Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(1):52–57. doi: 10.1111/j.1349-7006.2004.tb03170.x

Nemo‐like kinase suppresses a wide range of transcription factors, including nuclear factor‐kB

Jun Yasuda 1, Hideki Yokoo 2, Tesshi Yamada 2, Issay Kitabayashi 3, Takao Sekiya 4,5, Hitoshi Ichikawa 1
PMCID: PMC11158368  PMID: 14720327

Abstract

Nemo‐like kinase (NLK) is a serine/threonine kinase that suppresses the transcription activity of the β‐catenin‐T‐cell factor (TCF) complex through phosphorylation of TCF. Our previous study showed that NLK overexpression induces apoptosis in DLD‐1 human colon cancer cells and that apoptosis induction presumably requires a mechanism other than the suppression of β‐catenin‐TCF complex. Luciferase reporter gene assay with pNF‐kB‐Luc revealed that NLK could suppress transcription activity of NF‐kB in a kinase‐dependent manner. However, it appeared that transcription co‐activators of NF‐kB, such as CREB binding protein (CBP)/p300, were likely to be the direct targets of NLK, rather than NF‐kB itself. Luciferase reporter gene analysis of GAL4‐CBP fusion proteins revealed that the C‐terminal region of CBP was critical for transcription suppression by NLK. In vitro kinase assay showed that NLK could phosphorylate the C‐terminal domain of CBP. However, HAT activity was not suppressed by the induction of wild‐type NLK in DLD‐1 cells. Furthermore, we observed that NLK suppressed the transcription activity of AP‐1, Smad, and p53, all of which also utilize CBP as a co‐activator. The extent of suppression by NLK was similar among the transcription factors tested (50–60% reduction). Our results suggest that NLK may suppress a wide range of gene expression, possibly through CBP. (Cancer Sci 2004; 95: 52–57)

References

  • 1. Rocheleau CE, Yasuda J, Shin TH, Lin R, Sawa H, Okano H, Priess JR, Davis RJ, Mello CC. WRM‐1 activates the LIT‐1 protein kinase to transduce anterior/posterior polarity signals in C. elegans. Cell 1999; 97: 717–26. [DOI] [PubMed] [Google Scholar]
  • 2. Meneghini MD, Ishitani T, Carter JC, Hisamoto N, Ninomiya‐Tsuji J, Thorpe CJ, Hamill DR, Matsumoto K, Bowerman B. MAP kinase and Wnt pathways converge to downregulate an HMG‐domain repressor in Caenorhabditis elegans. Nature 1999; 399: 793–7. [DOI] [PubMed] [Google Scholar]
  • 3. Ishitani T, Ninomiya‐Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N, Waterman M, Bowerman B, Clevers H, Shibuya H, Matsumoto K. The TAK1‐NLK‐MAPK‐related pathway antagonizes signalling between β‐catenin and transcription factor TCF. Nature 1999; 399: 798–802. [DOI] [PubMed] [Google Scholar]
  • 4. Verheyen EM, Mirkovic I, MacLean SJ, Langmann C, Andrews BC, MacKinnon C. The tissue polarity gene nemo carries out multiple roles in patterning during Drosophila development. Mech Dev 2001; 101: 119–32. [DOI] [PubMed] [Google Scholar]
  • 5. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 2000; 16: 279–83. [DOI] [PubMed] [Google Scholar]
  • 6. Ishitani T, Kishida S, Hyodo‐Miura J, Ueno N, Yasuda J, Waterman M, Shibuya H, Moon RT, Ninomiya‐Tsuji J, Matsumoto K. The TAK1‐NLK mitogen‐activated protein kinase cascade functions in the Wnt‐5a/Ca(2+) pathway to antagonize Wnt/β‐catenin signaling. Mol Cell Biol 2003; 23: 131–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Ishitani T, Ninomiya‐Tsuji J, Matsumoto K. Regulation of lymphoid enhancer factor 1 /T‐cell factor by mitogen‐activated protein kinase‐related Nemo‐like kinase‐dependent phosphorylation in Wnt/beta‐catenin signaling. Mol Cell Biol 2003; 23: 1379–89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Kaletta T, Schnabel H, Schnabel R. Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature 1997; 390: 294–8. [DOI] [PubMed] [Google Scholar]
  • 9. Polakis P. The oncogenic activation of beta‐catenin. Curr Opin Genet Dev 1999; 9: 15–21. [DOI] [PubMed] [Google Scholar]
  • 10. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis‐a look outside the nucleus. Science 2000; 287: 1606–9. [DOI] [PubMed] [Google Scholar]
  • 11. Yasuda J, Tsuchiya A, Yamada T, Sakamoto M, Sekiya T, Hirohashi S. Nemo‐like kinase induces apoptosis in DLD‐1 human colon cancer cells. Biochem Biophys Res Commun 2003; 308: 227–33. [DOI] [PubMed] [Google Scholar]
  • 12. Naishiro Y, Yamada T, Takaoka AS, Hayashi R, Hasegawa F, Imai K, Hirohashi S. Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of β‐catenin/T‐cell factor 4‐mediated gene transactivation. Cancer Res 2001; 61: 2751–8. [PubMed] [Google Scholar]
  • 13. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon‐Pon‐Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H. The β‐catenin/TCF‐4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111: 241–50. [DOI] [PubMed] [Google Scholar]
  • 14. Mirkovic I, Charish K, Gorski SM, McKnight K, Verheyen EM. Drosophila nemo is an essential gene involved in the regulation of programmed cell death. Mech Dev 2002; 119: 9–20. [DOI] [PubMed] [Google Scholar]
  • 15. Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M, Lin A. Inhibition of JNK activation through NF‐kB target genes. Nature 2001; 414: 313–7. [DOI] [PubMed] [Google Scholar]
  • 16. de Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G. Induction of gadd45beta by NF‐?B downregulates pro‐apoptotic JNK signalling. Nature 2001; 414: 308–13. [DOI] [PubMed] [Google Scholar]
  • 17. Karin M, Lin A. NF‐?B at the crossroads of life and death. Nat Immunol 2002; 3: 221–7. [DOI] [PubMed] [Google Scholar]
  • 18. Chen F, Castranova V, Shi X. New insights into the role of nuclear factor‐?B in cell growth regulation. Am J Pathol 2001; 159: 387–97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Harris AL. Hypoxia‐a key regulatory factor in tumour growth. Nature Rev Cancer 2002; 2: 38–47. [DOI] [PubMed] [Google Scholar]
  • 20. Mayo MW, Wang CY, Cogswell PC, Rogers‐Graham KS, Lowe SW, Der CJ, Baldwin AS Jr. Requirement of NF‐?B activation to suppress p53‐independent apoptosis induced by oncogenic Ras. Science 1997; 278: 1812–5. [DOI] [PubMed] [Google Scholar]
  • 21. Joneson T, Bar‐Sagi D. Suppression of Ras‐induced apoptosis by the Rac GTPase. Mol Cell Biol 1999; 19: 5892–901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Casares S, Ionov Y, Ge HY, Stanbridge E, Perucho M. The microsatellite mutator phenotype of colon cancer cells is often recessive. Oncogene 1995; 11: 2303–10. [PubMed] [Google Scholar]
  • 23. Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T. CREB‐binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA 1997; 94: 2927–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Perkins ND, Felzien LK, Betts JC, Leung K, Beach DH, Nabel GJ. Regulation of NF‐?B by cyclin‐dependent kinases associated with the p300 coactivator. Science 1997; 275: 523–7. [DOI] [PubMed] [Google Scholar]
  • 25. Zhong H, Voll RE, Ghosh S. Phosphorylation of NF‐?B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998; 1: 661–71. [DOI] [PubMed] [Google Scholar]
  • 26. Zhong H, May MJ, Jimi E, Ghosh S. The phosphorylation status of nuclear NF‐?B determines its association with CBP/p300 or HDAC‐1. Mol Cell 2002; 9: 625–36. [DOI] [PubMed] [Google Scholar]
  • 27. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP‐1 inhibition by nuclear receptors. Cell 1996; 85: 403–14. [DOI] [PubMed] [Google Scholar]
  • 28. Miyazono K. Positive and negative regulation of TGF‐β signaling. J Cell Sci 2000; 113 Pt 7: 1101–9. [DOI] [PubMed] [Google Scholar]
  • 29. Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS, Kelly K. Recruitment of p300/CBP in p53‐dependent signal pathways. Cell 1997; 89: 1175–84. [DOI] [PubMed] [Google Scholar]
  • 30. Gu W, Shi XL, Roeder RG. Synergistic activation of transcription by CBP and p53. Nature 1997; 387: 819–23. [DOI] [PubMed] [Google Scholar]
  • 31. Lill NL, Grossman SR, Ginsberg D, DeCaprio J, Livingston DM. Binding and modulation of p53 by p300/CBP coactivators. Nature 1997; 387: 823–7. [DOI] [PubMed] [Google Scholar]
  • 32. El‐Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–25. [DOI] [PubMed] [Google Scholar]
  • 33. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGF beta‐inducible elements in the promoter of human plasminogen activator inhibitor‐type 1 gene. EMBO J 1998; 17: 3091–100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 1993; 365: 855–9. [DOI] [PubMed] [Google Scholar]
  • 35. Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A, Ohki M. Activation of AML1‐mediated transcription by MOZ and inhibition by the MOZ‐CBP fusion protein. EMBO J 2001; 20: 7184–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994; 370: 223–6. [DOI] [PubMed] [Google Scholar]
  • 37. Whitmarsh AJ, Yang SH, Su MS, Sharrocks AD, Davis RJ. Role of p38 and JNK mitogen‐activated protein kinases in the activation of ternary complex factors. Mol Cell Biol 1997; 17: 2360–71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Iizuka M, Stillman B. Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 1999; 274: 23027–34. [DOI] [PubMed] [Google Scholar]
  • 39. Baeuerle PA, Baltimore D. I ?B: a specific inhibitor of the NF‐?B transcription factor. Science 1988; 242: 540–6. [DOI] [PubMed] [Google Scholar]
  • 40. Baeuerle PA, Baltimore D. Activation of DNA‐binding activity in an apparently cytoplasmic precursor of the NF‐?B transcription factor. Cell 1988; 53: 211–7. [DOI] [PubMed] [Google Scholar]
  • 41. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev 2000; 14: 1553–77. [PubMed] [Google Scholar]
  • 42. Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001; 114: 2363–73. [DOI] [PubMed] [Google Scholar]
  • 43. Bannister AJ Kouzarides T. The CBP co‐activator is a histone acetyltransferase. Nature 1996; 384: 641–3. [DOI] [PubMed] [Google Scholar]
  • 44. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996; 87: 953–9. [DOI] [PubMed] [Google Scholar]
  • 45. Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R. The p300/CBP acetyltransferases function as transcriptional coactivators of β‐catenin in vertebrates. EMBO J 2000; 19: 1839–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Miyagishi M, Fujii R, Hatta M, Yoshida E, Araya N, Nagafuchi A, Ishihara S, Nakajima T, Fukamizu A. Regulation of Lef‐mediated transcription and p53‐dependent pathway by associating β‐catenin with CBP/p300. J Biol Chem 2000; 275: 35170–5. [DOI] [PubMed] [Google Scholar]
  • 47. Sun Y, Kolligs FT, Hottiger MO, Mosavin R, Fearon ER, Nabel GJ. Regulation of β‐catenin transformation by the p300 transcriptional coactivator. Proc Natl Acad Sci USA 2000; 97: 12613–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Takemaru KI, Moon RT. The transcriptional coactivator CBP interacts with β‐catenin to activate gene expression. J Cell Biol 2000; 149: 249–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T. Acetylation of β‐catenin by CBP. J Biol Chem 2002; 277: 22562–7. [DOI] [PubMed] [Google Scholar]
  • 50. Akimaru H, Hou DX, Ishii S. Drosophila CBP is required for dorsal‐dependent twist gene expression. Nat Genet 1997; 17: 211–4. [DOI] [PubMed] [Google Scholar]
  • 51. Brott BK, Pinsky BA, Erikson RL. Nlk is a murine protein kinase related to Erk/MAP kinases and localized in the nucleus. Proc Natl Acad Sci USA 1998; 95: 963–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Kitabayashi I, Eckner R, Arany Z, Chiu R, Gachelin G, Livingston DM, Yokoyama KK. Phosphorylation of the adenovirus E1A‐associated 300 kDa protein in response to retinoic acid and E1 A during the differentiation of F9 cells. EMBO J 1995; 14: 3496–509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, Marinkovich MP, Tao S, Lin Q, Kubo Y, Khavari PA. NF‐?B blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 2003; 421: 639–43. [DOI] [PubMed] [Google Scholar]
  • 54. Kortenjann M, Wehrle C, Nehls MC, Boehm T. Only one nemo‐like kinase gene homologue in invertebrate and mammalian genomes. Gene 2001; 278: 161–5. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES