Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;95(2):105–111. doi: 10.1111/j.1349-7006.2004.tb03189.x

Antitumor activity of sugar‐modified cytosine nucleosides

Akira Matsuda 1,, Takuma Sasaki 2,
PMCID: PMC11159627  PMID: 14965358

Abstract

Nucleoside analogues which show antimetabolic activity in cells have been successfully used in the treatment of various tumors. Nucleosides such as 1‐β‐D‐arabinofuranosylcytosine (araC), 6‐mercaptopurine, fludarabine and cladribine play an important role in the treatment of leukemias, while gemcitabine, 5‐fluorouracil and its prodrugs are used extensively in the treatment of many types of solid tumors. All of these compounds are metabolized similarly to endogenous nucleosides and nucleotides. Active metabolites interfere with the de novo synthesis of nucleosides and nucleotides or inhibit the DNA chain elongation after being incorporated into the DNA strand as terminators. Furthermore, nucleoside antimetabolites incorporated into the DNA strand induce strand‐breaks and finally cause apoptosis. Nucleoside antimetabolites target one or more specific enzyme(s). The mode of inhibitory action on the target enzyme is not always similar even among nucleoside antimetabolites which have the same nucleoside base, such as araC and gemcitabine. Although both nucleosides are phosphorylated by deoxycytidine kinase and are also good substrates of cytidine deaminase, only gemcitabine shows antitumor activity against solid tumors. This suggests that differences in the pharmacological activity of these nucleoside antimetabolites may reflect different modes of action on target molecules. The design, in vitro cytotoxicity, in vivo antitumor activity, metabolism and mechanism of action of sugar‐modified cytosine nucleosides, such as (2′S)‐2′‐deoxy‐2′‐C‐methylcytidine (SMDC), 1‐(2‐deoxy‐2‐methylene‐β‐D‐erythro‐pentofuranosyl)cytosine (DMDC), 1‐(2‐C‐cyano‐2‐deoxy‐1‐β‐D‐arabino‐pentofuranosyl)cytosine (CNDAC) and 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine (ECyd), developed by our groups, are discussed here.

References

  • 1. Montgomery JA, Ananthan S, Parker WB, Secrist JA III, Temple CG.. Antimetabolites. In: Foye WO, editor. Cancer chemotherapy agents. Series: ACS professional reference book. Washington DC : American Chemical Society; 1995. p. 47–110. [Google Scholar]
  • 2. Tsimberidou AM, Alvarado Y, Giles FJ. Evolving role of ribonucleoside reductase inhibitors in hematologic malignancies. Expert Rev Anticancer Ther 2002; 2: 437–48 and references cited therein. [DOI] [PubMed] [Google Scholar]
  • 3. Jacobs AD. Gemcitabine‐based therapy in pancreas cancer. Gemcitabinedocetaxel and other novel combinations. Cancer 2002; 95: 923–7 and references cited therein. [DOI] [PubMed] [Google Scholar]
  • 4. Matsuda A, Azuma A, Nakajima Y, Takenuki K, Dan A, Iino T, Yoshimura Y, Minakawa N, Tanaka M, Sasaki T. Design of new types of antitumor nucleosides: the synthesis and antitumor activity of 2‘‐deoxy‐(2’‐C‐substituted)cytidines. In: Chu CK, Baker DC, editors. Nucleosides and nucleotides as antitumor and antiviral agents. New York : Plenum Press; 1993. p. 1–22. [Google Scholar]
  • 5. Arner ES, Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995; 67: 155–86. [DOI] [PubMed] [Google Scholar]
