Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(4):334–341. doi: 10.1111/j.1349-7006.2004.tb03212.x

Molecular markers for reinforcement of histological subclassification of neuroendocrine lung tumors

Yasuhito Kobayashi 1, Yoshio Tokuchi 2,7, Takehisa Hashimoto 2,8, Moriaki Hayashi 2,9, Hitoshi Nishimura 3, Yuichi Ishikawa 4, Ken Nakagawa 5, Yukitoshi Sato 5, Atsushi Takahashi 6, Eiju Tsuchiya 2,
PMCID: PMC11158778  PMID: 15072592

Abstract

The degree of malignancy of neuroendocrine lung tumors (NEs) increases in this order: from typical carcinoids (TCs) through atypical carcinoids (ACs) to large cell neuroendocrine carcinomas (LCNECs) and small cell lung carcinomas (SCLCs). However, histological classification has sometimes proved difficult. We here investigated loss of heterozygosity (LOH) using eight microsatellite markers and expression of p53, Bcl‐2 and Bax proteins using immunohistochemical methods in 57 NEs (19 TCs, 5 ACs, 14 LCNECs and 19 SCLCs), looking for objective genetic markers to distinguish between subtypes. The frequencies of LOHs on D3S1300, RBi2 and TP53, the combinations of LOH status for RBi2 and TP53, and the immunohistochemically demonstrated Bcl‐2/Bax ratios and p53‐positive rates significantly differed among histopathologically diagnosed NEs. Differentiation between TC and AC was possible with reference to LOH on D3S1300, RBi2 and TP53, and the combined LOH status on RBi2 and TP53 (i.e., both LOH(‐) versus one LOH(+)). For comparison between AC and LCNEC+SCLC, LOH on TP53 or the combination of two markers—one LOH(+) versus both LOH(+)—was applied. Furthermore, in three discordant cases of diagnoses based on histology and LOH markers, diagnoses using the latter were considered to be more probable by survival analysis. The present study indicated that assessment of LOHs using microsatellite markers could provide objective markers that can distinguish subtypes of NEs, for which histological assessment may commonly result in disagreement.

References

  • 1. Travis WD, Rush W, Flieder DB, Falk R, Fleming MV, Gal AA, Koss MN. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoids and its separation from typical carcinoid. Am J Surg Pathol 1998; 22: 934–44. [DOI] [PubMed] [Google Scholar]
  • 2. Beasley MB, Thunnissen FBJM, Brambilla E, Hasleton P, Steele R, Hammar SP, Colby TV, Sheppard M, Shimosato Y, Koss MN, Falk R, Travis WD. Pulmonary atypical carcinoids: predictors of survival in 106 cases. Hum Pathol 2000; 31: 1255–65. [DOI] [PubMed] [Google Scholar]
  • 3. World Health Organization . Histological typing of lung and pleural tumours. 3rd ed. Geneva : WHO; 1999. [Google Scholar]
  • 4. Flieder DB. Neuroendocrine tumors of the lung: recent developments in histopathology. Curr Opin Pulm Med 2002; 8: 275–80. [DOI] [PubMed] [Google Scholar]
  • 5. Marchevsky AM, Gal AA, Shah S, Koss MN. Morphometry confirms the presence of considerable nuclear size overlap between “small cells” and “large cells” in high‐grade pulmonary neuroendocrine neoplasms. Am J Clin Pathol 2001; 116: 466–72. [DOI] [PubMed] [Google Scholar]
  • 6. Travis WD, Gal AA, Colby TV, Klimstra DS, Falk R, Koss MN. Reproducibility of neuroendocrine lung tumor classification. Hum Pathol 1998; 29: 272–9. [DOI] [PubMed] [Google Scholar]
  • 7. Anbazhagan R, Tihan T, Bornman DM, Johnston JC, Saltz JH, Weigering A, Piantadosi S, Gabrielson E. Classification of small cell lung cancer and pulmonary carcinoid by gene expression profiles. Cancer Res 1999; 59: 5119–22. [PubMed] [Google Scholar]
  • 8. Ullmann R, Petzmann S, Klemen H, Fraire AE, Hasleton P, Popper HH. The position of pulmonary carcinoids within the spectrum of neuroendocrine tumors of the lung and other tissues. Genes Chromosom Cancer 2002; 34: 78–85. [DOI] [PubMed] [Google Scholar]
  • 9. Takahashi T, Obata Y, Sekido Y, Hida T, Ueda R, Watanabe H, Ariyoshi Y, Sugiura T, Takahashi T. Expression and amplification of myc gene family in small cell lung cancer and its relation to biological characteristics. CancerRes 1989; 49: 2683–8. [PubMed] [Google Scholar]
  • 10. D'Amico D, Carbone DP, Johnson BE, Meltzer SJ, Minna JD. Polymorphic sites within the MMC and APC loci reveal very frequent loss of heterozygosity in human small cell lung cancer. Cancer Res 1992; 52: 1996–9. [PubMed] [Google Scholar]
  • 11. Petersen I, Langreck H, Wolf G, Schwendel A, Psille R, Vogt P, Reichel MB, Ried T, Dietel M. Small‐cell lung cancer is characterized by a high incidence of deletions on chromosomes 3p, 4q, 5q, 10q, 13q and 17p. Br J Cancer 1997; 75: 79–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Sozzi G, Veronese ML, Negrini M, Baffa R, Cotticelli MG, Inoue H, Tornielli S, Pilotti S, De Gregorio L, Pastorino U, Pierotti MA, Ohta M, Huebner K, Croce CM. The FHIT gene at 3p14.2 is abnormal in lung cancer. Cell 1996; 85: 17–26. [DOI] [PubMed] [Google Scholar]
  • 13. Debelenko LV, Brambilla E, Agarwal SK, Swalwell JI, Kester MB, Lubensky IA, Zhuang Z, Guru SC, Manickam P, Olufemi S‐E, Chandrasekharappa SC, Crabtree JS, Kim YS, Heppner C, Burns AL, Spiegel AM, Marx SJ, Liotta LA, Collins FS, Travis WD, Emmert‐Buck MR. Identification of MEN1 gene mutations in sporadic carcinoid tumors of the lung. Hum Mol Genet 1997; 6: 2285–90. [DOI] [PubMed] [Google Scholar]
  • 14. Debelenko LV, Swalwell JI, Kelley MJ, Brambilla E, Manickam P, Baibakov G, Agarwal SK, Spiegel AM, Marx SJ, Chandrasekharappa SC, Collins FS, Travis WD, Emmert‐Buck MR. MEN1 gene mutation analysis of high‐grade neuroendocrine lung carcinoma. Genes Chromosom Cancer 2000; 28: 58–65. [DOI] [PubMed] [Google Scholar]
  • 15. Gugger M, Burckhardt E, Kappeler A, Hirsiger H, Laissue JA, Mazzucchelli L. Quantitative expansion of structural genomic alterations in the spectrum of neuroendocrine lung carcinomas. J Pathol 2002; 196: 408–15. [DOI] [PubMed] [Google Scholar]
  • 16. Onuki N, Wistuba II, Travis WD, Virmani AK, Yashima K, Brambilla E, Hasleton P, Gazdar AF. Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer 1999; 85: 600–7. [DOI] [PubMed] [Google Scholar]
  • 17. Petzmann S, Ullmann R, Klemen H, Renner H, Popper HH. Loss of heterozygosity on chromosome arm 11q in lung carcinoids. Hum Pathol 2001; 32: 333–8. [DOI] [PubMed] [Google Scholar]
  • 18. Walch AK, Zitzelsberger HF, Aubele MM, Mattis AE, Bauchinger M, Candidus S, Prauer HW, Werner M, Hofler H. Typical and atypical carcinoid tumors of the lung are characterized by 11q deletions as detected by comparative genomic hybridization. Am J Pathol 1998; 153: 1089–98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. McDonnell TJ. Cell division versus cell death: a functional model of multistep neoplasia. Mol Carcinog 1993; 8: 209–13. [DOI] [PubMed] [Google Scholar]
  • 20. Wang D‐G, Johnston CF, Sloan JM, Buchanan KD. Expression of Bcl‐2 in lung neuroendocrine tumours: comparison with p53. J Pathol 1998; 184: 247–51. [DOI] [PubMed] [Google Scholar]
  • 21. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC. Tumor suppressor p53 is a regulator of bcl‐2 and bax gene expression in vitro and in vivo. Oncogene 1994; 9: 1799–805. [PubMed] [Google Scholar]
  • 22. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–9. [DOI] [PubMed] [Google Scholar]
  • 23. Brambilla E, Negoescu A, Gazzeri S, Lantuejoul S, Moro D, Brambilla C, Coll J‐L. Apoptosis‐related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 1996; 149: 1941–52. [PMC free article] [PubMed] [Google Scholar]
  • 24. Sobin LH, Wittekind CH. UICC TNM classification of malignant tumours. 5th ed. New York : John Wiley & Sons; 1997. [Google Scholar]
  • 25. Tokuchi Y, Kobayashi Y, Hayashi S, Hayashi M, Tanimoto K, Hashimoto T, Nishida K, Ishikawa Y, Nakagawa K, Satoh Y, Yamamoto M, Tsuchiya E. Abnormal FHIT transcripts found in both lung cancer and normal lung tissue. Genes Chromosom Cancer 1999; 24: 105–11. [PubMed] [Google Scholar]
  • 26. Jones HM, Yamakawa K, Nakamura Y. Isolation and characterization of 19 dinucleotide repeat polymorphisms on chromosome 3p. Hum Mol Genet 1992; 1: 131–3. [DOI] [PubMed] [Google Scholar]
  • 27. Wieland I, Bohm M, Arden KC, Ammermuller T, Bogatz S, Viars CS, Rajewsky MF. Allelic deletion mapping on chromosome 5 in human lung carcinomas. Oncogene 1996; 12: 97–102. [PubMed] [Google Scholar]
  • 28. Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millasseau P, Marc S, Bernardi G, Lathrop M, Weissenbach J. The 1993–94 Genethon human genetic linkage map. Nat Genet 1994; 7: 246–339. [DOI] [PubMed] [Google Scholar]
  • 29. Kwiatkowski DJ, Henske EP, Weimer K, Ozelius L, Gusella JF, Haines J. Construction of a GT polymorphism map of human 9q. Genomics 1992; 12: 229–40. [DOI] [PubMed] [Google Scholar]
  • 30. Manickam P, Guru SC, Debelenko LV, Agarwal SK, Olufemi S‐E, Weisemann JM, Boguski MS, Crabtree JS, Wang Y, Roe BA, Lubensky IA, Zhuang Z, Kester MB, Burns AL, Spiegel AM, Marx SJ, Liotta LA, Emmert‐Buck MR, Collins FS, Chandrasekharappa SC. Eighteen new polymorphic markers in the multiple endocrine neoplasia type 1 (MEN1) region. Hum Genet 1997; 101: 102–8. [DOI] [PubMed] [Google Scholar]
  • 31. Toguchida J, McGee TL, Paterson JC, Eagle JR, Tucker S, Yandell DW, Dryja TP. Complete genomic sequence of the human retinoblastoma susceptibility gene. Genomics 1993; 17: 535–43. [DOI] [PubMed] [Google Scholar]
  • 32. Jones HM, Nakamura Y. Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chromosom Cancer 1992; 5: 89–90. [DOI] [PubMed] [Google Scholar]
  • 33. Bankfalvi AA, Piffko J, Ofner D, Dreier R, Bocker W, Werner K. Significance of wet autoclave pretreatment in immunohistochemistry. Pathol Oncol Res 1996; 2: 71–7. [DOI] [PubMed] [Google Scholar]
  • 34. Hashimoto T, Tokuchi Y, Hayashi M, Kobayashi Y, Nishida K, Hayashi S, Ishikawa Y, Tsuchiya S, Nakagawa K, Hayashi J, Tsuchiya E. p53 null mutations undetected by immunohistochemical staining predict a poor outcome with early‐stage non‐small cell lung carcinomas. Cancer Res 1999; 59: 5572–7. [PubMed] [Google Scholar]
  • 35. Dosaka‐Akita H, Cagle PT, Hiroumi H, Fujita M, Yamashita M, Sharma A, Kawakami Y, Benedict WF. Differential retinoblastoma and p16 INK4A protein expression in neuroendocrine tumors of the lung. Cancer 2000; 88: 550–6. [PubMed] [Google Scholar]
  • 36. Kawano N, Ito T, Kitamura H, Shibagaki T, Kameda Y, Nakamura N, Kanisawa M. Immunoexpression of the alpha subunit of a guanine nucleotide‐ binding protein (Go) in pulmonary neuroendocrine cells and neoplasms. Pathol Int 1996; 46: 393–8. [DOI] [PubMed] [Google Scholar]
  • 37. Gemba K, Ueoka H, Kiura K, Tabata M, Harada M. Immunohistochemical detection of mutant p53 protein in small‐cell lung cancer: relationship to treatment outcome. Lung Cancer 2000; 29: 23–31. [DOI] [PubMed] [Google Scholar]
  • 38. Rodriguez‐Salas N, Palacios J, Moreno G, de Castro J, Gonzalez‐Baron M, Gamallo C. Correlation of p53 oncoprotein expression with chemotherapy response in small cell lung carcinomas. Lung Cancer 2001; 34: 67–74. [DOI] [PubMed] [Google Scholar]
  • 39. Jiang S‐X, Kameya T, Shinada J, Yoshimura H. The significance of frequent and independent p53 and bcl‐2 expression in large‐cell neuroendocrine carcinomas of the lung. Mod Pathol 1999; 12: 362–9. [PubMed] [Google Scholar]
  • 40. Sampietro G, Tomasic G, Collini P, Biganzoli E, Boracchi P, Bidoli P, Pilotti S. Gene product immunophenotyping of neuroendocrine lung tumors. Appl Immunohistochem Mol Morphol 2000; 8: 49–56. [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES