Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(5):436–441. doi: 10.1111/j.1349-7006.2004.tb03228.x

Genetic link between p53 and genes required for formation of the zonula adherens junction

Masamitsu Yamaguchi 1,, Fumiko Hirose 2, Yoshihiro H Inoue 3, Katsuhito Ohno 1,4, Hideki Yoshida 1,5, Yuko Hayashi 6, Peter Deak 7, Akio Matsukage 8
PMCID: PMC11158819  PMID: 15132772

Abstract

Ectopic expression of human p53 in Drosophila eye imaginal disc cells induces apoptosis and results in a rough eye phenotype in the adult flies. We have screened Drosophila stocks to identify mutations that enhance or suppress the p53‐induced rough eye phenotype. One of the dominant enhancers of the p53‐induced rough eye phenotype corresponds to a loss‐of‐function mutation of the crumbs gene, which is essential for the biogenesis of the zonula adherens junction and the establishment of apical polarity in epithelial cells. Enhancement of p53‐induced apoptosis in the eye imaginal discs by a half‐reduction of the crumbs gene dose was confirmed by a TUNEL method. Furthermore, mutations of genes for Shotgun (Drosophila E‐cadherin) and Armadillo (Drosophilaβ‐catenin), the two main components of the adherens junction, also strongly enhanced the p53‐induced rough eye phenotype. These results suggest that human p53 senses subtle abnormality at the adherens junction or in signals derived from the junction, and consequently induces apoptosis to remove abnormal cells from tissue. Thus p53 likely plays a role as a guardian of the tissue not only by sensing the damaged DNA, but also by sensing signals from the adherens junction.

References

  • 1. Almong N, Rotter V. Involvement of p53 in cell differentiation and development. Biochim Biophys Acta 1997; 1333: F1–27. [DOI] [PubMed] [Google Scholar]
  • 2. Levine A. p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–31. [DOI] [PubMed] [Google Scholar]
  • 3. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10: 1054–72. [DOI] [PubMed] [Google Scholar]
  • 4. Lane DP. Guardian of the genome. Nature 1992; 358: 15–6. [DOI] [PubMed] [Google Scholar]
  • 5. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991; 51: 6304–11. [PubMed] [Google Scholar]
  • 6. Kuerbiyz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild‐type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 1992; 89: 7491–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Maltzman W, Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 1984; 4: 1689–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Kastan MB, Zhan Q, El‐Deiry WS, Carrier F, Jacks T, Walsh WV, Plunket BS, Vogelstein B, Fornace AJ. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia‐telangiectasia. Cell 1992; 71: 587–97. [DOI] [PubMed] [Google Scholar]
  • 9. Livingston LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. Altered cell cycle arrest and gene amplification potential accompany loss of wildtype p53. Cell 1992; 70: 923–35. [DOI] [PubMed] [Google Scholar]
  • 10. Lee S, Elenbaas B, Levine A, Griffith J. p53 and its 14 kDa C‐terminal do‐main recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 1995; 81: 1013–20. [DOI] [PubMed] [Google Scholar]
  • 11. Sanchez Y, Elledge JS. Stopped for repairs. BioAssays 1995; 17: 545–8. [DOI] [PubMed] [Google Scholar]
  • 12. Tokino T, Nakamura Y. The role of p53‐target genes in human cancer. Crit Rev Oncol Hematol 2000; 33: 1–6. [DOI] [PubMed] [Google Scholar]
  • 13. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A et al. p73‐deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000; 404: 99–103. [DOI] [PubMed] [Google Scholar]
  • 14. Mills AA, Zheng B, Wang X‐J, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–13. [DOI] [PubMed] [Google Scholar]
  • 15. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Branson RT, Tabin C, Sharpe A, Caput D, Crum C et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714–8. [DOI] [PubMed] [Google Scholar]
  • 16. Brand AH, Perrimon N. Targeted gene expression as means of altering cell fates and generating dominant phenotypes. Development 1993; 118: 401–15. [DOI] [PubMed] [Google Scholar]
  • 17. Yamaguchi M, Hirose F, Inoue YH, Shiraki M, Hayashi Y, Nishi Y, Matsukage A. Ectopic expression of human p53 inhibits entry into S phase and induces apoptosis in the Drosophila eye imaginal disc. Oncogene 1999; 18: 6767–75. [DOI] [PubMed] [Google Scholar]
  • 18. Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S, Whittaker W, Demsky M, Fisher WW, Buchman A et al. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 2000; 101: 91–101. [DOI] [PubMed] [Google Scholar]
  • 19. Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM. Drosophila p53 binds a damage response element at the reaper locus. Cell 2000; 101: 103–13. [DOI] [PubMed] [Google Scholar]
  • 20. Tepass U, Theres C, Knust E. crumbs encodes an EGF‐like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 1990; 61: 787–99. [DOI] [PubMed] [Google Scholar]
  • 21. Wodarz A, Hinz U, Engelbert M, Knust E. Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 1995; 82: 67–76. [DOI] [PubMed] [Google Scholar]
  • 22. Tepass U. Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev Biol 1996; 177: 217–25. [DOI] [PubMed] [Google Scholar]
  • 23. Grawe F, Wodarz A, Lee B, Knust E, Skaer H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development 1996; 122: 951–9. [DOI] [PubMed] [Google Scholar]
  • 24. Klebes A, Knust E. A conserved motif in Crumbs is required for E‐cadherin localization and zonula adherens formation in Drosophila. Curr Biol 2000; 10: 76–85. [DOI] [PubMed] [Google Scholar]
  • 25. Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993; 9: 317–21. [DOI] [PubMed] [Google Scholar]
  • 26. Rantsch B. Cadherins and catenins: interactions and functions in embryonic development. Curr Opin Cell Biol 1994; 6: 740–6. [DOI] [PubMed] [Google Scholar]
  • 27. Deak P, Omar MM, Saunders RD, Pal M, Komonyi O, Szidonya J, Maroy P, Zhang Y, Ashburner M, Benos P et al. P‐Element insertion alleles of essential genes on the third chromosome of Drosophila melanogaster: correlation of physical and cytogenetic maps in chromosomal region 86E‐87F. Genetics 1997; 147: 1697–722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. McGinnis W, Shermoen AW, Beckendorf SK. A transposable element inserted just 5′ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 1983; 34: 75–84. [DOI] [PubMed] [Google Scholar]
  • 29. Pirrotta V. Cloning Drosophila genes. In: Roberts DB, editor. Drosophila, a practical approach. Oxford : IRL Press; 1986. p. 83–110. [Google Scholar]
  • 30. Nicol CJ, Harrison ML, Laposa RR, Gimelshtein IL, Wells PG. A teratologic suppressor role for p53 in benzo[α]pyrene‐treated transgenic p53‐deficient mice. Nat Genet 1995; 10: 181–7. [DOI] [PubMed] [Google Scholar]
  • 31. Norimura T, Nomoto S, Katsuki M, Gondo Y, Kondo S. p53‐dependent apoptosis suppresses radiation‐induced teratogenesis. Nat Med 1996; 2: 577–80. [DOI] [PubMed] [Google Scholar]
  • 32. Garrod DR, Collins JE. Intracellular junctions and cell adhesion in epithelial cells. In: Fleming TP, editor. Epithelial organization and development. London : Chapman and Hall; 1992. p. 1–52. [Google Scholar]
  • 33. Chen S, Guttridge DC, You Z, Zhang Z, Fribly A, Mayo MW, Kitajewski J, Wang CY. Wnt‐1 signaling inhibits apoptosis by activating b‐catenin/T cell factor‐mediated transcription. J Cell Biol 2001; 152: 87–96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. den Hollander AI, ten Brink JB, de Kok YJM, van Soest S, van den Born LI, van Driel MA, van de Pol DJR et al. Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 1999; 23: 217–21. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES