Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(6):496–502. doi: 10.1111/j.1349-7006.2004.tb03239.x

Prediction of prognosis of estrogen receptor‐positive breast cancer with combination of selected estrogen‐regulated genes

Nobuyuki Yoshida 1,4, Yoko Omoto 1, Akio Inoue 1,5, Hidetaka Eguchi 6, Yasuhito Kobayashi 2, Masafumi Kurosumi 2, Shigehira Saji 7, Kimito Suemasu 3, Tomoki Okazaki 4, Kei Nakachi 6, Toshiro Fujita 4, Shin‐ichi Hayashi 1,
PMCID: PMC11158785  PMID: 15182430

Abstract

Estrogen receptor (ER)‐positive breast cancer is a distinct subpopulation of breast cancer exhibiting a high response rate to endocrine therapy. However, not all ER‐positive patients respond to the therapy, and a subgrouping of ER‐positive patients based on the physiology of estrogen signaling is expected to be useful for predicting the prognosis. This study has revealed that selected estrogen‐regulated genes (ERGs) are useful in identification of a poor‐prognosis population among ER‐positive breast cancer patients. First, the expression levels of 11 ERGs, selected based on our earlier microarray study in cultured cells, were analyzed by means of real‐time reverse transcription‐PCR in 14 ER‐positive human breast cancer tissues. The patients were clearly divided into two groups in cluster analysis. Then, we examined the expression levels of two representative ERGs, histone deacetylase 6 (HDAC6) and insulin‐like growth factor binding protein 4 (IGFBP‐4), In 62 ER‐positive patients with immunohistochemistry to assess the impact of ERG expression on prognosis (median follow‐up 4409 days). Positive HDAC6 staining was significantly correlated with a lower disease‐free survival rate. Moreover, when the expression level of HDAC6 was assessed in combination with IGFBP‐4 expression in the nucleus, the poor‐prognosis patients were more accurately identified. This study has identified new candidate ERGs for prediction of prognosis, and we suggest that combined assessment of the expression levels of these ERGs will contribute to the clinically useful stratification of ER‐positive breast cancer patients.


Abbreviations:

