Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(1):25–31. doi: 10.1111/j.1349-7006.2004.tb03166.x

Inhibition of lymphangiogenesis‐related properties of murine lymphatic endothelial cells and lymph node metastasis of lung cancer by the matrix metalloproteinase inhibitor MMI270

Eliane Shizuka Nakamura 1, Keiichi Koizumi 1, Mitsuo Kobayashi 1, Ikuo Saiki 1,
PMCID: PMC11158096  PMID: 14720323

Abstract

Based on a previous report on the effect of a matrix metalloproteinase (MMP) inhibitory compound, MMI270, in regulating tumor‐induced angiogenesis, as well as recent findings concerning functional correlations among tumor metastasis, angiogenesis and lymphangiogenesis, we investigated the anti‐metastatic efficacy of MMI270 in a murine model of lymph node metastasis of lung cancer, and analyzed whether this inhibitor could also regulate lymphangiogenesis‐related properties of murine lymphatic endothelial cells (LECs) and invasive properties of Lewis lung cancer (LLC) cells. The observation that MMI270 led to a significant decrease in the weight of tumor‐metastasized lymph nodes of mice led us to test its anti‐lymphangiogenic and anti‐invasive effects in vitro. Murine LECs were characterized by an in vitro tube formation assay, by semi‐quantitative RT‐PCR assay to examine the expression of mRNAs for flt‐4, Flk‐1, Tie‐1, Tie‐2, CD54/ICAM1, vWF, MMPs and uPA, and by western blotting to confirm the protein expression of flt‐4 and CD31/PECAM. This is the first report on the expression of MMP‐2, MMP‐9 and MT1‐MMP in murine LECs, as well as on the inhibition of their enzymatic activity, and of the invasive ability and tube‐forming property of LECs by an MMP inhibitor. Furthermore, MMI270 was shown to strongly inhibit the activity of MMP‐2 and ‐9 produced by LLC cells and the invasion of these cells through Matrigel. In summary, the present results indicate that MMI270, apart from its anti‐tumor angio‐genic application, might be useful as an anti‐metastatic drug, on the basis of its downregulatation of both the lymphangiogenesis‐related properties of LECs and the invasive properties of LLC cells in vitro. (Cancer Sci 2004; 95: 25–31)


Abbreviations:

LECs

lymphatic endothelial cells

LLC

Lewis lung cancer

MMP

matrix metalloproteinase

uPA

urokinase‐type plasminogen activator

flt‐4

fms‐like tyrosine kinase receptor 4

CD31/PECAM

platelet endothelial cell adhesion molecule

CD54/ICAM1

intercellular adhesion molecule 1

vWF

von Willebrand factor

References

  • 1. Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev 2002; 82: 673–700. [DOI] [PubMed] [Google Scholar]
  • 2. Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Alitalo K, Harkonen PL. VEGF‐C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF‐7 tumors. Int J Cancer 2002; 98: 946–51. [DOI] [PubMed] [Google Scholar]
  • 3. Jackson DG. New molecular markers for the study of tumour lymphangiogenesis. Anticancer Res 2001; 21: 4279–83. [PubMed] [Google Scholar]
  • 4. Schoppmann SF, Horvat R, Birner P. Lymphatic vessels and lymphangiogenesis in female cancer: mechanisms, clinical impact and possible implications for anti‐lymphangiogenic therapies. Oncol Rep 2002; 9: 455–60. [PubMed] [Google Scholar]
  • 5. Baldwin ME, Stacker SA, Achen MG. Molecular control of lymphangiogenesis. Bioessays 2002; 24: 1030–40. [DOI] [PubMed] [Google Scholar]
  • 6. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi JH, Claesson‐Welsh L, Alitalo K. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 1998; 95: 14389–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Oliver G, Detmar M. The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 2002; 16: 773–83. [DOI] [PubMed] [Google Scholar]
  • 8. Nagy JA, Vasile E, Feng D, Sundberg C, Brown LF, Detmar MJ, Lawitts JA, Benjamin L, Tan X, Manseau EJ, Dvorak AM, Dvorak HF. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002; 196: 1497–506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS. Vascular endothelial growth factor‐C‐mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20: 672–82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M. Induction of tumor lymphangiogenesis by VEGF‐C promotes breast cancer metastasis. Nat Med 2001; 7: 192–8. [DOI] [PubMed] [Google Scholar]
  • 11. Nakamura ES, Koizumi K, Yamaura T, Saiki I. Anti‐tumor angiogenic effect of a matrix metalloproteinase inhibitor MMI‐270. Anticancer Res 2003; 23: 411–8. [PubMed] [Google Scholar]
  • 12. Wood JM, Muller M, Schnell C, Cozens RM, O'Reilly T, Cox D, Ganu V, Melton R, Parker DT, MacPerson LJ, Nakajima M, Reich R. CGS 27032A, a potent and orally active matrix metalloproteinase inhibitor with antitumor activity. Proc. Am Assoc Cancer Res 1998; 39: 83. [Google Scholar]
  • 13. Levitt NC, Eskens FA, O'Byrne K, Propper DJ, Denis LJ, Owen SJ, Choi L, Foekens JA, Wilner S, Wood JM, Nakajima M, Talbot DC, Steward WP, Harris AL, Verweij J. Phase I and pharmacological study of the oral matrix metalloproteinase inhibitor, MMI‐270 (CGS27023A), in patients with advanced solid cancer. Clin Cancer Res 2001; 7: 1912–22. [PubMed] [Google Scholar]
  • 14. Doki Y, Murakami K, Yamaura T, Sugiyama S, Misaki T, Saiki I. Mediastinal lymph node metastasis model by orthotopic intrapulmonary implantation of Lewis lung carcinoma cells in mice. Br J Cancer 1999; 79: 1121–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15. Mancardi S, Stanta G, Dusetti N, Bestagno M, Jussila L, Zweyer M, Lunazzi G, Dumont D, Alitalo K, Burrone OR. Lymphatic endothelial tumors induced by intraperitoneal injection of incomplete Freund's adjuvant. Exp Cell Res 1999; 246: 368–75. [DOI] [PubMed] [Google Scholar]
  • 16. Saiki I, Murata J, Watanabe K, Fujii H, Abe F, Azuma I. Inhibition of tumor cell invasion by ubenimex (bestatin) in vitro. Jpn J Cancer Res 1989; 80: 873–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Sawada S, Murakami K, Yamaura T, Mitani N, Tsukada K, Saiki I. Therapeutic and analysis model of intrahepatic metastasis reflects clinical behavior of hepatocellular carcinoma. Jpn. J. Cancer Res. 2002; 93: 190–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Sawada S, Murakami K, Murata J, Tsukada K, Saiki I. Accumulation of extracellular matrix in the liver induces high metastatic potential of hepatocellular carcinoma to the lung. Int J Oncol 2001; 19: 65–70. [PubMed] [Google Scholar]
  • 19. Tsuchiya Y, Sawada S, Yoshioka I, Ohashi Y, Matsuo M, Harimaya Y, Tsukada K, Saiki I. Increased surgical stress promotes tumor metastasis. Surgery 2003; 133: 547–55. [DOI] [PubMed] [Google Scholar]
  • 20. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality Clin Cancer Res 2001; 7: 462–8. [PubMed] [Google Scholar]
  • 21. Mountain CF. Revisions in the international system for staging lung cancer. Chest 1997; 111: 1710–7. [DOI] [PubMed] [Google Scholar]
  • 22. Mitani N, Murakami K, Yamaura T, Ikeda T, Saiki I. Inhibitory effect of berberine on the mediastial lymph node metastasis produced by orthotopic implantation of Lewis lung carcinoma. Cancer Let 2001; 165: 35–42. [DOI] [PubMed] [Google Scholar]
  • 23. Ichiki K, Mitani N, Doki Y, Hara H, Misaki T, Saiki I. Regulation of activator protein‐1 activity in the mediastinal lymph node metastasis of lung cancer. Clin Exp Metastasis 2001; 18: 539–45. [DOI] [PubMed] [Google Scholar]
  • 24. Yamaura T, Murakami K, Doki Y, Sugiyama S, Misaki T, Yamada Y, Saiki I. Solitary lung tumors and their spontaneous metastasis in athymic nude mice orthotopically implanted with human non‐small cell lung cancer. Neoplasia 2000; 2: 315–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K. Expression of the fms‐like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566–70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26. Veikkola T, Alitalo K. VEGFs, receptors and angiogenesis. Semin Cancer Biol 1999; 9: 211–20. [DOI] [PubMed] [Google Scholar]
  • 27. Schlingemann RO, Rietveld FJ, Kwaspen F, van de Kerkhof PC, de Waal RM, Ruiter DJ. Differential expression of markers for endothelial cells, pericytes and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol 1991; 138: 1335–47. [PMC free article] [PubMed] [Google Scholar]
  • 28. Yamamoto K, de Waard V, Fearns C, Loskutoff DJ. Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood 1998; 92: 2791–801. [PubMed] [Google Scholar]
  • 29. Oka T, Ishida T, Nishino T, Sugimachi K. Immunohistochemical evidence of urokinase‐type plasminogen activator in primary and metastatic tumors of pulmonary adenocarcinoma. Cancer Res 1991; 51: 3522–5. [PubMed] [Google Scholar]
  • 30. Nagayama M, Sato A, Hayakawa H, Urano T, Takada Y, Takada A. Plasminogen activators and their inhibitors in non‐small cell lung cancer. Low content of type 2 plasminogen activator inhibitor associated with tumor dissemination. Cancer 1994; 73: 1398–405. [DOI] [PubMed] [Google Scholar]
  • 31. Pepper MS, Wasi S, Ferrara N, Orci L, Montesano R. In vitro angiogenic and proteolytic properties of bovine lymphatic endothelial cells. Exp Cell Res 1994; 210: 298–305. [DOI] [PubMed] [Google Scholar]
  • 32. Liu N‐F, He Q‐L. The regulatory effects of cytokines on lymphatic angiogenesis. Lymphology 1997; 30: 3–12. [PubMed] [Google Scholar]
  • 33. Pepper MS, Mandriota SJ, Jeltsch M, Kumar V, Alitalo K. Vascular endothelial growth factor (VEGF)‐C synergises with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro, and alters endothelial cell proteolytic properties. J Cell Physiol 1998; 177: 439–52. [DOI] [PubMed] [Google Scholar]
  • 34. Schnaper HW, Grant DS, Stetler Stevenson WG, Fridman R, D'Orazi G, Murphy AN, Bird RE, Hoythya M, Fuerst TR, French DL. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 1993; 156: 235–46. [DOI] [PubMed] [Google Scholar]
  • 35. Vu TH, Shipley M, Bergers G, Berger JE, Helms JA, Hanahan D, Shapiro SD, Senior RM, Werb Z. MMP‐9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 1998; 93: 411–22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Haas TL, Davis SJ, Madri JA. Three‐dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1‐MMP and MMP‐2 in microvascular endothelial cells. J Biol Chem 1998; 273: 3604–10. [DOI] [PubMed] [Google Scholar]
  • 37. Newman KM, Jean‐Claude J, Li H, Scholes JV, Ogata Y, Nagase H, Tilson MD. Cellular localization of matrix metalloproteinases in the abdominal aortic aneurysm wall. J Vasc Surg 1994; 20: 814–20. [DOI] [PubMed] [Google Scholar]
  • 38. Walter H, Kawashima A, Nebelung W, Neumann W, Roessner A. Immunohistochemical analysis of several proteolytic enzymes as parameters of cartilage degradation. Pathol Res Pract 1998; 194: 73–81. [DOI] [PubMed] [Google Scholar]
  • 39. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D. Urokinase‐generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 1997; 17: 439–44. [DOI] [PubMed] [Google Scholar]
  • 40. Okumura Y, Sato H, Seiki M, Kido H. Proteolytic activation of the precursor of membrane type 1 matrix metalloproteinase by human plasmin. A possible cell surface activator. FEBS Lett 1997; 402: 181–4. [DOI] [PubMed] [Google Scholar]
  • 41. Santibanez JF, Martinez J. Membrane‐associated procollagenase of leukemic cells is activated by urokinase‐type plasminogen activator. Leuk Res 1993; 17: 1057–62. [DOI] [PubMed] [Google Scholar]
  • 42. Murphy G, Stanton H, Cowell S, Butler G, Knauper V, Atkinson S, Gavrilovic J. Mechanisms for pro matrix metalloproteinase activation. APMIS 1999; 107: 38–44. [DOI] [PubMed] [Google Scholar]
  • 43. Westermarck J, Kahari V‐M. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1999; 13: 781–92. [PubMed] [Google Scholar]
  • 44. Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H, Nishikawa S, Yla‐Herttuala S, Alitalo K. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor‐3. Nat Med 2001; 7: 199–205. [DOI] [PubMed] [Google Scholar]
  • 45. Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla‐Herttuala S, Jaattela M, Alitalo V. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001; 61: 1786–90. [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES