Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(5):448–453. doi: 10.1111/j.1349-7006.2004.tb03230.x

Isoliquiritigenin, a flavonoid from licorice, reduces prostaglandin E2 and nitric oxide, causes apoptosis, and suppresses aberrant crypt foci development

Tetsuyuki Takahashi 1, Nobuo Takasuka 2, Masaaki Iigo 2, Masaki Baba 1, Hoyoku Nishino 3, Hiroyuki Tsuda 2, Toru Okuyama 1,
PMCID: PMC11158064  PMID: 15132774

Abstract

Isoliquiritigenin (ILTG), a flavonoid group compound, exists in some foodstuffs and herbal medicines such as licorice (Glycyrrhiza uralensis Fisher). Previously, we showed that ILTG can suppress azoxymethane (AOM)‐induced colon carcinogenesis in ddY mice. In the present report, we present evidence that ILTG markedly decreases both prostaglandin E2 (PGE2) and nitric oxide (NO) production in RAW264.7 mouse macrophage cells. The decrease of PGE2 was dependent on cyclooxygenase‐2 (COX‐2) expression and the decrease of NO appeared due to a decrease in inducible nitric oxide synthase (iNOS) protein expression. In mouse and human colon carcinoma cells, ILTG treatment suppressed cell growth and caused apoptosis. Furthermore, in vivo administration of ILTG inhibited the induction of preneoplastic aberrant crypt foci (ACF) in the male F344 rat colon. Our results suggest that ILTG is a promising chemopreventive agent against colon carcinogenesis.


Abbreviations:

AC

aberrant crypts

ACF

aberrant crypt foci

AOM

azoxymethane

BSA

bovine serum albumin

COX

cyclooxygenase

FBS

fetal bovine serum

5‐FU

5‐fluorouracil

G3PDH

glyceraldehyde 3‐phosphate dehydrogenase

ILTG

isoliquiritigenin

iNOS

inducible nitric oxide synthase

LPS

lipopolysaccharide

MMLV‐RT

Moloney murine leukemia virus‐reverse transcriptase

MTT

3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide

NO

nitric oxide

PGE2

prostaglandin E2

RT‐PCR

reverse transcription‐polymerase chain reaction

SD

standard deviation

References

  • 1. Yu SM, Kuo SC. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. Br J Pharmacol 1995; 114: 1587–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Tawata M, Aida K, Noguchi T, Ozaki Y, Kume S, Sasaki H, Chin M, Onaya T. Anti‐platelet action of isoliquiritigenin, an aldose reductase inhibitor in licorice. Eur J Pharmacol 1992; 212: 87–92. [DOI] [PubMed] [Google Scholar]
  • 3. Kakegawa H, Matsumoto H, Satoh T. Inhibitory effect of some natural products on the activation of hyaluronidase and their anti‐allergic actions. Chem Pharm Bull 1992; 40: 1439–42. [DOI] [PubMed] [Google Scholar]
  • 4. Yamamoto S, Aizu E, Jiang H, Nakadate T, Kiyoto I, Wang JC, Kato R. The potent anti‐tumor promoting agent isoliquiritigenin. Carcinogenesis 1991; 2: 317–23. [DOI] [PubMed] [Google Scholar]
  • 5. Iwata S, Nishino T, Nagata N, Satomi Y, Nishino H, Shibata S. Antitumorigenic activities of chalcones. I. Inhibitory effects of chalcone derivatives on 32Pi incorporation into phospholipids of HeLa cells promoted by 12‐O‐tetradecanoyl‐phorbol 13‐acetate (TPA). Biol Pharm Bull 1995; 18: 1710–3. [DOI] [PubMed] [Google Scholar]
  • 6. Kanazawa M, Satomi Y, Mizutani Y, Ukimura O, Kawauchi A, Sakai T, Baba M, Okuyama T, Nishino H, Miki T. Isoliquiritigenin inhibits the growth of prostate cancer. Eur Urol 2003; 43: 580–6. [DOI] [PubMed] [Google Scholar]
  • 7. Kobayashi S, Miyamoto T, Kimura I, Kimura M. Inhibitory effect of isoliquiritin, a compound in licorice root, on angiogenesis in vivo and tube formation in vitro. Biol Pharm Bull 1995; 18: 1382–6. [DOI] [PubMed] [Google Scholar]
  • 8. Iwashita K, Kobori M, Yamaki K, Tsushida T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem 2000; 64: 1813–20. [DOI] [PubMed] [Google Scholar]
  • 9. Baba M, Asano R, Takigami I, Takahashi T, Ohmura M, Okada Y, Sugimoto H, Arika T, Nishino H, Okuyama T. Studies on cancer chemoprevention by traditional folk medicines. XXV. Inhibitory effect of isoliquiritigenin on azoxymethane‐induced murine colon aberrant crypt focus formation and carcinogenesis. Biol Pharm Bull 2002; 25: 247–50. [DOI] [PubMed] [Google Scholar]
  • 10. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, Dubois RN. Up‐regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183–8. [DOI] [PubMed] [Google Scholar]
  • 11. Ambs S, Merriam WG, Bennett WP, Felley‐Bosco E, Ogunfusika MO, Oser SM, Klein SM, Shields PG, Billiar TR, Harris CC. Frequent nitric oxide synthase‐2 expression in human colon carcinomas: implication for tumor angio‐genesis and colon cancer progression. Cancer Res 1998; 58: 334–41. [PubMed] [Google Scholar]
  • 12. Inoue H, Yokoyama C, Hara S, Tone Y, Tanabe T. Transcriptional regulation of human prostaglandin‐endoperoxide synthase‐2 gene by lipopolysaccharide and phorbol ester in vascular endothelial cells. J Biol Chem 1995; 270: 24965–71. [DOI] [PubMed] [Google Scholar]
  • 13. Szabo C. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz 1995; 3: 2–32. [PubMed] [Google Scholar]
  • 14. Huygen IC. Reaction of nitrogen dioxide with Griess type reagents. Anal Chem 1970; 42: 407–9. [DOI] [PubMed] [Google Scholar]
  • 15. Leslie RB, Regina MB, Sarita G, Jianyi Z, Jhon RV. Nociception in cyclooxygenase isozyme‐deficient mice. Proc Natl Acad Sci USA 2000; 97: 10272–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16. Liang YC, Huang YT, Tsai SH, Lin‐Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 1999; 20: 1945–52. [DOI] [PubMed] [Google Scholar]
  • 17. Attur MG, Patel R, Thakker G, Vyas P, Levartovsky D, Patel P, Naqvi S, Raza R, Patel K, Abramson D, Bruno G, Abramson SB, Amin AR. Differential anti‐inflammatory effects of immunosuppressive drugs: cyclosporin, rapamycin and FK‐506 on inducible nitric oxide synthase, nitric oxide, cyclooxygenase‐2 and PGE2 production. Inflamm Res 2000; 49: 20–6. [DOI] [PubMed] [Google Scholar]
  • 18. Sheng H, Shao J, Morrow JD, Beauchamp RD, Dubois RN. Modulation of apoptosis and bcl‐2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 1998; 58: 362–6. [PubMed] [Google Scholar]
  • 19. Sheng H, Shao J, Washington MK, Dubois RN. Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 2001; 276: 18075–81. [DOI] [PubMed] [Google Scholar]
  • 20. Kawamori T, Uchiya N, Sugimura T, Wakabayashi K. Enhancement of colon carcinogenesis by prostaglandin E2 administration. Carcinogenesis 2003; 24: 985–90. [DOI] [PubMed] [Google Scholar]
  • 21. Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM. Suppression of intestinal polyposis in APCδ716 knockout mice by inhibition of cyclooxygenase 2 (COX‐2). Cell 1996; 87: 803–9. [DOI] [PubMed] [Google Scholar]
  • 22. Dubois RN, Radhika A, Reddy BS, Entingh AJ. Increased cyclooxygenase‐2 levels in carcinogen‐induced rat colonic tumors. Gastroenterology 1996; 110: 1259–62. [DOI] [PubMed] [Google Scholar]
  • 23. Dimberg J, Hugander A, Sirsjo A, Soderkvist P. Enhanced expression of cyclooxygenase and nuclear beta‐catenin are related to mutations in the APC gene in human colorectal cancer. Anticancer Res 2001; 20: 911–6. [PubMed] [Google Scholar]
  • 24. Kawamori T, Takahashi M, Watanabe T, Ohta S, Nakatsugi S, Sugimura T, Wakabayashi K. Suppression of azoxymethane‐induced colonic aberrant crypt foci by a nitric oxide synthase inhibitor. Cancer Lett 2000; 148: 33–7. [DOI] [PubMed] [Google Scholar]
  • 25. Rao CV, Kawamori T, Hamid R, Reddy BS. Chemoprevention of colonic aberrant crypt foci by inducible nitric oxide synthase‐selective inhibitor. Carcinogenesis 1999; 20: 641–4. [DOI] [PubMed] [Google Scholar]
  • 26. Rao CV, Indranie C, Simi B, Manning TM, Connor JR, Reddy BS. Chemopreventive properties of a selective nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase‐2 inhibitor. Cancer Res 2002; 62: 165–70. [PubMed] [Google Scholar]
  • 27. Patel R, Attur MG, Dave M, Abramson SB, Amin AR. Regulation of COX‐2 and prostaglandin E2 production by nitric oxide in murine macrophages. J Immunol 1999; 162: 4191–7. [PubMed] [Google Scholar]
  • 28. Clancy R, Varenika B, Huang W, Ballow L, Attur M, Amin AR, Abramson SB. Nitric oxide synthase/COX cross‐talk: nitric oxide activates COX‐1, but inhibits COX‐2‐derived prostaglandin production. J Immunol 2000; 165: 1582–7. [DOI] [PubMed] [Google Scholar]
  • 29. Salvemini D, Misko TP, Nasferrer JL, Seibert K, Currie MG, Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 1993; 90: 7240–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Mutoh M, Takahashi M, Fukuda K, Komatsu H, Enya T, Matsushima‐Hibiya Y, Mutoh H, Sugimura T, Wakabayashi K. Suppression by flavonoids of cy‐clooxygenase‐ 2 promoter‐dependent transcriptional activity in colon cancer cells: structure‐activity relationship. Jpn J Cancer Res 2000; 91: 686–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Chan TA, Morin PJ, Vogelstein B, Kinzler KW. Mechanism underlying non‐steroidal anti‐inflammatory drug‐mediated apoptosis. Proc Natl Acad Sci USA 1998; 95: 681–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bio‐regulator of apoptosis. Biochem Biophys Res Commun 2001; 282: 1075–9. [DOI] [PubMed] [Google Scholar]
  • 33. Tomozawa S, Nagawa H, Tsuno N, Hatano K, Osada T, Kitayama J, Sunami E, Nita ME, Ishihara S, Yano H, Tsuruo T, Shibata Y, Muto T. Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX‐2 in‐hibitor, JTE‐522. Br J Cancer 1999; 81: 1274–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Hara A, Yoshimi N, Niwa M, Ino N, Mori H. Apoptosis induced by NS‐398, a selective cyclooxygenase‐2 inhibitor, in human colorectal cancer cell lines. Jpn J Cancer Res 1997; 88: 600–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. Huulle CV, Breackman P, Vandewalle M. Isolation of two new flavonoids from the root of Glycyrrhiza glabra var. Planta Med 1971; 20: 278–82. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES