Abstract
An anthelminthic, pyrvinium pamoate (PP), 6‐(dimethylamino)‐2‐[2‐(2,5‐dimethyl‐1‐phenyl‐1H‐pyrrol‐3‐yl)ethenyl]‐1‐methyl‐quino‐linium pamoate salt, has been found to be extremely toxic to PANC‐1 cells in glucose‐free medium, but not to be toxic to the same cells cultured in ordinary medium, Dulbecco's modified Eagle's medium (DMEM). It showed the same preferential toxicity for various cancer cell lines during glucose starvation. When 0.1 μg/ml PP was added to the medium, spheroid growth of human colon cancer cell line WiDr was strongly inhibited to a diameter of 750 μm, and this finding is consistent with the concept of anti‐austerity. PP was also found to exert antitumor activity against human pancreatic cancer cell line PANC‐1 in nude mice and SCID mice when it was administered subcutaneously or orally. Regarding the mechanism of PP action, inhibition of Akt phosphoryla‐tion, which has been found to be essential for the austerity mechanism, was observed in vitro and in vivo. These findings indicate that PP may be useful for anticancer therapy and that anti‐austerity therapy could be a novel strategy for anticancer therapy.
References
- 1. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993; 9: 138–41. [DOI] [PubMed] [Google Scholar]
- 2. Weinberg RA. The molecular basis of carcinogenesis: understanding the cell cycle clock. Cytokines Mol Ther 1996; 2: 105–10. [PubMed] [Google Scholar]
- 3. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–6. [DOI] [PubMed] [Google Scholar]
- 4. Folkman J. Looking for a good endothelial address. Cancer Cell 2002; 1: 113–5. [DOI] [PubMed] [Google Scholar]
- 5. Schirner M, Hoffmann J, Menrad A, Schneider MR. Antiangiogenic chemo‐therapeutic agents: characterization in comparison to their tumor growth inhibition in human renal cell carcinoma models. Clin Cancer Res 1998; 4: 1331–6. [PubMed] [Google Scholar]
- 6. Ikeda K, Saitoh S, Koida I, Tsubota A, Arase Y, Chayama K, Kumada H. Diagnosis and follow‐up of small hepatocellular carcinoma with selective in‐traarterial digital subtraction angiography. Hepatology 1993; 17: 1003–7. [PubMed] [Google Scholar]
- 7. Semenza GL, Agani F, Feldser D, Iyer N, Kotch L, Laughner E, Yu A. Hypoxia, HIF‐1, and the pathophysiology of common human diseases. Adv Exp Med Biol 2000; 475: 123–30. [DOI] [PubMed] [Google Scholar]
- 8. Semenza GL. Targeting HIF‐1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–32. [DOI] [PubMed] [Google Scholar]
- 9. Wang GL, Semenza GL. General involvement of hypoxia‐inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 1993; 90: 4304–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10. Sutherland RM. Tumor hypoxia and gene expression‐implications for malignant progression and therapy. Acta Oncol 1998; 37: 567–74. [DOI] [PubMed] [Google Scholar]
- 11. Vaupel P, Hockel M. Blood supply, oxygenation status and metabolic micro‐milieu of breast cancers: characterization and therapeutic relevance. Int J Oncol 2000; 17: 869–79. [DOI] [PubMed] [Google Scholar]
- 12. Hockel M, Vaupel P. Biological consequences of tumor hypoxia. Semin Oncol 2001; 28: 36–41. [PubMed] [Google Scholar]
- 13. Esumi H, Izuishi K, Kato K, Hashimoto K, Kurashima Y, Kishimoto A, Ogura T, Ozawa T. Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5′‐AMP‐activated protein kinase‐dependent manner. J Biol Chem 2002; 277: 32791–8. [DOI] [PubMed] [Google Scholar]
- 14. Izuishi K, Kato K, Ogura T, Kinoshita T, Esumi H. Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res 2000; 60: 6201–7. [PubMed] [Google Scholar]
- 15. Kato K, Ogura T, Kishimoto A, Minegishi Y, Nakajima N, Miyazaki M, Esumi H. Critical roles of AMP‐activated protein kinase in constitutive tolerance of cancer cells to nutrient deprivation and tumor formation. Oncogene 2002; 21: 6082–90. [DOI] [PubMed] [Google Scholar]
- 16. Abdullah A, Saif M, Abdel‐Fattah F. Pyrvinium pamoate in the treatment of enterobiasis. J Egypt Med Assoc 1965; 48: 396–8. [PubMed] [Google Scholar]
- 17. Prichard RK. Mode of action of the anthelminthic thiabendazole in Haemon‐chus contortus . Nature 1970; 228: 684–5. [DOI] [PubMed] [Google Scholar]
- 18. Sangster NC, Prichard RK. The contribution of a partial tricarboxylic acid cycle to volatile end‐products in thiabendazole‐resistant and susceptible Tri‐chostrongylus colubriformis . Mol Biochem Parasitol 1985; 14: 261–74. [DOI] [PubMed] [Google Scholar]
- 19. Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T, Lavin MF, Esumi H. Identification of a novel protein kinase mediating Akt survival signaling to the ATM protein. J Biol Chem 2003; 278: 48–53. [DOI] [PubMed] [Google Scholar]
- 20. Knighton D, Ausprunk D, Tapper D, Folkman J. Avascular and vascular phases of tumour growth in the chick embryo. Br J Cancer 1977; 35: 347–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Franko AJ, Chapman JD. Binding of 14C‐misonidazole to hypoxic cells in V79 spheroids. Br J Cancer 1982; 45: 694–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Smith TC, Kinkel AW, Gryczko CM, Goulet JR. Absorption of pyrvinium pamoate. Clin Pharmacol Ther 1976; 19: 802–6. [DOI] [PubMed] [Google Scholar]
- 23. Kunimoto S, Lu J, Esumi H, Yamazaki Y, Kinoshita N, Honma Y, Hamada M, Ohsono M, Ishizuka M, Takeuchi T. Kigamicins, novel antitumor antibiotics: I. taxonomy, isolation, physico‐chemical properties and biological activities. J Antibiot (Tokyo) 2003; 56: 1004–11. [DOI] [PubMed] [Google Scholar]
- 24. Kunimoto S, Someno T, Yamazaki Y, Lu J, Esumi H, Naganawa H. Kigamicins, novel antitumor antibiotics: II. structure determination. J Antibiot (Tokyo) 2003; 56: 1012–7. [DOI] [PubMed] [Google Scholar]
- 25. Lu J, Kunimoto S, Yamazaki Y, Kaminishi M, Esumi H. Kigamicin D A novel anticancer agent based on a new anti‐austerity strategy targeting cancer cell's tolerance to nutrient starvation. Cancer Sci 2004; 95: 547–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Suzuki A, Kusakai G, Kishimoto A, Lu J, Ogura T, Esumi H. ARK5 suppresses the cell death induced by nutrient starvation and death receptors via inhibition of caspase 8 activation, but not by chemotherapeutic agents or UV irradiation. Oncogene 2003; 22: 6177–82. [DOI] [PubMed] [Google Scholar]
- 27. Brugmans JP, Thienpont DC, van Wijngaarden I, Vanparijs OF, Schuermans VL, Lauwers HL. Mebendazole in enterobiasis. Radiochemical and pilot clinical study in 1,278 subjects. JAMA 1971; 217: 313–6. [PubMed] [Google Scholar]
- 28. Sheth UK. Mechanisms of anthelmintic action. Prog Drug Res 1975; 19: 147–57. [DOI] [PubMed] [Google Scholar]
- 29. Anya AO, Umezurike GM. Respiration and carbohydrate energy metabolism of the lung‐dwelling parasite Rhabdias bufonis (Nematoda: Rhabdiasoidea). Parasitology 1978; 76: 21–7. [DOI] [PubMed] [Google Scholar]
- 30. Kita K, Hirawake H, Miyadera H, Amino H, Takeo S. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium. falciparum . Biochim. Biophys Acta 2002; 1553: 123–39. [DOI] [PubMed] [Google Scholar]
- 31. Weinberg JM, Venkatachalam MA, Roeser NF, Saikumar P, Dong Z, Senter RA, Nissim I. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia‐induced mitochondrial injury. Am J Physiol Renal Physiol 2000; 279: F927–43. [DOI] [PMC free article] [PubMed] [Google Scholar]