  • 6. Eriksson S, Munch‐Petersen B, Johansson K, Eklund H. Structure and function of cellular deoxyribonucleoside kinases. Cell Mol Life Sci 2002; 59: 1327–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7. Johansson NG, Eriksson S. Structure‐activity relationships for phosphorylation of nucleoside analogs to monophosphates by nucleoside kinases. Acta Biochim Pol 1996; 43: 143–60. [PubMed] [Google Scholar]
  • 8. Obata T, Endo Y, Tanaka M, Uchida H, Matsuda A, Sasaki T. Deletion mutants of human deoxycytidine kinase mRNA in cells resistant to antitumor cytosine nucleosides. Jpn J Cancer Res 2001; 92: 793–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Maley F, Maley GF. A tale of two enzymes, deoxycytidylate deaminase and thymidylate synthase. Prog Nucleic Acid Res Mol Biol 1990; 39: 49–80. [DOI] [PubMed] [Google Scholar]
  • 10. Gmeiner WH. Antimetabolite incorporation into DNA: structural and thermodynamic basis for anticancer activity. Biopolymers 2002; 65: 180–9. [DOI] [PubMed] [Google Scholar]
  • 11. Hadfield AF, Sartorelli AC. The pharmacology of prodrugs of 5‐fluorouracil and 1‐β‐D‐arabinofuranosylcytosine. Adv Pharmacol Chemother 1984; 20: 21–67. [DOI] [PubMed] [Google Scholar]
  • 12. Lopez C, Watanabe KA, Fox JJ. 2′ ‐Fluoro‐5‐iodo‐aracytosine, a potent and selective anti‐herpesvirus agent. Antimicrob Agents Chemother 1980; 17: 803–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13. Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA, Todd GC, Grindey GB. Evaluation of the antitumor activity of gemcitabine (2‘,2’‐difluoro‐2‐deoxycytidine). Cancer Res 1990; 50: 4417–22. [PubMed] [Google Scholar]
  • 14. Plunkett W, Huang P, Searcy CE, Gandhi V. Gemcitabine: preclinical pharmacology and mechanisms of action. Semin Oncol 1996; 23: 3–15. [PubMed] [Google Scholar]
  • 15. Matsuda A, Takenuki K, Sasaki T, Ueda T. Radical deoxygenation of tert‐alcohols in 1‐(2‐C‐alkylpentofuranosyl)pyrimidines: synthesis of (2‘S)‐2’‐deoxy‐2 ‐C‐methylcytidine, an antileukemic nucleoside. J Med Chem 1991; 34: 234–9. [DOI] [PubMed] [Google Scholar]
  • 16. Uchida H, Morinaga H, Misaki T, Miyazaki T, Uwajima T, Obata T, Endo Y, Matsuda A, Sasaki T. A novel affinity chromatography method for the copurification of deoxycytidine kinase and cytidine deaminase. Nucleosides Nucleotides Nucleic Acids 2001; 20: 1647–54. [DOI] [PubMed] [Google Scholar]
  • 17. Agarwal RP, Mian AM. Thymidine and zidovudine metabolism in chronically zidovudine‐exposed cells in vitro. Biochem Pharmacol 1991; 42: 905–11. [DOI] [PubMed] [Google Scholar]
  • 18. Matsuda A, Takenuki K, Sasaki T, Ueda T. Synthesis of a new broad spectrum antineoplastic nucleoside, 2‘‐deoxy‐2’‐methylidenecytidine (DMDC) and its derivatives. J Med Chem 1991; 34: 812–9. [DOI] [PubMed] [Google Scholar]
  • 19. Ono T, Fujii A, Hosoya M, Okumoto T, Sakata S, Matsuda A, Sasaki T. Cell kill kinetics of an antineoplastic nucleoside, 1‐(2‐deoxy‐2‐methylene‐β‐D‐erythro‐pentofuranosyl)cytosine. Biochem Pharmacol 1996; 52: 1279–85. [DOI] [PubMed] [Google Scholar]
  • 20. Kanazawa J, Takahashi T, Akinaga S, Tamaoki T, Okabe M. The relationship between the antitumor activity and the ribonucleotide reductase inhibitory activity of (E)‐2‘‐deoxy‐2’‐(fluoromethylene)cytidine, MDL 101,731. Anticancer Drugs 1998; 9: 653–7. [DOI] [PubMed] [Google Scholar]
  • 21. Baker CH, Banzon J, Bollinger JM, Stubbe J, Samano V, Robins MJ, Lippert B, Jarvi E, Resvick R. 2‘‐Deoxy‐2’‐methylenecytidine and 2‘‐deoxy‐2’,2‘‐di‐fluorocytidine 5’‐diphosphates: potent mechanism‐based inhibitors of ribonucleotide reductase. J Med Chem 1991; 34: 1879–84. [DOI] [PubMed] [Google Scholar]
  • 22. Yamagami K, Fujii A, Arita M, Okumoto T, Sakata S, Matsuda A, Ueda T, Sasaki T. Antitumor activity of 2‘‐deoxy‐2’‐methylidenecytidine, a new 2′‐deoxycytidine derivative. Cancer Res 1991; 51: 2319–23. [PubMed] [Google Scholar]
  • 23. Eda H, Ura M, Ouchi KF, Tanaka Y, Miwa M, Ishitsuka H. The antiproliferative activity of DMDC is modulated by inhibition of cytidine deaminase. Cancer Res 1998; 58: 1165–9. [PubMed] [Google Scholar]
  • 24. Miwa M, Eda H, Ura M, Ouchi KF, Keith DD, Foley LH, Ishitsuka H. High susceptibility of human cancer xenografts with higher levels of cytidine deaminase to a 2‘‐deoxycytidine antimetabolite, 2’‐deoxy‐2′‐methylidenecy‐tidine. Clin Cancer Res 1998; 4: 493–7. [PubMed] [Google Scholar]
  • 25. Gemma A, Kudoh S, Fukuoka M, Kurita Y, Hasegawa K, Harada M, Mori K, Ariyoshi Y, Kurihara M, Furuse K, Horikoshi N, Kanamaru R, Fukuyama E, Yoneda S, Furue H, Taguchi T, Ota K, Wakui A, Tsukagoshi S, Niitani H. Phase I study on DMDC. Jpn Cancer Chemother 1996; 23: 1799–811(in Japanese). [PubMed] [Google Scholar]
  • 26. Masuda N, Matsui K, Yamamoto N, Nogami T, Nakagawa K, Negoro S, Takeda K, Takifuji N, Yamada M, Kudoh S, Okuda T, Nemoto S, Ogawa K, Myobudani H, Nihira S, Fukuoka M. Phase I trial of oral 2‘‐deoxy‐2’‐methylidenecytidine: on a daily 14‐day schedule. Clin Cancer Res 2000; 6: 2288–94. [PubMed] [Google Scholar]
  • 27. Brindley CJ, Morrison R, Gordon RJ, Devlin AJ, van der Gaast A, Verweij L, Funaki T. Clinical pharmacokinetics of 2‘‐deoxy‐2’‐methylidenecytidine (DMDC), a deoxycytidine analogue antineoplastic agent. Clin Pharmacokinet 2000; 38: 475–91. [DOI] [PubMed] [Google Scholar]
  • 28. Friberg LE, Brindley CJ, Karlsson MO, Devlin AJ. Models of schedule dependent haematological toxicity of 2‘‐deoxy‐2’‐methylidenecytidine (DMDC). EurJ Clin Pharmacol 2000; 56: 567–74. [DOI] [PubMed] [Google Scholar]
  • 29. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO. Model of chemotherapy‐induced myelosuppression with parameter consistency across drugs. J Clin Oncol 2002; 20: 4713–21. [DOI] [PubMed] [Google Scholar]
  • 30. Niitsu N, Ishii Y, Matsuda A, Honma Y. Induction of differentiation of acute promyelocytic leukemia cells by a cytidine deaminase‐resistant analogue of 1‐β‐D‐arabinofuranosylcytosine, 1‐(2‐deoxy‐2‐methylene‐β‐D‐erythro‐pento‐furanosyl)cytidine. Cancer Res 2001; 61: 178–85. [PubMed] [Google Scholar]
  • 31. Azuma A, Nakajima Y, Nishizono N, Minakawa N, Suzuki M, Hanaoka K, Kobayashi T, Tanaka M, Sasaki T, Matsuda A. 2‘‐C‐Cyano‐2’‐deoxy‐l‐β‐D‐arabinofuranosylcytosine and its derivatives: a new class of nucleoside with a broad antitumor spectrum. J Med Chem 1993; 36: 4183–9. [DOI] [PubMed] [Google Scholar]
  • 32. Azuma A, Hanaoka K, Kurihara A, Kobayashi T, Miyauchi S, Kamo N, Tanaka M, Sasaki T, Matsuda A. Chemical stability of a new antitumor nucleoside, 2‘‐C‐cyano‐2’‐deoxy‐l‐β‐D‐arabino‐pentofuranosylcytosine (CN‐DAC) in alkaline medium: formation of 2‘‐C‐cyano‐2’‐deoxy‐l‐β‐D‐ribo‐pentofuranosylcytosine (CNDC) and its antitumor activity. J Med Chem 1995; 38: 3391–7. [DOI] [PubMed] [Google Scholar]
  • 33. Matsuda A, Nakajima Y, Azuma A, Tanaka M, Sasaki T. 2‘‐C‐Cyano‐2’‐deoxy‐1‐β‐D‐arabinofuranosylcytosine (CNDAC): design of a potential mechanism‐based DNA‐strand breaking antineoplastic nucleoside. J Med Chem 1991; 34: 2917–9. [DOI] [PubMed] [Google Scholar]
  • 34. Matsuda A, Azuma A. 2‘‐C‐Cyano‐2’‐deoxy‐l‐β‐D‐arabinofuranosylcytosine (CNDAC): a mechanism‐based DNA‐strand‐breaking antitumor nucleoside. Nucleosides Nucleotides 1995; 14: 461–71. [Google Scholar]
  • 35. Tanaka M, Matsuda A, Terao T, Sasaki T. Antitumor activity of a novel nucleoside, 2‘‐C‐cyano‐2’‐deoxy‐l‐β‐D‐arabinofuranosylcytosine (CNDAC) against murine and human tumors. Cancer Lett 1992; 64: 67–74. [DOI] [PubMed] [Google Scholar]
  • 36. Uchida H, Chen YX, Morinaga H, Hayashi Y, Matsuda A, Obata T, Endo Y, Sasaki T. Isolation of deoxycytidine kinase from Ehrlich carcinoma cells by affinity chromatography based on a substrate analog, 2‘‐C‐cyano‐2’‐deoxy‐l‐β‐D‐arabinofranosyl‐N4‐palmitoylcytosine. Biol Pharm Bull 1999; 22: 83–6. [DOI] [PubMed] [Google Scholar]
  • 37. Hanaoka K, Suzuki M, Kobayashi T, Tanzawa F, Tanaka K, Shibayama T, Miura S, Ikeda T, Iwabuchi H, Nakagawa A, Mitsuhashi Y, Hisaoka M, Kaneko M, Tomida A, Wataya Y, Nomura T, Sasaki T, Matsuda A, Tsuruo T, Kurakata S. Antitumor activity and novel DNA‐self‐strand‐breaking mechanism of CNDAC (1‐(2‐C‐cyano‐2‐deoxy‐β‐D‐arabino‐pentofuranosyl)cytosine) and its N4‐palmitoyl derivative (CS‐682). Int J Cancer 1999; 82: 226–36. [DOI] [PubMed] [Google Scholar]
  • 38. Azuma A, Huang P, Matsuda A, Plunkett W. 2‘‐C‐Cyano‐2’‐deoxy‐l‐β‐D‐arabino‐pentofuranosylcytosine (CNDAC): a novel acting anticancer nucleoside analog that causes DNA strand‐breaks and G2 arrest. Mol Pharmacol 2001; 59: 725–31. [DOI] [PubMed] [Google Scholar]
  • 39. Azuma A, Huang P, Matsuda A, Plunkett W. Cellular pharmacokinetics and pharmacodynamics of the deoxycytidine analog 2‘‐C‐cyano‐2’‐deoxy‐l‐β‐D‐arabino‐pentofuranosylcytosine (CNDAC). Biochem Pharmacol 2001; 61: 1497–507. [DOI] [PubMed] [Google Scholar]
  • 40. Donehower RC, Dees EC, Bakek SD, Summerson L, Carducci MA, Izumi T, Kobayashi T. A phase I study of CS‐682, an oral antimetabolite, in patients with refractory solid tumors (Abstract). Proc Am Soc Clin Oncol 2000; 19: 196a. [Google Scholar]
  • 41. Azuma A, Matsuda A, Sasaki T, Fukushima T. 1‐(3‐C‐Ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine (ECyd, TAS‐106): antitumor effect and mechanism of action. Nucleosides Nucleotides Nucleic Acids 2001; 20: 609–19. [DOI] [PubMed] [Google Scholar]
  • 42. Hattori H, Tanaka M, Fukushima M, Sasaki T, Matsuda A. 1‐(3‐C‐Ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine (ECyd), 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)uracil (EUrd), and their nucleobase analogues as new potential multifunctional antitumor nucleosides with a broad spectrum of activity. J Med Chem 1996; 39: 5005–11. [DOI] [PubMed] [Google Scholar]
  • 43. Hattori H, Nozawa E, Iino T, Yoshimura Y, Shuto S, Shimamoto Y, Nomura M, Fukushima M, Tanaka M, Sasaki T, Matsuda A. The structural requirements of the sugar moiety for the antitumor activities of new nucleoside antimetabolites, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine and ‐uracil. J Med Chem 1998; 41: 2892–902. [DOI] [PubMed] [Google Scholar]
  • 44. Matsuda A, Fukushima M, Wataya Y, Sasaki T. A new antitumor nucleoside, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine (ECyd), is a potent inhibitor of RNA polymerase. Nucleosides Nucleotides 1999; 18: 811–4. [DOI] [PubMed] [Google Scholar]
  • 45. Tabata S, Tanaka M, Matsuda A, Fukushima M, Sasaki T. Antitumor effect of a novel multifunctional antitumor nucleoside, 3′‐ethynylcytidine, on human cancers. Oncol Rep 1996; 3: 1029–34. [DOI] [PubMed] [Google Scholar]
  • 46. Tabata S, Tanaka M, Endo Y, Obata T, Matsuda A, Sasaki T. Antitumor mechanisms of 3‘‐ethynyluridine and 3’‐ethynylcytidine as RNA synthesis inhibitors: development and characterization of 3′‐ethynyluridine‐resistant cells. Cancer Lett 1997; 116: 225–31. [DOI] [PubMed] [Google Scholar]
  • 47. Shimamoto Y, Fujioka A, Kazuno H, Murakami Y, Ohshimo H, Kato T, Matsuda A, Sasaki T, Fukushima M. Antitumor activity and pharmacokinetics of TAS‐106, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine. Jpn J Cancer Res 2001; 92: 343–51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Takatori S, Kanda H, Takenaka K, Wataya Y, Matsuda A, Fukushima M, Shimamoto Y, Tanaka M, Sasaki T. Antitumor mechanisms and metabolism of novel antitumor nucleoside analogues, 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine and 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)uracil. Cancer Chemother Pharmacol 1999; 44: 97–104. [DOI] [PubMed] [Google Scholar]
  • 49. Shimamoto Y, Kazuno H, Murakami Y, Azuma A, Koizumi K, Matsuda A, Sasaki T, Fukushima M. Cellular and biochemical mechanisms of the resistance of human cancer cells to a new anticancer ribo‐nucleoside, TAS‐106. Jpn J Cancer Res 2002; 93: 445–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Takatori S, Tsutsumi S, Hidaka M, Kanda H, Matsuda A, Fukushima M, Wataya Y. The characterization of cell death induced by 1‐(3‐C‐ethynyl‐β‐D‐ribo‐pentofuranosyl)cytosine (ECyd) in FM3A cells. Nucleosides Nucleotides 1998; 17: 1309–17. [DOI] [PubMed] [Google Scholar]
  • 51. Matsuda A, Hattori H, Tanaka M, Sasaki T. 1‐(3‐C‐Ethynyl‐β‐D‐ribo‐pentofuranosyl)uracil as a potential broad spectrum multifunctional antitumor nucleoside. Bioorg Med Chem Lett 1996; 6: 1887–92. [DOI] [PubMed] [Google Scholar]
  • 52. Koizumi K, Shimamoto Y, Azuma A, Wataya Y, Matsuda A, Sasaki T, Fukushima M. Cloning and expression of uridine/cytidine kinase cDNA from human fibrosarcoma cells. Int J Mol Med 2001; 8: 273–8. [PubMed] [Google Scholar]
  • 53. van Rompay AR, Norda A, Linden K, Johansson M, Krlsson A. Phosphorylation of uridine and cytidine nucleoside analogs by two human uridine‐cytidine kinases. Mol Pharmacol 2001; 59: 1181–6. [DOI] [PubMed] [Google Scholar]
  • 54. Shimamoto Y, Koizumi K, Okabe H, Kazuno H, Murakami Y, Nakagawa F, Matsuda A, Sasaki T, Fukushima M. Sensitivity of human cancer cells to the new anticancer ribo‐nucleoside TAS‐106 is correlated with expression of uridine‐cytidine kinase 2. Jpn J Cancer Res 2002; 93: 825–33. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES