Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(9):704–710. doi: 10.1111/j.1349-7006.2004.tb03249.x

Genetic and epigenetic factors involved in B‐cell lymphomagenesis

Masao Seto 1
PMCID: PMC11159410  PMID: 15471554

Abstract

Malignant lymphomas have been classified by the WHO into disease categories based not only on histological features, but also on cell surface markers, cytogenetic and clinical features. It is known that chromosome translocation plays an important role in lymphoma development, but it is not entirely clear yet why a given type of chromosome translocation is associated with a specific type of lymphoma. This review deals with molecular mechanisms of B‐cell lymphoma development in association with chromosome translocations. The outcome of chromosome translo‐cations can be categorized into three factors: enhancement of proliferation, inhibition of differentiation and anti‐apoptotic activity. It is well known that chromosome translocation by itself cannot cause cells to become malignant because it is only one of the growth advantages leading to malignancy, while additional genetic and epigenetic alterations are required for cells to become fully malignant. Mucosa‐associated lymphoid tissue (MALT) lymphomas of the stomach are unique in that a majority can be cured by Helicobacter pylori eradication, although 20 to 30% remain resistant. Others as well as we have demonstrated that the presence of the API2‐MALT1 chimeric gene correlates well with resistance to H. pylori eradication treatment. These characteristics have led to the speculation that the classification of MALT lymphoma falls somewhere between tumor and inflammation. Although MALT lymphoma seems to have unique features in comparison with other types of B‐cell lymphomas, it shares common molecular mechanisms with B‐cell lymphoma development.

E‐mail: mseto@aichi-cc.jp

References

  • 1. Liu YJ, Johnson GD, Gordon J, MacLennan IC. Germinal centres in T‐cell‐dependent antibody responses (Review). Immunol Today 1992; 13: 17–21. [DOI] [PubMed] [Google Scholar]
  • 2. Jaffe ES, Harris NL, Stein H, Vardiman JW. WHO classification: Tumors of hematopoietic and lymphoid tissues. Lyon : IARC Press; 2001. [Google Scholar]
  • 3. Graninger WB, Seto M, Boutain B, Goldman P, Korsmeyer SJ. Expression of Bcl‐2 and Bcl‐2‐Ig fusion transcripts in normal and neoplastic cells. J Clin Invest 1987; 80: 1512–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Seto M, Jaeger U, Hockett RD, Graninger W, Bennett S, Goldman P, Korsmeyer SJ. Alternative promoters and exons, somatic mutation and deregulation of the Bcl‐2‐Ig fusion gene in lymphoma. EMBO J 1988; 7: 123–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Onizuka T, Moriyama M, Yamochi T, Kuroda T, Kazama A, Kanazawa N, Sato K, Kato T, Ota H, Mori S. BCL‐6 gene product, a 92‐ to 98‐kD nuclear phosphoprotein, is highly expressed in germinal center B cells and their neoplastic counterparts. Blood 1995; 86: 28–37. [PubMed] [Google Scholar]
  • 6. Pezzella F, Tse AG, Cordell JL, Pulford KA, Gatter KC, Mason DY Expression of the bcl‐2 oncogene protein is not specific for the 14;18 chromosomal translocation. Am J Pathol 1990; 137: 225–32. [PMC free article] [PubMed] [Google Scholar]
  • 7. Hockenbery DM, Zutter M, Hickey W, Nahm M, Korsmeyer SJ. BCL2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci USA 1991; 88: 6961–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Bakhshi A, Wright JJ, Graninger W, Seto M, Owens J, Cossman J, Jensen JP, Goldman P, Korsmeyer SJ. Mechanism of the t(14;18) chromosomal translocation: structural analysis of both derivative 14 and 18 reciprocal partners. Proc Natl Acad Sci USA 1987; 84: 2396–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Tsujimoto Y, Yunis J, Onorato‐Showe L, Erikson J, Nowell PC, Croce CM. Molecular cloning of the chromosomal breakpoint of B‐cell lymphomas and leukemias with the t(ll;14) chromosome translocation. Science 1984; 224: 1403–6. [DOI] [PubMed] [Google Scholar]
  • 10. Harada S, Suzuki R, Uehira K, Yatabe Y, Kagami Y, Ogura M, Suzuki H, Oyama A, Kodera Y, Ueda R, Morishima Y, Nakamura S, Seto M. Molecular and immunological dissection of diffuse large B cell lymphoma: CD5+, and CDS with CD10+ groups may constitute clinically relevant subtypes. Leukemia 1999; 13: 1441–7. [DOI] [PubMed] [Google Scholar]
  • 11. Yamaguchi M, Seto M, Okamoto M, Ichinohasama R, Nakamura N, Yoshino T, Suzumiya J, Murase T, Miura I, Akasaka T, Tamaru J, Suzuki R, Kagami Y, Hirano M, Morishima Y, Ueda R, Shiku H, Nakamura S. De novo CD5+ diffuse large B‐cell lymphoma: a clinicopathologic study of 109 patients. Blood 2002; 99: 815–21. [DOI] [PubMed] [Google Scholar]
  • 12. Karnan S, Tagawa H, Suzuki R, Suguro M, Yamaguchi M, Okamoto M, Morishima Y, Nakamura S, Seto M. Analysis of chromosomal imbalances in de novo CD5‐positive diffuse large‐B‐cell lymphoma detected by comparative genomic hybridization. Genes Chromosom Cancer 2004; 39: 77–81. [DOI] [PubMed] [Google Scholar]
  • 13. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004; 116: 205–19. [DOI] [PubMed] [Google Scholar]
  • 14. Kagami Y, Jung J, Choi YS, Osumi K, Nakamura S, Morishima Y, Seto M. Establishment of a follicular lymphoma cell line (FLK‐1) dependent on folli‐cular dendritic cell‐like cell line HK. Leukemia 2001; 15: 148–56. [DOI] [PubMed] [Google Scholar]
  • 15. Dogan A, Du MQ, Aiello A, Diss TC, Ye HT, Pan LX, Isaacson PG. Follicular lymphomas contain a clonally linked but phenotypically distinct neoplastic B‐cell population in the interfollicular zone. Blood 1998; 91: 4708–14. [PubMed] [Google Scholar]
  • 16. Hosokawa Y, Maeda Y, Seto M. Target genes downregulated by the BCL‐6/ LAZ3 oncoprotein in mouse Ba/F3 cells. Biochem Biophys Res Commun 2001; 283: 563–8. [DOI] [PubMed] [Google Scholar]
  • 17. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM. BCL‐6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 2000; 13: 199–212. [DOI] [PubMed] [Google Scholar]
  • 18. Limpens J, Stad R, Vos C, de Vlaam C, de Jong D, van Ommen GJ, Schuuring E, Kluin PM. Lymphoma‐associated translocation t(14;18) in blood B cells of normal individuals. Blood 1995; 85: 2528–36. [PubMed] [Google Scholar]
  • 19. 1 Low frequency of BCL‐2/J(H) translocation in peripheral blood lymphocytes of healthy Japanese individuals. Blood 2001; 98: 486–8. [DOI] [PubMed] [Google Scholar]
  • 20. Kadin ME, Berard CW, Nanba K, Wakasa H. Lymphoproliferative diseases in Japan and Western countries: Proceedings of the United States‐Japan Seminar, September 6 and 7, 1982, in Seattle, Washington. Hum- Pathol 1983; 14: 745–72. [DOI] [PubMed] [Google Scholar]
  • 21. Isaacson P, Wright DH. Extranodal malignant lymphoma arising from mu‐cosa‐associated lymphoid tissue. Cancer 1984; 53: 2515–24. [DOI] [PubMed] [Google Scholar]
  • 22. Willis TG, Jadayel DM, Du MQ, Peng H, Perry AR, Abdul‐Rauf M, Price H, Karran L, Majekodunmi O, Wlodarska I, Pan L, Crook T, Hamoudi R, Isaacson PG, Dyer MJ. BcllO is involved in t(l;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 1999; 96: 35–45. [DOI] [PubMed] [Google Scholar]
  • 23. Sugiyama T, Asaka M, Nakamura T, Nakamura S, Yonezumi S, Seto M. API2‐MALT1 chimeric transcript is a predictive marker for the responsiveness of H. pylori eradication treatment in low‐grade gastric MALT lymphoma. Gastroenterology 2001; 120: 1884–5. [DOI] [PubMed] [Google Scholar]
  • 24. 1 Clinicopathologic comparison between the API2‐MALT1 chimeric transcript‐positive and ‐negative gastric low‐grade B‐cell lymphoma of mucosa‐associated lymphoid tissue type. Jpn J Cancer Res 2002; 93: 677–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25. Wotherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M, Isaacson PG. Regression of primary low‐grade B‐cell gastric lymphoma of mucosa‐associated lymphoid tissue type after eradication of Helicobacterpylori . Lancet 1993; 342: 575–7. [DOI] [PubMed] [Google Scholar]
  • 26. Liu H, Ruskon‐Fourmestraux A, Lavergne‐Slove A, Ye H, Molina T, Bouhnik Y, Hamoudi RA, Diss TC, Dogan A, Megraud F, Rambaud JC, Du MQ, Isaacson PG. Resistance of t(ll;18) positive gastric mucosa‐associated lymphoid tissue lymphoma to Helicobacter pylori eradication therapy. Lancer 2001; 357: 39–40. [DOI] [PubMed] [Google Scholar]
  • 27. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV. The TNFR2‐TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 1995; 83: 1243–52. [DOI] [PubMed] [Google Scholar]
  • 28. Akagi T, Motegi M, Tamura A, Suzuki R, Hosokawa Y, Suzuki H, Ota H, Nakamura S, Morishima Y, Taniwaki M, Seto M. A novel gene, MALT1 at 18q21, is involved in t(ll;18)(q21;q21) found in low‐grade B‐cell lymphoma of mucosa‐associated lymphoid tissue. Oncogene 1999; 18: 5785–94. [DOI] [PubMed] [Google Scholar]
  • 29. Dierlamm J, Baens M, Wlodarska I, Stefanova‐Ouzounova M, Hernandez JM, Hossfeld DK, de Wolf‐Peeters C, Hagemeijer A, van den Berghe H, Marynen P. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(ll;18)(q21;q21) associated with mucosa‐associated lymphoid tissue lymphomas. Blood 1999; 93: 3601–9. [PubMed] [Google Scholar]
  • 30. Motegi M, Yonezumi M, Suzuki H, Suzuki R, Hosokawa Y, Hosaka S, Kodera Y, Morishima Y, Nakamura S, Seto M. API2‐MALT1 chimeric transcripts involved in mucosa‐associated lymphoid tissue type lymphoma predict heterogeneous products. Am. J Pathol 2000; 156: 807–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Lucas PC, Yonezumi M, Inohara N, McAllister‐Lucas LM, Abazeed ME, Chen FF, Yamaoka S, Seto M, Nunez G. BcllO and MALT1, independent targets of chromosomal translocation in malt lymphoma, cooperate in a novel NF‐kappa B signaling pathway. J Biol Chem 2001; 276: 19012–9. [DOI] [PubMed] [Google Scholar]
  • 32. Greiner A, Knorr C, Qin Y, Sebald W, Schimpl A, Banchereau J, Muller‐Hermelink HK. Low‐grade B cell lymphomas of mucosa‐associated lymphoid tissue (MALT‐type) require CD40‐mediated signaling and Th2‐type cytokines for in vitro growth and differentiation. Am J Pathol 1997; 150: 1583–93. [PMC free article] [PubMed] [Google Scholar]
  • 33. Izumiyama K, Nakagawa M, Yonezumi M, Kasugai Y, Suzuki R, Suzuki H, Tsuzuki S, Hosokawa Y, Asaka M, Seto M. Stability and subcellular localization of API2‐MALT1 chimeric protein involved in t(ll;18)(q21;q21) MALT lymphoma. Oncogene 2003; 22: 8085–92. [DOI] [PubMed] [Google Scholar]
  • 34. Hosokawa Y, Suzuki H, Suzuki Y, Takahashi R, Seto M. Antiapoptotic function of apoptosis inhibitor 2‐MALT1 fusion protein involved in t(ll;18)(q21;q21) mucosa‐associated lymphoid tissue lymphoma. Cancer Res 2004; 64: 3452–7. [DOI] [PubMed] [Google Scholar]
  • 35. Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA, Ling V, MacAulay C, Lam WL. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004; 36: 299–303. [DOI] [PubMed] [Google Scholar]
  • 36. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31‐q32 amplification in malignant lymphoma. Cancer Res 2004; 64: 3087–95. [DOI] [PubMed] [Google Scholar]
  • 37. Yoshida S, Kaneita Y, Aoki Y, Seto M, Mori S, Moriyama M. Identification of heterologous translocation partner genes fused to the BCL6 gene in diffuse large B‐cell lymphomas: 5′‐RACE and LA‐PCR analyses of biopsy samples. Oncogene 1999; 18: 7994–9. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES