Abstract
In order to clarify the susceptibility of the Hras128 rat harboring copies of the human c‐Ha‐ras proto‐oncogene to 2‐amino‐1‐me‐thyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP), Hras128 rats were in‐tragastically treated with 100 mg/kg PhIP 8 times (females) or 80 mg/kg PhIP 10 times (males) over a 9‐week period, then sacrificed at weeks 12 and 30. Multiple mammary tumors of adenocar‐cinoma type were induced in all females, while 83% of treated males developed adenocarcinomas, sarcomas and transitional car‐cinosarcomas, as evidenced by casein and vimentin immunoreactivity. All tumors examined had mutations in the c‐Ha‐ras transgene, while the endogenous rat c‐Ha‐ras gene was intact. Our results indicate that 1) Hras128 rats of both sexes are preferentially susceptible to mammary carcinogenesis with PhIP; 2) activation of the transgene, but not the endogenous c‐Ha‐ras gene, may be important in this regard; 3) the variety of tumor types evident in male rats indicates that immature mammary gland cells of the terminal end buds may be a target of PhIP; 4) although the transgene is expressed in all organs, susceptibility to PhIP is limited to mammary glands.
References
- 1. Bos JL. ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–9. [PubMed] [Google Scholar]
- 2. Balmain A, Brown K. Oncogene activation in chemical carcinogenesis. Adv Cancer Res 1988; 51: 147–82. [DOI] [PubMed] [Google Scholar]
- 3. Matsumoto K, Iwase T, Hirono I, Nishida Y, Iwahori Y, Hori T, Asamoto M, Takasuka N, Kim DJ, Ushijima T, Nagao M, Tsuda H. Demonstration of ras and p53 gene mutations in carcinomas in the forestomach and intestine and soft tissue sarcomas induced by N‐methyl‐N‐nitrosourea in the rat. Jpn J Cancer Res 1997; 88: 129–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Sukumar S, Notario V, Martin‐Zanca D, Barbacid M. Induction of mammary carcinomas in rats by nitroso‐methylurea involves malignant activation of H‐ras‐1 locus by single point mutations. Nature 1983; 306: 658–61. [DOI] [PubMed] [Google Scholar]
- 5. Zhang R, Haag JD, Gould MN. Reduction in the frequency of activated ras oncogenes in rat mammary carcinomas with increasing N‐methyl‐N‐ni‐trosourea doses or increasing prolactin levels. Cancer Res 1990; 50: 4286–90. [PubMed] [Google Scholar]
- 6. Zhang R, Haag JD, Gould MN. Quantitating the frequency of initiation and cH‐ras mutation in in situ N‐methyl‐N‐nitrosourea‐exposed rat mammary gland. Cell Growth Differ 1991; 2: 1–6. [PubMed] [Google Scholar]
- 7. Jacoby RF, Alexander RJ, Raicht RF, Brasitus TA. K‐ras oncogene mutations in rat colon tumors induced by N‐methyl‐N‐nitrosourea. Carcinogenesis 1992; 13: 45–9. [DOI] [PubMed] [Google Scholar]
- 8. Bos JL, Fearon ER, Hamilton SR, Verlaan‐de Vries M, van Boom JH, van der Eb AJ, Vogelstein B. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 327: 293–7. [DOI] [PubMed] [Google Scholar]
- 9. Forrester K, Almoguera C, Han K, Grizzle WE, Perucho M. Detection of high incidence of K‐ras oncogenes during human colon tumorigenesis. Nature 1987; 327: 298–303. [DOI] [PubMed] [Google Scholar]
- 10. Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c‐K‐ras genes. Cell 1988; 53: 549–54. [DOI] [PubMed] [Google Scholar]
- 11. Rashid A. Cellular and molecular biology of biliary tract cancers. Surg Oncol Clin N Am 2002; 11: 995–1009. [DOI] [PubMed] [Google Scholar]
- 12. Bos JL, Verlaan‐de Vries M, van der Eb AJ, Janssen JW, Delwel R, Lowenberg B, Colly LP. Mutations in N‐ras predominate in acute myeloid leukemia. Blood 1987; 69: 1237–41. [PubMed] [Google Scholar]
- 13. Asamoto M, Ochiya T, Toriyama‐Baba H, Ota T, Sekiya T, Terada M, Tsuda H. Transgenic rats carrying human c‐Ha‐ras proto‐oncogenes are highly susceptible to N‐methyl‐N‐nitrosourea mammary carcinogenesis. Carcinogenesis 2000; 21: 243–9. [DOI] [PubMed] [Google Scholar]
- 14. Tsuda H, Asamoto M, Ochiya T, Toriyama‐Baba H, Naito A, Ota T, Sekiya T, Terada M. High susceptibility of transgenic rats carrying the human c‐Ha‐ras proto‐oncogene to chemically‐induced mammary carcinogenesis. Mutat Res 2001; 477: 173–82. [DOI] [PubMed] [Google Scholar]
- 15. Ota T, Asamoto M, Toriyama‐Baba H, Yamamoto F, Matsuoka Y, Ochiya T, Sekiya T, Terada M, Akaza H, Tsuda H. Transgenic rats carrying copies of the human c‐Ha‐ras proto‐oncogene exhibit enhanced susceptibility to N‐bu‐tyl‐ N‐(4‐hydroxybutyl)nitrosamine bladder carcinogenesis. Carcinogenesis 2000; 21: 1391–6. [PubMed] [Google Scholar]
- 16. Asamoto M, Toriyama‐Baba H, Ohnishi T, Naito A, Ota T, Ando A, Ochiya T, Tsuda H. Transgenic rats carrying human c‐Ha‐ras proto‐oncogene are highly susceptible to N‐nitrosomethylbenzylamine induction of esophageal tumorigenesis. Jpn J Cancer Res 2002; 93: 744–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Nagao M, Wakabayashi K, Ushijima T, Toyota M, Totsuka Y, Sugimura T. Human exposure to carcinogenic heterocyclic amines and their mutational fingerprints in experimental animals. Environ Health Perspect 1996; 3: 497–501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Layton DW, Bogen KT, Knize MG, Hatch FT, Johnson VM, Felton JS. Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis 1995; 16: 39–52. [DOI] [PubMed] [Google Scholar]
- 19. Ito N, Hasegawa R, Sano M, Tamano S, Esumi H, Takayama S, Sugimura T. A new colon and mammary carcinogen in cooked food, 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine (PhIP). Carcinogenesis 1991; 12: 1503–6. [DOI] [PubMed] [Google Scholar]
- 20. Ghoshal A, Preisegger KH, Takayama S, Thorgeirsson SS, Snyderwine EG. Induction of mammary tumors in female Sprague‐Dawley rats by the foodderived carcinogen 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine and effect of dietary fat. Carcinogenesis 1994; 15: 2429–33. [DOI] [PubMed] [Google Scholar]
- 21. Nagao M, Ushijima T, Wakabayashi K, Ochiai M, Kushida H, Sugimura T, Hasegawa R, Shirai T, Ito N. Dietary carcinogens and mammary carcinogenesis. Induction of rat mammary carcinomas by administration of heterocyclic amines in cooked foods. Cancer 1994; 74: 1063–9. [DOI] [PubMed] [Google Scholar]
- 22. Adamson RH, Thorgeirsson UP, Sugimura T. Extrapolation of heterocyclic amine carcinogenesis data from rodents and nonhuman primates to humans. Arch Toxicol Suppl 1996; 18: 303–18. [DOI] [PubMed] [Google Scholar]
- 23. Sinha R. An epidemiologic approach to studying heterocyclic amines. Mutat Res 2002; 507: 197–204. [DOI] [PubMed] [Google Scholar]
- 24. Nagao M, Ushijima T, Watanabe N, Okochi E, Ochiai M, Nakagama H, Sugimura T. Studies on mammary carcinogenesis induced by a heterocyclic amine, 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine, in mice and rats. Environ Mol Mutagen 2002; 39: 158–64. [DOI] [PubMed] [Google Scholar]
- 25. Sutherland LA, Bird RP. The effect of chenodeoxycholic acid on the development of aberrant crypt foci in the rat colon. Cancer Lett 1994; 76: 101–7. [DOI] [PubMed] [Google Scholar]
- 26. Hirayama Y, Wakazono K, Yamamoto M, Kitano M, Tatematsu M, Nagao M, Sugimura T, Ushijima T. Rare mutations of p53, Ki‐ras, and beta‐catenin genes and absence of K‐sam and c‐erbB‐2 amplification in N‐methyl‐N′‐ni‐tro‐ N‐nitrosoguanidine‐induced rat stomach cancers. Mol Carcinog 1999; 25: 42–7. [DOI] [PubMed] [Google Scholar]
- 27. Asamoto M, Ota T, Toriyama‐Baba H, Hokaiwado N, Naito A, Tsuda H. Mammary carcinomas induced in human c‐Ha‐ras proto‐oncogene trans‐genic rats are estrogen‐independent, but responsive to d‐limonene treatment. Jpn J Cancer Res 2002; 93: 32–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Han BS, Fukamachi K, Takasuka N, Ohnishi T, Maeda M, Yamasaki T, Tsuda H. Inhibitory effects of 17beta‐estradiol and 4‐n‐octylphenol on 7,12‐dimethylbenz[a]anthracene‐induced mammary tumor development in human c‐Ha‐ras proto‐oncogene transgenic rats. Carcinogenesis 2002; 23: 1209–15. [DOI] [PubMed] [Google Scholar]
- 29. Russo J, Wilgus G, Russo IH. Susceptibility of the mammary gland to carcinogenesis. I. Differentiation of the mammary gland as determinant of tumor incidence and type of lesion. Am J Pathol 1979; 96: 721–36. [PMC free article] [PubMed] [Google Scholar]
- 30. Russo J, Tait L, Russo IH. Susceptibility of the mammary gland to carcinogenesis. III. The cell of origin of rat mammary carcinoma. Am J Pathol 1983; 113: 50–66. [PMC free article] [PubMed] [Google Scholar]
- 31. Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat 1996; 39: 7–20. [DOI] [PubMed] [Google Scholar]
- 32. Matsuoka Y, Fukamachi K, Hamaguchi T, Toriyama‐Baba H, Kawaguchi H, Kusunoki M, Yoshida H, Tsuda H. Rapid emergence of mammary preneo‐plastic and malignant lesions in human c‐Ha‐ras proto‐oncogene transgenic rats: possible application for screening of chemopreventive agents. Toxicol Pathol 2003; 31: 632–7. [DOI] [PubMed] [Google Scholar]
- 33. Snyderwine EG. Mammary gland carcinogenesis by 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine in rats: possible mechanisms. Cancer Lett 1999; 143: 211–5. [DOI] [PubMed] [Google Scholar]
- 34. Russo IH, Russo J. Role of hormones in mammary cancer initiation and progression. J Mammary Gland Biol Neoplasia 1998; 3: 49–61. [DOI] [PubMed] [Google Scholar]
- 35. Tsubura A, Izuno Y, Shoji T, Kusunose N, Morii S. Influence of strain and sex on the local development of mammary tumors induced by direct application of DMBA powder to rat mammary glands. Acta Pathol Jpn 1990; 40: 9–13. [DOI] [PubMed] [Google Scholar]
- 36. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E. TGF‐beta1 and Ha‐Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996; 10: 2462–77. [DOI] [PubMed] [Google Scholar]
- 37. Zatelli MC, Rossi R, degli Uberti EC. Androgen influences transforming growth factor‐beta1 gene expression in human adrenocortical cells. J Clin Endocrinol Metab 2000; 85: 847–52. [DOI] [PubMed] [Google Scholar]
- 38. Ushijima T, Kakiuchi H, Makino H, Hasegawa R, Ishizaka Y, Hirai H, Yazaki Y, Ito N, Sugimura T, Nagao M. Infrequent mutation of Ha‐ras and p53 in rat mammary carcinomas induced by 2‐amino‐1‐methyl‐6‐phenylimi‐dazo[4,5‐b]pyridine. Mol Carcinog 1994; 10: 38–44. [DOI] [PubMed] [Google Scholar]
- 39. Jasin M. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 2002; 21: 8981–93. [DOI] [PubMed] [Google Scholar]
- 40. Castilla LH, Couch FJ, Erdos MR, Hoskins KF, Calzone K, Garber JE, Boyd J, Lubin MB, Deshano ML, Brody LC et al. Mutations in the BRCA1 gene in families with early‐onset breast and ovarian cancer. Nat Genet 1994; 8: 387–91. [DOI] [PubMed] [Google Scholar]
- 41. Inoue R, Fukutomi T, Ushijima T, Matsumoto Y, Sugimura T, Nagao M. Germline mutation of BRCA1 in Japanese breast cancer families. Cancer Res 1995; 55: 3521–4. [PubMed] [Google Scholar]
- 42. Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst 2000; 92: 1126–35. [DOI] [PubMed] [Google Scholar]
- 43. Okochi E, Miyamoto K, Wakazono K, Shima H, Sugimura T, Ushijima T. Reduced Brca1 protein expression in 2‐amino‐1‐methyl‐6‐phenylimi‐dazo[4,5‐b]pyridine‐induced rat mammary carcinomas. Mol Carcinog 2002; 34: 211–8. [DOI] [PubMed] [Google Scholar]
