C15 | 0.4963 (2) | 0.2684 (2) | 0.52753 (12) | 0.0430 (5) | |
C16 | 0.4801 (2) | 0.2372 (3) | 0.46324 (13) | 0.0552 (6) | |
H16 | 0.524464 | 0.266948 | 0.418171 | 0.066* | |
C17 | 0.3864 (2) | 0.1541 (3) | 0.47857 (12) | 0.0502 (6) | |
C18 | 0.3358 (3) | 0.0878 (3) | 0.42916 (15) | 0.0789 (10) | |
H18A | 0.339169 | 0.001538 | 0.451014 | 0.118* | |
H18B | 0.385699 | 0.104993 | 0.383157 | 0.118* | |
H18C | 0.250263 | 0.114463 | 0.421627 | 0.118* | |
B1 | 0.2358 (2) | 0.0624 (2) | 0.59292 (13) | 0.0387 (5) | |
H1 | 0.194700 | 0.024994 | 0.560488 | 0.046* | |
N17 | −0.05817 (17) | 0.82275 (17) | 0.86189 (12) | 0.0459 (5) | |
C19 | 0.0230 (2) | 0.7189 (2) | 0.84364 (18) | 0.0634 (7) | |
H19A | 0.058171 | 0.745072 | 0.793400 | 0.076* | |
H19B | 0.092600 | 0.703033 | 0.874210 | 0.076* | |
C20 | −0.0436 (3) | 0.6007 (3) | 0.8532 (2) | 0.0762 (9) | |
H20A | −0.113210 | 0.615106 | 0.823468 | 0.114* | |
H20B | −0.073955 | 0.570685 | 0.903417 | 0.114* | |
H20C | 0.013988 | 0.541409 | 0.838652 | 0.114* | |
C21 | −0.1151 (3) | 0.7881 (3) | 0.94073 (15) | 0.0603 (7) | |
H21A | −0.166352 | 0.856816 | 0.950127 | 0.072* | |
H21B | −0.170281 | 0.720491 | 0.946621 | 0.072* | |
C22 | −0.0203 (4) | 0.7522 (4) | 0.9976 (2) | 0.1076 (13) | |
H22A | 0.042863 | 0.812729 | 0.987749 | 0.161* | |
H22B | 0.018634 | 0.674436 | 0.995761 | 0.161* | |
H22C | −0.062494 | 0.746732 | 1.045169 | 0.161* | |
C23 | 0.0264 (2) | 0.9312 (3) | 0.84888 (19) | 0.0695 (8) | |
H23A | 0.093986 | 0.908884 | 0.880721 | 0.083* | |
H23B | 0.064055 | 0.948195 | 0.799003 | 0.083* | |
C24 | −0.0391 (3) | 1.0463 (3) | 0.8616 (2) | 0.0892 (11) | |
H24A | −0.109205 | 1.066948 | 0.832393 | 0.134* | |
H24B | 0.018762 | 1.111840 | 0.848318 | 0.134* | |
H24C | −0.068571 | 1.033470 | 0.912190 | 0.134* | |
C25 | −0.1686 (2) | 0.8524 (3) | 0.81586 (16) | 0.0618 (7) | |
H25A | −0.219688 | 0.917170 | 0.830344 | 0.074* | |
H25B | −0.219841 | 0.780891 | 0.826174 | 0.074* | |
C26 | −0.1337 (4) | 0.8915 (3) | 0.73461 (19) | 0.1038 (13) | |
H26A | −0.208837 | 0.907254 | 0.709485 | 0.156* | |
H26B | −0.083986 | 0.827723 | 0.719386 | 0.156* | |
H26C | −0.086142 | 0.964464 | 0.723342 | 0.156* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Mo1 | 0.02915 (9) | 0.03079 (9) | 0.02823 (9) | 0.00145 (6) | −0.00491 (6) | −0.01069 (7) |
Fe1 | 0.03339 (15) | 0.03888 (16) | 0.03479 (16) | 0.00628 (12) | −0.00428 (12) | −0.01577 (13) |
Fe2 | 0.03843 (16) | 0.03578 (16) | 0.03790 (17) | 0.00523 (12) | −0.01024 (13) | −0.01174 (13) |
Fe3 | 0.03283 (15) | 0.03801 (16) | 0.03821 (17) | −0.00029 (12) | −0.00218 (12) | −0.01491 (13) |
S1 | 0.0392 (3) | 0.0329 (3) | 0.0357 (3) | 0.0027 (2) | −0.0061 (2) | −0.0085 (2) |
S2 | 0.0382 (3) | 0.0434 (3) | 0.0311 (3) | −0.0030 (2) | −0.0026 (2) | −0.0077 (2) |
S3 | 0.0333 (3) | 0.0422 (3) | 0.0451 (3) | 0.0073 (2) | −0.0064 (2) | −0.0211 (2) |
Si1 | 0.0429 (3) | 0.0444 (3) | 0.0423 (3) | 0.0074 (3) | −0.0129 (3) | −0.0228 (3) |
N1 | 0.0354 (9) | 0.0407 (10) | 0.0389 (10) | 0.0042 (7) | −0.0080 (7) | −0.0199 (8) |
N2 | 0.0562 (12) | 0.0772 (15) | 0.0643 (14) | 0.0234 (11) | −0.0097 (11) | −0.0443 (13) |
N3 | 0.0475 (11) | 0.0576 (13) | 0.0591 (13) | 0.0150 (9) | −0.0091 (10) | −0.0297 (11) |
N4 | 0.096 (2) | 0.120 (2) | 0.0768 (18) | 0.0343 (18) | −0.0206 (15) | −0.0637 (18) |
N5 | 0.0733 (15) | 0.0528 (13) | 0.0634 (15) | 0.0100 (11) | −0.0338 (12) | −0.0089 (11) |
N6 | 0.0509 (12) | 0.0603 (13) | 0.0405 (11) | 0.0139 (10) | −0.0056 (9) | −0.0021 (10) |
N7 | 0.0888 (19) | 0.114 (2) | 0.0518 (15) | 0.0193 (17) | −0.0253 (14) | −0.0073 (15) |
N8 | 0.0541 (12) | 0.0585 (14) | 0.0704 (15) | −0.0208 (11) | 0.0061 (11) | −0.0223 (12) |
N9 | 0.098 (2) | 0.0624 (16) | 0.0773 (18) | −0.0253 (15) | −0.0151 (15) | −0.0145 (14) |
N10 | 0.239 (5) | 0.104 (3) | 0.165 (4) | −0.085 (3) | −0.032 (4) | −0.039 (3) |
N11 | 0.0312 (8) | 0.0413 (10) | 0.0346 (9) | 0.0004 (7) | −0.0053 (7) | −0.0139 (8) |
N12 | 0.0334 (9) | 0.0415 (10) | 0.0381 (10) | −0.0005 (7) | −0.0106 (7) | −0.0144 (8) |
N13 | 0.0447 (10) | 0.0340 (9) | 0.0401 (10) | 0.0009 (8) | −0.0124 (8) | −0.0118 (8) |
N14 | 0.0390 (9) | 0.0377 (10) | 0.0410 (10) | −0.0006 (7) | −0.0081 (8) | −0.0174 (8) |
N15 | 0.0383 (9) | 0.0442 (10) | 0.0300 (9) | −0.0022 (8) | −0.0035 (7) | −0.0138 (8) |
N16 | 0.0418 (10) | 0.0484 (11) | 0.0327 (9) | −0.0032 (8) | −0.0058 (7) | −0.0189 (8) |
C1 | 0.0721 (18) | 0.0512 (15) | 0.0770 (19) | 0.0073 (13) | −0.0146 (15) | −0.0358 (14) |
C2 | 0.0464 (14) | 0.0615 (17) | 0.080 (2) | 0.0057 (12) | −0.0200 (13) | −0.0239 (15) |
C3 | 0.0783 (19) | 0.086 (2) | 0.0428 (15) | 0.0183 (16) | −0.0071 (13) | −0.0261 (14) |
C4 | 0.0371 (12) | 0.0598 (15) | 0.0596 (15) | 0.0097 (11) | −0.0028 (11) | −0.0287 (13) |
C5 | 0.0325 (10) | 0.0442 (12) | 0.0419 (12) | 0.0022 (9) | −0.0034 (9) | −0.0117 (10) |
C6 | 0.0305 (11) | 0.0581 (15) | 0.0547 (14) | 0.0047 (10) | −0.0090 (10) | −0.0159 (12) |
C7 | 0.0356 (11) | 0.0502 (13) | 0.0494 (13) | −0.0029 (10) | −0.0129 (10) | −0.0121 (11) |
C8 | 0.0521 (15) | 0.081 (2) | 0.081 (2) | −0.0002 (14) | −0.0302 (14) | −0.0354 (17) |
C9 | 0.099 (2) | 0.0361 (13) | 0.0663 (18) | 0.0066 (13) | −0.0411 (16) | −0.0041 (12) |
C10 | 0.0522 (13) | 0.0347 (11) | 0.0473 (13) | 0.0011 (10) | −0.0111 (10) | −0.0114 (10) |
C11 | 0.0583 (14) | 0.0310 (11) | 0.0597 (15) | 0.0003 (10) | −0.0100 (12) | −0.0111 (11) |
C12 | 0.0421 (12) | 0.0377 (12) | 0.0549 (14) | −0.0028 (9) | −0.0024 (10) | −0.0216 (11) |
C13 | 0.0659 (17) | 0.0518 (15) | 0.081 (2) | −0.0043 (13) | −0.0172 (15) | −0.0343 (14) |
C14 | 0.0540 (14) | 0.0683 (17) | 0.0406 (13) | −0.0176 (13) | 0.0077 (11) | −0.0123 (12) |
C15 | 0.0405 (12) | 0.0547 (14) | 0.0344 (12) | −0.0026 (10) | −0.0004 (9) | −0.0133 (10) |
C16 | 0.0565 (15) | 0.0805 (19) | 0.0298 (12) | −0.0107 (13) | 0.0057 (10) | −0.0177 (12) |
C17 | 0.0519 (14) | 0.0704 (17) | 0.0334 (12) | −0.0046 (12) | −0.0034 (10) | −0.0220 (12) |
C18 | 0.094 (2) | 0.112 (3) | 0.0445 (16) | −0.026 (2) | −0.0062 (15) | −0.0395 (17) |
B1 | 0.0408 (13) | 0.0443 (14) | 0.0372 (13) | −0.0007 (10) | −0.0088 (10) | −0.0197 (11) |
N17 | 0.0336 (9) | 0.0420 (10) | 0.0625 (13) | 0.0003 (8) | −0.0035 (9) | −0.0145 (9) |
C19 | 0.0444 (14) | 0.0592 (17) | 0.092 (2) | 0.0125 (12) | −0.0051 (14) | −0.0315 (15) |
C20 | 0.0679 (18) | 0.0555 (17) | 0.117 (3) | 0.0133 (14) | −0.0203 (18) | −0.0416 (18) |
C21 | 0.0664 (17) | 0.0541 (16) | 0.0604 (17) | −0.0067 (13) | 0.0031 (13) | −0.0165 (13) |
C22 | 0.145 (4) | 0.109 (3) | 0.078 (2) | 0.006 (3) | −0.047 (2) | −0.028 (2) |
C23 | 0.0474 (15) | 0.0598 (17) | 0.104 (2) | −0.0187 (13) | 0.0132 (15) | −0.0286 (17) |
C24 | 0.077 (2) | 0.0534 (18) | 0.138 (3) | −0.0241 (16) | 0.021 (2) | −0.033 (2) |
C25 | 0.0562 (15) | 0.0550 (16) | 0.0770 (19) | 0.0117 (12) | −0.0220 (14) | −0.0183 (14) |
C26 | 0.155 (4) | 0.082 (3) | 0.074 (2) | 0.013 (2) | −0.034 (2) | −0.013 (2) |
Geometric parameters (Å, º)
Mo1—Fe1 | 2.7743 (12) | Fe1—N2 | 1.937 (2) |
Mo1—Fe2 | 2.8012 (13) | Fe2—Fe3 | 2.6286 (11) |
Mo1—Fe3 | 2.7920 (11) | Fe2—S2 | 2.2906 (14) |
Mo1—S1 | 2.3660 (15) | Fe2—S3 | 2.2923 (13) |
Mo1—S2 | 2.3638 (13) | Fe2—N1 | 1.917 (2) |
Mo1—S3 | 2.3758 (14) | Fe2—N5 | 1.932 (2) |
Fe1—Fe2 | 2.6368 (12) | Fe3—S1 | 2.2824 (12) |
Fe1—Fe3 | 2.6123 (12) | Fe3—S3 | 2.2784 (14) |
Fe1—S1 | 2.2794 (14) | Fe3—N1 | 1.936 (2) |
Fe1—S2 | 2.2678 (14) | Fe3—N8 | 1.922 (2) |
Fe1—N1 | 1.9386 (19) | Si1—N1 | 1.7530 (19) |
Fe1—Mo1—Fe2 | 56.45 (3) | C17—N16—B1 | 128.75 (18) |
Fe1—Mo1—Fe3 | 55.98 (2) | Si1—C1—H1A | 109.5 |
Fe3—Mo1—Fe2 | 56.06 (2) | Si1—C1—H1B | 109.5 |
S1—Mo1—Fe1 | 51.91 (3) | Si1—C1—H1C | 109.5 |
S1—Mo1—Fe2 | 96.584 (17) | H1A—C1—H1B | 109.5 |
S1—Mo1—Fe3 | 51.73 (3) | H1A—C1—H1C | 109.5 |
S1—Mo1—S3 | 101.05 (2) | H1B—C1—H1C | 109.5 |
S2—Mo1—Fe1 | 51.63 (3) | Si1—C2—H2A | 109.5 |
S2—Mo1—Fe2 | 51.81 (4) | Si1—C2—H2B | 109.5 |
S2—Mo1—Fe3 | 95.96 (3) | Si1—C2—H2C | 109.5 |
S2—Mo1—S1 | 101.54 (2) | H2A—C2—H2B | 109.5 |
S2—Mo1—S3 | 101.72 (3) | H2A—C2—H2C | 109.5 |
S3—Mo1—Fe1 | 96.298 (18) | H2B—C2—H2C | 109.5 |
S3—Mo1—Fe2 | 51.77 (2) | Si1—C3—H3A | 109.5 |
S3—Mo1—Fe3 | 51.56 (3) | Si1—C3—H3B | 109.5 |
N11—Mo1—Fe1 | 98.22 (4) | Si1—C3—H3C | 109.5 |
N11—Mo1—Fe2 | 139.46 (4) | H3A—C3—H3B | 109.5 |
N11—Mo1—Fe3 | 139.11 (5) | H3A—C3—H3C | 109.5 |
N11—Mo1—S1 | 87.57 (5) | H3B—C3—H3C | 109.5 |
N11—Mo1—S2 | 87.78 (5) | H4A—C4—H4B | 109.5 |
N11—Mo1—S3 | 165.47 (5) | H4A—C4—H4C | 109.5 |
N11—Mo1—N13 | 81.98 (6) | H4B—C4—H4C | 109.5 |
N13—Mo1—Fe1 | 136.92 (5) | C5—C4—H4A | 109.5 |
N13—Mo1—Fe2 | 96.16 (4) | C5—C4—H4B | 109.5 |
N13—Mo1—Fe3 | 138.87 (5) | C5—C4—H4C | 109.5 |
N13—Mo1—S1 | 167.20 (4) | N11—C5—C4 | 125.30 (19) |
N13—Mo1—S2 | 85.49 (5) | N11—C5—C6 | 109.4 (2) |
N13—Mo1—S3 | 87.79 (5) | C6—C5—C4 | 125.25 (19) |
N15—Mo1—Fe1 | 140.00 (5) | C5—C6—H6 | 126.6 |
N15—Mo1—Fe2 | 138.97 (5) | C7—C6—C5 | 106.85 (19) |
N15—Mo1—Fe3 | 99.00 (5) | C7—C6—H6 | 126.6 |
N15—Mo1—S1 | 88.24 (5) | N12—C7—C6 | 107.88 (19) |
N15—Mo1—S2 | 165.03 (5) | N12—C7—C8 | 123.1 (2) |
N15—Mo1—S3 | 87.27 (5) | C6—C7—C8 | 129.0 (2) |
N15—Mo1—N11 | 81.28 (6) | C7—C8—H8A | 109.5 |
N15—Mo1—N13 | 82.90 (6) | C7—C8—H8B | 109.5 |
Fe2—Fe1—Mo1 | 62.29 (3) | C7—C8—H8C | 109.5 |
Fe3—Fe1—Mo1 | 62.35 (2) | H8A—C8—H8B | 109.5 |
Fe3—Fe1—Fe2 | 60.10 (3) | H8A—C8—H8C | 109.5 |
S1—Fe1—Mo1 | 54.78 (4) | H8B—C8—H8C | 109.5 |
S1—Fe1—Fe2 | 103.55 (2) | H9A—C9—H9B | 109.5 |
S1—Fe1—Fe3 | 55.12 (2) | H9A—C9—H9C | 109.5 |
S2—Fe1—Mo1 | 54.81 (3) | H9B—C9—H9C | 109.5 |
S2—Fe1—Fe2 | 55.06 (4) | C10—C9—H9A | 109.5 |
S2—Fe1—Fe3 | 103.60 (2) | C10—C9—H9B | 109.5 |
S2—Fe1—S1 | 107.36 (2) | C10—C9—H9C | 109.5 |
N1—Fe1—Mo1 | 95.61 (5) | N13—C10—C9 | 124.7 (2) |
N1—Fe1—Fe2 | 46.51 (6) | N13—C10—C11 | 109.7 (2) |
N1—Fe1—Fe3 | 47.58 (6) | C11—C10—C9 | 125.6 (2) |
N1—Fe1—S1 | 101.71 (6) | C10—C11—H11 | 126.6 |
N1—Fe1—S2 | 100.35 (6) | C12—C11—C10 | 106.9 (2) |
N2—Fe1—Mo1 | 151.18 (7) | C12—C11—H11 | 126.6 |
N2—Fe1—Fe2 | 140.51 (8) | N14—C12—C11 | 107.39 (19) |
N2—Fe1—Fe3 | 138.19 (8) | N14—C12—C13 | 123.8 (2) |
N2—Fe1—S1 | 114.78 (8) | C11—C12—C13 | 128.8 (2) |
N2—Fe1—S2 | 117.42 (9) | C12—C13—H13A | 109.5 |
N2—Fe1—N1 | 113.18 (9) | C12—C13—H13B | 109.5 |
Fe1—Fe2—Mo1 | 61.262 (19) | C12—C13—H13C | 109.5 |
Fe3—Fe2—Mo1 | 61.79 (3) | H13A—C13—H13B | 109.5 |
Fe3—Fe2—Fe1 | 59.49 (3) | H13A—C13—H13C | 109.5 |
S2—Fe2—Mo1 | 54.20 (2) | H13B—C13—H13C | 109.5 |
S2—Fe2—Fe1 | 54.26 (3) | H14A—C14—H14B | 109.5 |
S2—Fe2—Fe3 | 102.45 (2) | H14A—C14—H14C | 109.5 |
S2—Fe2—S3 | 106.67 (3) | H14B—C14—H14C | 109.5 |
S3—Fe2—Mo1 | 54.50 (4) | C15—C14—H14A | 109.5 |
S3—Fe2—Fe1 | 102.32 (3) | C15—C14—H14B | 109.5 |
S3—Fe2—Fe3 | 54.65 (3) | C15—C14—H14C | 109.5 |
N1—Fe2—Mo1 | 95.26 (5) | N15—C15—C14 | 125.3 (2) |
N1—Fe2—Fe1 | 47.19 (6) | N15—C15—C16 | 109.4 (2) |
N1—Fe2—Fe3 | 47.30 (6) | C16—C15—C14 | 125.2 (2) |
N1—Fe2—S2 | 100.22 (5) | C15—C16—H16 | 126.5 |
N1—Fe2—S3 | 100.87 (6) | C17—C16—C15 | 107.1 (2) |
N1—Fe2—N5 | 114.41 (9) | C17—C16—H16 | 126.5 |
N5—Fe2—Mo1 | 150.13 (7) | N16—C17—C16 | 107.5 (2) |
N5—Fe2—Fe1 | 143.49 (8) | N16—C17—C18 | 123.6 (2) |
N5—Fe2—Fe3 | 137.79 (8) | C16—C17—C18 | 128.8 (2) |
N5—Fe2—S2 | 119.35 (8) | C17—C18—H18A | 109.5 |
N5—Fe2—S3 | 113.06 (8) | C17—C18—H18B | 109.5 |
Fe1—Fe3—Mo1 | 61.67 (3) | C17—C18—H18C | 109.5 |
Fe1—Fe3—Fe2 | 60.41 (2) | H18A—C18—H18B | 109.5 |
Fe2—Fe3—Mo1 | 62.14 (3) | H18A—C18—H18C | 109.5 |
S1—Fe3—Mo1 | 54.47 (4) | H18B—C18—H18C | 109.5 |
S1—Fe3—Fe1 | 55.01 (4) | N12—B1—H1 | 109.3 |
S1—Fe3—Fe2 | 103.72 (3) | N14—B1—N12 | 108.87 (18) |
S3—Fe3—Mo1 | 54.75 (3) | N14—B1—N16 | 110.20 (18) |
S3—Fe3—Fe1 | 103.47 (2) | N14—B1—H1 | 109.3 |
S3—Fe3—Fe2 | 55.14 (4) | N16—B1—N12 | 109.76 (18) |
S3—Fe3—S1 | 106.74 (2) | N16—B1—H1 | 109.3 |
N1—Fe3—Mo1 | 95.10 (6) | C19—N17—C21 | 111.1 (2) |
N1—Fe3—Fe1 | 47.65 (5) | C19—N17—C23 | 106.64 (19) |
N1—Fe3—Fe2 | 46.68 (6) | C23—N17—C21 | 110.8 (2) |
N1—Fe3—S1 | 101.67 (6) | C25—N17—C19 | 111.1 (2) |
N1—Fe3—S3 | 100.75 (6) | C25—N17—C21 | 105.62 (19) |
N8—Fe3—Mo1 | 151.35 (8) | C25—N17—C23 | 111.6 (2) |
N8—Fe3—Fe1 | 139.18 (7) | N17—C19—H19A | 108.5 |
N8—Fe3—Fe2 | 139.85 (8) | N17—C19—H19B | 108.5 |
N8—Fe3—S1 | 115.52 (8) | H19A—C19—H19B | 107.5 |
N8—Fe3—S3 | 116.62 (8) | C20—C19—N17 | 115.3 (2) |
N8—Fe3—N1 | 113.54 (9) | C20—C19—H19A | 108.5 |
Fe1—S1—Mo1 | 73.32 (2) | C20—C19—H19B | 108.5 |
Fe1—S1—Fe3 | 69.87 (3) | C19—C20—H20A | 109.5 |
Fe3—S1—Mo1 | 73.81 (2) | C19—C20—H20B | 109.5 |
Fe1—S2—Mo1 | 73.56 (2) | C19—C20—H20C | 109.5 |
Fe1—S2—Fe2 | 70.68 (2) | H20A—C20—H20B | 109.5 |
Fe2—S2—Mo1 | 73.98 (3) | H20A—C20—H20C | 109.5 |
Fe2—S3—Mo1 | 73.73 (3) | H20B—C20—H20C | 109.5 |
Fe3—S3—Mo1 | 73.690 (18) | N17—C21—H21A | 108.5 |
Fe3—S3—Fe2 | 70.21 (2) | N17—C21—H21B | 108.5 |
N1—Si1—C1 | 108.62 (11) | H21A—C21—H21B | 107.5 |
N1—Si1—C2 | 108.68 (11) | C22—C21—N17 | 115.0 (3) |
N1—Si1—C3 | 109.06 (13) | C22—C21—H21A | 108.5 |
C1—Si1—C2 | 109.26 (13) | C22—C21—H21B | 108.5 |
C1—Si1—C3 | 109.89 (14) | C21—C22—H22A | 109.5 |
C2—Si1—C3 | 111.28 (14) | C21—C22—H22B | 109.5 |
Fe1—N1—Fe2 | 86.29 (7) | C21—C22—H22C | 109.5 |
Fe1—N1—Fe3 | 84.78 (7) | H22A—C22—H22B | 109.5 |
Fe2—N1—Fe3 | 86.02 (7) | H22A—C22—H22C | 109.5 |
Si1—N1—Fe1 | 128.04 (9) | H22B—C22—H22C | 109.5 |
Si1—N1—Fe2 | 125.15 (10) | N17—C23—H23A | 108.6 |
Si1—N1—Fe3 | 131.52 (11) | N17—C23—H23B | 108.6 |
N3—N2—Fe1 | 141.17 (19) | H23A—C23—H23B | 107.6 |
N4—N3—N2 | 176.0 (3) | C24—C23—N17 | 114.7 (2) |
N6—N5—Fe2 | 142.0 (2) | C24—C23—H23A | 108.6 |
N7—N6—N5 | 176.8 (3) | C24—C23—H23B | 108.6 |
N9—N8—Fe3 | 138.5 (2) | C23—C24—H24A | 109.5 |
N10—N9—N8 | 175.9 (5) | C23—C24—H24B | 109.5 |
N12—N11—Mo1 | 119.02 (12) | C23—C24—H24C | 109.5 |
C5—N11—Mo1 | 134.92 (14) | H24A—C24—H24B | 109.5 |
C5—N11—N12 | 106.07 (16) | H24A—C24—H24C | 109.5 |
N11—N12—B1 | 121.02 (16) | H24B—C24—H24C | 109.5 |
C7—N12—N11 | 109.76 (17) | N17—C25—H25A | 108.6 |
C7—N12—B1 | 129.20 (18) | N17—C25—H25B | 108.6 |
N14—N13—Mo1 | 119.09 (12) | N17—C25—C26 | 114.8 (3) |
C10—N13—Mo1 | 135.19 (14) | H25A—C25—H25B | 107.5 |
C10—N13—N14 | 105.60 (17) | C26—C25—H25A | 108.6 |
N13—N14—B1 | 120.39 (17) | C26—C25—H25B | 108.6 |
C12—N14—N13 | 110.38 (17) | C25—C26—H26A | 109.5 |
C12—N14—B1 | 129.22 (18) | C25—C26—H26B | 109.5 |
N16—N15—Mo1 | 118.99 (13) | C25—C26—H26C | 109.5 |
C15—N15—Mo1 | 134.89 (14) | H26A—C26—H26B | 109.5 |
C15—N15—N16 | 106.07 (17) | H26A—C26—H26C | 109.5 |
N15—N16—B1 | 121.19 (17) | H26B—C26—H26C | 109.5 |
C17—N16—N15 | 109.92 (18) | ||
Mo1—N11—N12—C7 | 179.77 (14) | C3—Si1—N1—Fe3 | −176.87 (13) |
Mo1—N11—N12—B1 | 1.1 (2) | C4—C5—C6—C7 | 177.8 (2) |
Mo1—N11—C5—C4 | 1.8 (4) | C5—N11—N12—C7 | −0.8 (2) |
Mo1—N11—C5—C6 | −179.82 (16) | C5—N11—N12—B1 | −179.43 (19) |
Mo1—N13—N14—C12 | −176.06 (14) | C5—C6—C7—N12 | 0.1 (3) |
Mo1—N13—N14—B1 | 4.2 (2) | C5—C6—C7—C8 | −178.2 (3) |
Mo1—N13—C10—C9 | −4.3 (4) | C7—N12—B1—N14 | −117.7 (2) |
Mo1—N13—C10—C11 | 175.44 (16) | C7—N12—B1—N16 | 121.7 (2) |
Mo1—N15—N16—C17 | −177.10 (15) | C9—C10—C11—C12 | 179.8 (3) |
Mo1—N15—N16—B1 | 6.9 (2) | C10—N13—N14—C12 | 0.6 (2) |
Mo1—N15—C15—C14 | −0.3 (4) | C10—N13—N14—B1 | −179.13 (19) |
Mo1—N15—C15—C16 | 177.25 (17) | C10—C11—C12—N14 | 0.3 (3) |
N11—N12—C7—C6 | 0.4 (3) | C10—C11—C12—C13 | −179.4 (2) |
N11—N12—C7—C8 | 178.9 (2) | C12—N14—B1—N12 | 116.7 (2) |
N11—N12—B1—N14 | 60.7 (3) | C12—N14—B1—N16 | −122.8 (2) |
N11—N12—B1—N16 | −60.0 (2) | C14—C15—C16—C17 | 177.1 (2) |
N11—C5—C6—C7 | −0.7 (3) | C15—N15—N16—C17 | 0.9 (2) |
N12—N11—C5—C4 | −177.5 (2) | C15—N15—N16—B1 | −175.06 (19) |
N12—N11—C5—C6 | 0.9 (2) | C15—C16—C17—N16 | 0.9 (3) |
N13—N14—C12—C11 | −0.6 (3) | C15—C16—C17—C18 | −177.4 (3) |
N13—N14—C12—C13 | 179.1 (2) | C17—N16—B1—N12 | −119.9 (2) |
N13—N14—B1—N12 | −63.6 (2) | C17—N16—B1—N14 | 120.2 (2) |
N13—N14—B1—N16 | 56.8 (2) | B1—N12—C7—C6 | 178.9 (2) |
N13—C10—C11—C12 | 0.1 (3) | B1—N12—C7—C8 | −2.6 (4) |
N14—N13—C10—C9 | 179.9 (2) | B1—N14—C12—C11 | 179.1 (2) |
N14—N13—C10—C11 | −0.4 (3) | B1—N14—C12—C13 | −1.2 (4) |
N15—N16—C17—C16 | −1.2 (3) | B1—N16—C17—C16 | 174.4 (2) |
N15—N16—C17—C18 | 177.3 (3) | B1—N16—C17—C18 | −7.1 (4) |
N15—N16—B1—N12 | 55.3 (2) | C19—N17—C21—C22 | 58.4 (3) |
N15—N16—B1—N14 | −64.6 (2) | C19—N17—C23—C24 | 177.9 (3) |
N15—C15—C16—C17 | −0.4 (3) | C19—N17—C25—C26 | −60.3 (3) |
N16—N15—C15—C14 | −177.8 (2) | C21—N17—C19—C20 | 59.0 (3) |
N16—N15—C15—C16 | −0.3 (3) | C21—N17—C23—C24 | −61.0 (3) |
C1—Si1—N1—Fe1 | −59.18 (17) | C21—N17—C25—C26 | 179.1 (2) |
C1—Si1—N1—Fe2 | −175.96 (13) | C23—N17—C19—C20 | 179.9 (3) |
C1—Si1—N1—Fe3 | 63.38 (16) | C23—N17—C21—C22 | −60.0 (3) |
C2—Si1—N1—Fe1 | −177.95 (14) | C23—N17—C25—C26 | 58.6 (3) |
C2—Si1—N1—Fe2 | 65.27 (16) | C25—N17—C19—C20 | −58.3 (3) |
C2—Si1—N1—Fe3 | −55.39 (17) | C25—N17—C21—C22 | 179.0 (3) |
C3—Si1—N1—Fe1 | 60.57 (17) | C25—N17—C23—C24 | 56.3 (4) |
C3—Si1—N1—Fe2 | −56.21 (15) |
Funding Statement
Funding for this research was provided by: National Natural Science Foundation of China (grant Nos. 92361303, 92261107 and 22071110); Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant No. KYCX22_1550).
References
- Bruker. (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Canfield, D. E., Glazer, A. N. & Falkowski, P. G. (2010). Science, 330, 192–196. [DOI] [PubMed]
- Chen, X.-D., Duncan, J. S., Verma, A. K. & Lee, S. C. (2010). J. Am. Chem. Soc. 132, 15884–15886. [DOI] [PubMed]
- Cheng, Q. (2008). J. Integr. Plant Biol. 50, 786–798. [DOI] [PubMed]
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Dos Santos, P. C., Fang, Z., Mason, S. W., Setubal, J. C. & Dixon, R. (2012). BMC Genomics, 13, 162–173. [DOI] [PMC free article] [PubMed]
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- He, J., Wei, J., Xu, G. & Chen, X.-D. (2022). Inorg. Chem. 61, 4150–4158. [DOI] [PubMed]
- Herskovitz, T., Averill, B. A., Holm, R. H., Ibers, J. A., Phillips, W. D. & Weiher, J. F. (1972). Proc. Natl Acad. Sci. USA, 69, 2437–2441. [DOI] [PMC free article] [PubMed]
- Holm, R. H. (1977). Acc. Chem. Res. 10, 427–434.
- Jia, H.-P. & Quadrelli, E. A. (2014). Chem. Soc. Rev. 43, 547–564. [DOI] [PubMed]
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
- Lancaster, K. M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M. W., Neese, F., Bergmann, U. & DeBeer, S. (2011). Science, 334, 974–977. [DOI] [PMC free article] [PubMed]
- Lee, S. C. & Holm, R. H. (2004). Chem. Rev. 104, 1135–1158. [DOI] [PubMed]
- Liu, Q., Huang, L., Liu, H., Lei, X., Wu, D., Kang, B. & Lu, J. (1990). Inorg. Chem. 29, 4131–4137.
- MacKay, B. A. & Fryzuk, M. D. (2004). Chem. Rev. 104, 385–402. [DOI] [PubMed]
- Nordlander, E., Lee, S. C., Cen, W., Wu, Z. Y., Natoli, C. R., Di Cicco, A., Filipponi, A., Hedman, B., Hodgson, K. O. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 5549–5558.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
- Sickerman, N. S., Tanifuji, K., Hu, Y. & Ribbe, M. W. (2017). Chem. Eur. J. 23, 12425–12432. [DOI] [PubMed]
- Spatzal, T., Aksoyoglu, M., Zhang, L., Andrade, S. L. A., Schleicher, E., Weber, S., Rees, D. C. & Einsle, O. (2011). Science, 334, 940–940. [DOI] [PMC free article] [PubMed]
- Spek, A. L. (2015). Acta Cryst. C71, 9–18. [DOI] [PubMed]
- Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
- Xu, G., Wang, Z., Ling, R., Zhou, J., Chen, X.-D. & Holm, R. H. (2018). Proc. Natl Acad. Sci. 115, 5089–5092. [DOI] [PMC free article] [PubMed]
- Xu, G., Zhou, J., Wang, Z., Holm, R. H. & Chen, X. D. (2019). Angew. Chem. Int. Ed. 58, 16469–16473. [DOI] [PubMed]
- Zhang, H.-Y., Qiu, S.-J., Yang, H.-H., Wang, M.-T., Yang, J., Wang, H.-B., Liu, N.-H. & Chen, X.-D. (2023). Dalton Trans. 52, 7166–7174. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989024004833/oi2008sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989024004833/oi2008Isup2.hkl
IR and UV data. DOI: 10.1107/S2056989024004833/oi2008sup3.docx
CCDC reference: 2353398
Additional supporting information: crystallographic information; 3D view; checkCIF report