ER

estrogen receptor

ERG

estrogen‐regulated gene

EIA

enzyme immunoassay

H&E

hematoxylin & eosin

HDAC6

histone deacetylase 6

IGFBP‐4

insulin‐like growth factor binding protein 4

IGFBP‐5

insulin‐like growth factor binding protein 5

IHC

immunohistochemistry

LBA

ligand binding assay

NR

nuclear receptor

NRIP1

nuclear receptor interacting protein 1

PDZK1

PDZ‐domain containing 1

PgR

progesterone receptor

RbBP8

retinoblastoma binding protein 8

RT

reverse transcription

SELENBP1

selenium binding protein 1

TPD52L1

tumor protein D52‐like 1

References

  • 1. Baum M. A vision for the future Br J Cancer 2001; 85 (Suppl 2): 15–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2. Early Breast Cancer Trialists' Collaborative Group. Tamoxifen for early breast cancer: an overview of the randomized trials. Lancet 1998; 351: 1451–67. [PubMed] [Google Scholar]
  • 3. Ciocca DR, Elledge R. Molecular markers for predicting response to tamoxifen in breast cancer patients. Endocrine 2000; 13: 1–10. [DOI] [PubMed] [Google Scholar]
  • 4. Inoue A, Yoshida N, Omoto Y, Oguchi S, Yamori T, Kiyama R, Hayashi S. Development of cDNA microarray for expression profiling of estrogen‐responsive genes. J Mol Endocrinol 2002; 29: 175–92. [DOI] [PubMed] [Google Scholar]
  • 5. Hayashi S, Tanimoto K, Hajiro‐Nakanishi K, Tsuchiya E, Kurosumi M, Higashi Y, Imai K, Suga K, Nakachi K. Abnormal FHIT transcripts in human breast carcinomas: a clinicopathological and epidemiological analysis of 61 Japanese cases. Cancer Res 1997; 57: 1981–5. [PubMed] [Google Scholar]
  • 6. Dalton LW, Page DL, Dupont WD. Histologic grading of breast carcinoma. Cancer 1994; 73: 2765–70. [DOI] [PubMed] [Google Scholar]
  • 7. Chomczynski P, Sacchi N. Single‐step method of RNA isolation by acid guanidium thiocyanate‐phenol‐chloroform extraction. Anal Biochem 1987; 162: 156–9. [DOI] [PubMed] [Google Scholar]
  • 8. Kurosumi M, Suemasu K, Tabei T, Kuwashima Y, Takeo T, Kusawake T, Higashi Y. Relationship between grade of intraductal component of breast cancer within main tumor and extent of intraductal spread in surrounding tissue. Anticancer Res 1998; 18: 2869–74. [PubMed] [Google Scholar]
  • 9. Omoto Y, Kobayashi Y, Nishida K, Tsuchiya E, Eguchi H, Nakagawa K, Ishikawa Y, Yamori T, Iwase H, Fujii Y, Warner M, Gustafsson J‐Å, Hayashi S. Expression, function, and clinical implications of the estrogen receptor (3 in human lung cancers. Biochem. Biophys. Res. Comm.un 2001; 285: 340–7. [DOI] [PubMed] [Google Scholar]
  • 10. Eisen MB, Spellman FT, Brown PO, Botstein D. Cluster analysis and display of genome‐wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Grozinger CM, Hassig CA, Schreiber SL. Three proteins define a class of human histone deacetylases related to yeast Hdalp. Proc Natl Acad Sci USA 1999; 96: 4868–73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12. Verdel A, Khochbin S. Identification of a new family of higher eukaryotic histone deacetylases. J Biol Chem. 1999; 274: 2440–5. [DOI] [PubMed] [Google Scholar]
  • 13. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule‐associated deacetylase. Nature 2002; 417: 455–8. [DOI] [PubMed] [Google Scholar]
  • 14. van Poznak C, Tan L, Panageas KS, Arroyo CD, Hudis C, Norton L, Seidman AD. Assessment of molecular markers of clinical sensitivity to single‐agent taxane therapy for metastatic breast cancer. J Clin Oncol 2002; 9: 2319–26. [DOI] [PubMed] [Google Scholar]
  • 15. Maxwell P, van den Berg HW. Changes in the secretion of insulin‐like growth factor binding proteins‐2 and ‐4 associated with the development of tamoxifen resistance and estrogen independence in human breast cancer cell lines. Cancer Lett 1999; 139: 121–7. [DOI] [PubMed] [Google Scholar]
  • 16. Liu B, Lee HY, Weinzimer SA, Powell DR, Clifford JL, Kurie JM, Cohen P. Direct functional interactions between insulin‐like grouth factor‐binding protein‐3 and retinoid X receptor‐alpha regulate transcriptional signaling and apoptosis. J Biol Chem 2000; 275: 33607–13. [DOI] [PubMed] [Google Scholar]
  • 17. Amaar YG, Thompson GR, Linkhart TA, Chen ST, Baylink DJ, Mohan S. Insulin‐like growth factor‐binding protein 5 (IGFBP‐5) interacts with a four and a half LIM protein 2 (FHL2). J Biol Chem. 2002; 277: 12053–60. [DOI] [PubMed] [Google Scholar]
  • 18. Welcsh PL, Lee MK, Gonzalez‐Hernandez RM, Black DJ, Mahadevappa M, Swixher EM, Warrington JA, King M. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc Natl Acad Sci USA 2002; 99: 7560–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen‐Dale AL, Brown PO, Botstein D. Molecular portraits of human breast tumours. Nature 2000; 406: 747–52. [DOI] [PubMed] [Google Scholar]
  • 20. Martin KJ, Kritzman BM, Price LM, Koh B, Kwan C‐P, Zhang X, Mackay A, O'Hare MJ, Kaelin CM, Mutter GL, Pardee AB, Sager R. Linking gene expression patterns to therapeutic groups in breast cancer. Cancer Res 2000; 60: 2232–8. [PubMed] [Google Scholar]
  • 21. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen‐Dale AL. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–74. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Bertucci F, Houlgatte R, Benziane A, Granjeaud S, Adelaide J, Tagett R, Loriod B, Jacquemier J, Viens P, Jordan B, Birnbaum D, Nguyen C. Gene expression profiling of primary breast carcinomas using arrays of candidate genes. Hum. Mol Genet 2000; 9: 2981–91. [DOI] [PubMed] [Google Scholar]
  • 23. van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marlon MJ, Witteveen AT, Schreiber GJ, Kerkhoven RJ, Rovberts C, Linsley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–5. [DOI] [PubMed] [Google Scholar]
  • 24. West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA Jr, Marks JR, Nevins JR. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci USA 2001; 98: 11462–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, Ferno M, Peterson C, Meltzer PS. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 2001; 61: 5979–84. [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES