Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(11):866–871. doi: 10.1111/j.1349-7006.2004.tb02195.x

Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage

Kiyotsugu Yoshida 1, Yoshio Miki 1,
PMCID: PMC11159131  PMID: 15546503

Abstract

BRCA1 (BReast‐CAncer susceptibility gene 1) and BRCA2 are tumor suppressor genes, the mutant phenotypes of which predispose to breast and ovarian cancers. Intensive research has shown that BRCA proteins are involved in a multitude of pivotal cellular processes. In particular, both genes contribute to DNA repair and transcriptional regulation in response to DNA damage. Recent studies suggest that BRCA proteins are required for maintenance of chromosomal stability, thereby protecting the genome from damage. New data also show that BRCAs transcriptionally regulate some genes involved in DNA repair, the cell cycle, and apo ptosis. Many of these functions are mediated by a large number of cellular proteins that interact with BRCAs. The functions of BRCA proteins are also linked to distinct and specific phosphory‐lation events; however, the extent to which phosphorylation‐acti‐vated molecular pathways contribute to tumor suppressor activity remains unclear. Finally, the reasons why mutations in BRCA genes lead to the development of breast and ovarian cancers are not clearly understood. Elucidation of the precise molecular functions of BRCAs is expected to improve our understanding of hereditary as well as sporadic mammary carcinogenesis.

References

  • 1. Rosen EM, Fan S, Pestell RG, Goldberg ID. BRCA1 gene in breast cancer. J Cell Physiol 2003; 196: 19–41. [DOI] [PubMed] [Google Scholar]
  • 2. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC. Linkage of early‐onset familial breast cancer to chromosome 17q21. Science 1990; 250: 1684–9. [DOI] [PubMed] [Google Scholar]
  • 3. Smith SA, Easton DF, Evans DG, Ponder BA. Allele losses in the region 17ql2–21 in familial breast and ovarian cancer involve the wild‐type chromosome. Nat Genet 1992; 2: 128–31. [DOI] [PubMed] [Google Scholar]
  • 4. Neuhausen SL, Marshall CJ. Loss of heterozygosity in familial tumors from three BRCAl‐linked kindreds. Cancer Res 1994; 54: 6069–72. [PubMed] [Google Scholar]
  • 5. Miki Y, Swensen J, Shattuck‐Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71. [DOI] [PubMed] [Google Scholar]
  • 6. Wooster R, Neuhausen SL, Mangion J, Quirk Y, Ford D, Collins N, Nguyen K, Seal S, Tran T, Averill D et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13ql2–13. Science 1994; 265: 2088–90. [DOI] [PubMed] [Google Scholar]
  • 7. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G. Identification of the breast cancer susceptibility gene BRCA2. Nature 1995; 378: 789–92. [DOI] [PubMed] [Google Scholar]
  • 8. Rahman N, Stratton MR. The genetics of breast cancer susceptibility. Annu Rev Genet 1998; 32: 95–121. [DOI] [PubMed] [Google Scholar]
  • 9. Futreal PA, Liu Q, Shattuck‐Eidens D, Cochran C, Harshman K, Tavtigian S, Bennett LM, Haugen‐Strano A, Swensen J, Miki Y et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 1994; 266: 120–2. [DOI] [PubMed] [Google Scholar]
  • 10. Lancaster JM, Wooster R, Mangion J, Phelan CM, Cochran C, Gumbs C, Seal S, Barfoot R, Collins N, Bignell G, Patel S, Hamoudi R, Larsson C, Wiseman RW, Berchuck A, Iglehart JD, Marks JR, Ashworth A, Stratton MR, Futreal PA. BRCA2 mutations in primary breast and ovarian cancers. Nat Genet 1996; 13: 238–40. [DOI] [PubMed] [Google Scholar]
  • 11. Scully R, Chen J, Ochs RL, Keegan K, Hoekstra M, Feunteun J, Livingston DM. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 1997; 90: 425–35. [DOI] [PubMed] [Google Scholar]
  • 12. Thomas JE, Smith M, Tonkinson JL, Rubinfeld B, Polakis P. Induction of phosphorylation on BRCA1 during the cell cycle and after DNA damage. Cell Growth Differ 1997; 8: 801–9. [PubMed] [Google Scholar]
  • 13. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM‐dependent phosphorylation of brcal in the DNA damage response to double‐strand breaks. Science 1999; 286: 1162–6. [DOI] [PubMed] [Google Scholar]
  • 14. Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, Khanna KK. Role for ATM in DNA damage‐induced phosphorylation of BRCAl. Cancer Res 2000; 60: 3299–304. [PubMed] [Google Scholar]
  • 15. Gatei M, Zhou BB, Hobson K, Scott S, Young D, Khanna KK. Ataxia te‐langiectasia mutated (ATM) kinase and ATM and Rad 3 related kinase mediate phosphorylation of Brcal at distinct and overlapping sites. In vivo assessment using phospho‐specific antibodies. J Biol Chem 2001; 276: 17276–80. [DOI] [PubMed] [Google Scholar]
  • 16. Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR, Zhang X, Annan RS, Lu Q, Faucette LF, Scott GF, Li X, Carr SA, Johnson RK, Winkler JD, Zhou BB. Mammalian Chk2 is a downstream effector of the ATM‐dependent DNA damage checkpoint pathway. Oncogene 1999; 18: 4047–54. [DOI] [PubMed] [Google Scholar]
  • 17. Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA. Heterozygous germ line hCHK2 mutations in Li‐Fraumeni syndrome. Science 1999; 286: 2528–31. [DOI] [PubMed] [Google Scholar]
  • 18. Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM. Association of BRCA1 with Rad5l in mitotic and meiotic cells. Cell 1997; 88: 265–75. [DOI] [PubMed] [Google Scholar]
  • 19. Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, Scully R. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 1998; 2: 317–28. [DOI] [PubMed] [Google Scholar]
  • 20. Shinohara A, Ogawa H, Ogawa T. Rad5l protein involved in repair and recombination in S. cerevisiae is a RecA‐like protein. Cell 1992; 69: 457–70. [DOI] [PubMed] [Google Scholar]
  • 21. Sung P. Catalysis of ATP‐dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 1994; 265: 1241–3. [DOI] [PubMed] [Google Scholar]
  • 22. Baumann P, Benson FE, West SC. Human Rad51 protein promotes ATP‐dependent homologous pairing and strand transfer reactions in vitro . Cell 1996; 87: 757–66. [DOI] [PubMed] [Google Scholar]
  • 23. Scully R, Ganesan S, Vlasakova K, Chen J, Socolovsky M, Livingston DM. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol Cell 1999; 4: 1093–9. [DOI] [PubMed] [Google Scholar]
  • 24. Moynahan ME, Cui TY, Jasin M. Homology‐directed DNA repair, mitomycin‐c resistance, and chromosome stability is restored with correction of a Brcal mutation. Cancer Res 2001; 61: 4842–50. [PubMed] [Google Scholar]
  • 25. Venkitaraman AR. Functions of BRCA1 and BRCA2 in the biological response to DNA damage. J Cell Sci 2001; 114: 3591–8. [DOI] [PubMed] [Google Scholar]
  • 26. Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH. Association of BRCA1 with the hRad50‐hMrell‐p95 complex and the DNA damage response. Science 1999; 285: 747–50. [DOI] [PubMed] [Google Scholar]
  • 27. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCAl‐associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000; 14: 927–39. [PMC free article] [PubMed] [Google Scholar]
  • 28. Wu X, Petrini JH, Heine WF, Weaver DT, Livingston DM, Chen J. Independence of R/M/N focus formation and the presence of intact BRCA1. Science 2000; 289: 11. [DOI] [PubMed] [Google Scholar]
  • 29. Haber JE. The many interfaces of Mrell. Cell 1998; 95: 583–6. [DOI] [PubMed] [Google Scholar]
  • 30. Paull TT, Cortez D, Bowers B, Elledge SJ, Gellert M. Direct DNA binding by Brcal. Proc Natl AcadSci USA 2001; 98: 6086–91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Moynahan ME, Chiu JW, Roller BH, Jasin M. Brcal controls homology‐di‐rected DNA repair. Mol Cell 1999; 4: 511–8. [DOI] [PubMed] [Google Scholar]
  • 32. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double‐stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998; 273: 5858–68. [DOI] [PubMed] [Google Scholar]
  • 33. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double‐strand breaks in vivo . J Cell Biol 1999; 146: 905–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Cuir Biol 2000; 10: 886–95. [DOI] [PubMed] [Google Scholar]
  • 35. Celeste A, Petersen S, Romanienko PJ, Fernandez‐Capetillo O, Chen HT, Sedelnikova OA, Reina‐San‐Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini‐Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A. Genomic instability in mice lacking histone H2AX. Science 2002; 296: 922–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36. Ye Q, Hu YF, Zhong H, Nye AC, Belmont AS, Li R. BRCAl‐induced large‐scale chromatin unfolding and allele‐specific effects of cancer‐predisposing mutations. J Cell Biol 2001; 155: 911–21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Foray N, Marot D, Randrianarison V, Venezia ND, Picard D, Perricaudet M, Favaudon V, Jeggo P. Constitutive association of BRCA1 and c‐Abl and its ATM‐dependent disruption after irradiation. Mol Cell Biol 2002; 22: 4020–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38. Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D. p73 is regulated by tyrosine kinase c‐Abl in the apoptotic response to DNA damage. Nature 1999; 399: 814–7. [DOI] [PubMed] [Google Scholar]
  • 39. Yoshida K, Komatsu K, Wang HG, Kufe D. c‐Abl tyrosine kinase regulates the human Rad9 checkpoint protein in response to DNA damage. Mol Cell Biol 2002; 22: 3292–300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40. Yu VP, Koehler M, Steinlein C, Schmid M, Hanakahi LA, van Gool AJ, West SC, Venkitaraman AR. Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inacti‐vation. Genes Dev 2000; 14: 1400–6. [PMC free article] [PubMed] [Google Scholar]
  • 41. Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology‐di‐rected repair of chromosomal breaks. Mol Cell 2001; 7: 263–72. [DOI] [PubMed] [Google Scholar]
  • 42. Davies AA, Masson JY, Mcllwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 2001; 7: 273–82. [DOI] [PubMed] [Google Scholar]
  • 43. Chapman MS, Verma IM. Transcriptional activation by BRCAl. Nature 1996; 382: 678–9. [DOI] [PubMed] [Google Scholar]
  • 44. Monteiro AN, August A, Hanafusa H. Evidence for a transcriptional activation function of BRCAl C‐terminal region. Proc Natl Acad Sci USA 1996; 93: 13595–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45. Scully R, Anderson SF, Chao DM, Wei W, Ye L, Young RA, Livingston DM, Parvin JD. BRCAl is a component of the RNA polymerase II holoenzyme. Proc Natl Acad Sci USA 1997; 94: 5605–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD. BRCAl protein is linked to the RNA polymerase II holoenzyme complex via RNA heli‐case A. Nat Genet 1998; 19: 254–6. [DOI] [PubMed] [Google Scholar]
  • 47. Chiba N, Parvin JD. The BRCAl and BARD1 association with the RNA polymerase II holoenzyme. Cancer Res 2002; 62: 4222–8. [PubMed] [Google Scholar]
  • 48. MacLachlan TK, Takimoto R, El‐Deiry WS. BRCAl directs a selective p53‐dependent transcriptional response towards growth arrest and DNA repair targets. Mol Cell Biol 2002; 22: 4280–92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Zhang H, Somasundaram K, Peng Y, Tian H, Bi D, Weber BL, El‐Deiry WS. BRCAl physically associates with p53 and stimulates its transcriptional activity. Oncogene 1998; 16: 1713–21. [DOI] [PubMed] [Google Scholar]
  • 50. Zheng L, Pan H, Li S, Flesken‐Nikitin A, Chen PL, Boyer TG, Lee WH. Sequence‐specific transcriptional corepressor function for BRCAl through a novel zinc finger protein, ZBRK1. Mol Cell 2000; 6: 757–68. [DOI] [PubMed] [Google Scholar]
  • 51. Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, Lee EY, Lee WH. Functional link of BRCAl and ataxia telangiectasia gene product in DNA damage response. Nature 2000; 406: 210–5. [DOI] [PubMed] [Google Scholar]
  • 52. Ouchi T, Lee SW, Ouchi M, Aaronson SA, Horvath CM. Collaboration of signal transducer and activator of transcription 1 (STAT1) and BRCAl in differential regulation of IFN‐gamma target genes. Proc Natl Acad Sci USA 2000; 97: 5208–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53. Hughes‐Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, Nielsen T, Schulzer M, Chia S, Ragaz J, Cahn A, Linger L, Ozdag H, Cattaneo E, Jordanova ES, Schuuring E, Yu DS, Venkitaraman A, Ponder B, Doherty A, Aparicio S, Bentley D, Theillet C, Ponting CP, Caldas C, Kouzarides T. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 2003; 115: 523–35. [DOI] [PubMed] [Google Scholar]
  • 54. Yarden RI, Pardo‐Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCAl regulates the G2/M checkpoint by activating Chkl kinase upon DNA damage. Nat Genet 2002; 30: 285–9. [DOI] [PubMed] [Google Scholar]
  • 55. Aprelikova O, Pace AJ, Fang B, Roller BH, Liu ET. BRCAl is a selective co‐activator of 14–3–3 sigma gene transcription in mouse embryonic stem cells. J Biol Chem 2001; 276: 25647–50. [DOI] [PubMed] [Google Scholar]
  • 56. Harkin DP, Bean JM, Miklos D, Song YH, Truong VB, Englert C, Christians FC, Ellisen LW, Maheswaran S, Oliner JD, Haber DA. Induction of GADD45 and JNK/SAPK‐dependent apoptosis following inducible expression of BRCAl. Cell 1999; 97: 575–86. [DOI] [PubMed] [Google Scholar]
  • 57. MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH, El‐Deiry WS. BRCAl effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem 2000; 275: 2777–85. [DOI] [PubMed] [Google Scholar]
  • 58. Somasundaram K, Zhang H, Zeng YX, Houvras Y, Peng Y, Wu GS, Licht JD, Weber BL, El‐Deiry WS. Arrest of the cell cycle by the tumour‐suppressor BRCAl requires the CDK‐inhibitor p21WAFl/CiPl. Nature 1997; 389: 187–90. [DOI] [PubMed] [Google Scholar]
  • 59. Williamson EA, Dadmanesh F, Koeffler HP. BRCAl transactivates the cy‐clin‐dependent kinase inhibitor p27(Kipl). Oncogene 2002; 21: 3199–206. [DOI] [PubMed] [Google Scholar]
  • 60. Marmorstein LY, Kinev AV, Chan GK, Bochar DA, Beniya H, Epstein JA, Yen TJ, Shiekhattar R. A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 2001; 104: 247–57. [DOI] [PubMed] [Google Scholar]
  • 61. Lee H, Trainer AH, Friedman LS, Thistlethwaite FC, Evans MJ, Ponder BA, Venkitaraman AR. Mitotic checkpoint inactivation fosters transformation in cells lacking the breast cancer susceptibility gene, Brca2. Mol Cell 1999; 4: 1–10. [DOI] [PubMed] [Google Scholar]
  • 62. Greenblatt MS, Chappuis PO, Bond JP, Hamel N, Foulkes WD. TP53 mutations in breast cancer associated with BRCAl or BRCA2 germ‐line mutations: distinctive spectrum and structural distribution. Cancer Res 2001; 61: 4092–7. [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES