Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 31;95(8):626–633. doi: 10.1111/j.1349-7006.2004.tb03320.x

ETS transcription factors: Possible targets for cancer therapy

Tsuneyuki Oikawa 1,
PMCID: PMC11159856  PMID: 15298723

Abstract

Ets family (ETS) transcription factors, characterized by an evolutionally conserved Ets domain, play important roles in cell development, cell differentiation, cell proliferation, apoptosis and tissue remodeling. Most of them are downstream nuclear targets of Ras‐MAP kinase signaling, and the deregulation of ETS genes results in the malignant transformation of cells. Several ETS genes are rearranged in human leukemia and Ewing tumors to produce chimeric oncoproteins. Furthermore, the aberrant expression of several ETS genes is often observed in various types of human malignant tumors. Considering that some ETS transcription factors are involved in malignant transformation and tumor progression, including invasion, metastasis and neo‐angiogenesis through the activation of cancer‐related genes, they could be potential molecular targets for selective cancer therapy.

References

  • 1. Bassuk AG, Leiden JM. The role of Ets transcription factors in the development and function of the mammalian immune system. Adv Immunol 1997; 64: 65–104. [DOI] [PubMed] [Google Scholar]
  • 2. Oikawa T, Yamada T. Molecular biology of the Ets family of transcription factors. Gene 2003; 303: 11–34. [DOI] [PubMed] [Google Scholar]
  • 3. Graves BJ, Petersen JM. Specificity within the ets family of transcription. Adv Cancer Res 1998; 75: 1–55. [DOI] [PubMed] [Google Scholar]
  • 4. Sharrocks AD. The Ets‐domain transcription factor family. Nat Rev Mol Cell Biol 2001; 2: 827–37. [DOI] [PubMed] [Google Scholar]
  • 5. Buchwalter G, Gross C, Wasylyk B. Ets ternary complex transcription factors. Gene 2004; 324: 1–14. [DOI] [PubMed] [Google Scholar]
  • 6. Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG. Transforming p21 ras mutants and c‐Ets‐2 activate the cyclin Dl promoter through distinguishable regions. J Biol Chem 1995; 270: 23589–97. [DOI] [PubMed] [Google Scholar]
  • 7. Lesault I, Quang CT, Frampton J, Ghysdael J. Direct regulation of BCL‐2 by FLI‐1 is involved in the survival of FLI‐1‐transformed erythroblasts. EMBO J 2002; 21: 694–703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8. Smith JL, Schaffner AE, Hofmeister JK, Hartman M, Wei G, Forsthoefel D, Hume DA, Ostrowski MC. ets‐2 is a target for an akt (protein kinase B)/Jun N‐terminal kinase signaling pathway in macrophages of motheaten‐viable mutant mice. Mol Cell Biol 2000; 20: 8026–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Scott GK, Chang CH, Erny KM, Xu F, Fredericks WJ, Rauscher FJ III, Thor AD, Benz CC. Ets regulation of the erbB2 promoter. Oncogene 2000; 19: 6490–502. [DOI] [PubMed] [Google Scholar]
  • 10. Hogdall EV, Christensen L, Kjaer SK, Blaakaer J, Bock JE, Glud E, Norgaard‐Pedersen B, Hogdall CK. Distribution of HER‐2 overexpression in ovarian carcinoma tissue and its prognostic value in patients with ovarian carcinoma: from the Danish MALOVA Ovarian Cancer Study. Cancer 2003; 98: 66–73. [DOI] [PubMed] [Google Scholar]
  • 11. Duda DG, Sunamura M, Letter LP, Furukawa T, Yokoyama T, Yatsuoka T, Abe T, Inoue H, Motoi F, Egawa S, Matsuno S, Horii A. Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene 2003; 22: 6857–64. [DOI] [PubMed] [Google Scholar]
  • 12. Welford SM, Hebert SP, Deneen B, Arvand A, Denny CT. DNA binding domain‐independent pathways are involved in EWS/FLIl‐mediated oncogenesis. J Biol Chem. 2001; 276: 41977–84. [DOI] [PubMed] [Google Scholar]
  • 13. Dauphinot L, De Oliveira C, Melot T, Sevenet N, Thomas V, Weissman BE, Delattre O. Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS‐FLI‐1 modulates p57KIP2 and c‐Myc expression. Oncogene 2001; 20: 3258–65. [DOI] [PubMed] [Google Scholar]
  • 14. Fukuma M, Okita H, Hata J, Umezawa A. Upregulation of Id2, an oncogenic helix‐loop‐helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma. Oncogene 2003; 22: 1–9. [DOI] [PubMed] [Google Scholar]
  • 15. Hahm KB, Cho K, Lee C, Im YH, Chang J, Choi SG, Sorensen PH, Thiel CJ, Kim SJ. Repression of the gene encoding the TGF‐β type II receptor is a major target of the EWS‐FLI1 oncoprotein. Nat Genet 1999; 23: 222–7. [DOI] [PubMed] [Google Scholar]
  • 16. Kondoh N, Yamada T, Kihara‐Negishi F, Yamamoto M, Oikawa T. Enhanced expression of the urokinase‐type plasminogen activator gene and reduced colony formation in soft agar by ectopic expression o PU.l in HT1080 human fibrosarcoma cells. Br J Cancer 1998; 78: 718–23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Yordy JS, Muise‐Helmericks RC. Signal transduction and the Ets family of transcription factors. Oncogene 2000; 19: 6503–13. [DOI] [PubMed] [Google Scholar]
  • 18. Crawford HC, Fingleton B, Gustavson MD, Kurpios N, Wagenaar R, Hassell JA, Matrisian LM. The PEA3 subfamily of Ets transcription factors synergizes with β‐catenin‐LEF‐l to activate matrilysin transcription in intestinal tumors. Mol Cell Biol 2001; 21: 1370–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Agrawal D, Chen T, Irby R, Quackenbush J, Chambers AF, Szabo M, Cantor A, Coppola D, Yeatman TJ. Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 2002; 94: 513–21. [DOI] [PubMed] [Google Scholar]
  • 20. Kita D, Takino T, Nakada M, Takahashi T, Yamashita J, Sato H. Expression of dominant‐negative form of Ets‐1 suppresses fibronectin‐stimulated cell adhesion and migration through down‐regulation of integrin α5 expression in U251 glioma cell line. Cancer Res 2001; 61: 7985–91. [PubMed] [Google Scholar]
  • 21. Gottgens B, Nastos A, Kinston S, Piltz S, Delabesse EC, Stanley M, Sanchez MJ, Ciau‐Uitz A, Patient R, Green AR. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J 2002; 21: 3039–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Semenza GL. Targeting HIF‐1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–32. [DOI] [PubMed] [Google Scholar]
  • 23. Span PN, Manders P, Heuvel JJ, Thomas CM, Bosch RR, Beex LV, Sweep CG. Expression of the transcription factor Ets‐1 is an independent prognostic marker for relapse‐free survival in breast cancer. Oncogene 2002; 21: 8506–9. [DOI] [PubMed] [Google Scholar]
  • 24. Yamamoto H, Kihara‐Negishi F, Yamada T, Suzuki M, Nakano T, Oikawa T. Interaction between the hematopoietic Ets transcription factor Spi‐B and the coactivator CREB‐binding protein associated with negative cross‐talk with c‐Myb. Cell Growth Differ 2002; 13: 69–75. [PubMed] [Google Scholar]
  • 25. Hu CJ, Rao S, Ramirez‐Bergeron DL, Garrett‐Sinha LA, Gerondakis S, Clark MR, Simon MC. PU.l/Spi‐B regulation of c‐rel is essential for mature B cell survival. Immunity 2001; 15: 545–55. [DOI] [PubMed] [Google Scholar]
  • 26. Oikawa T, Yamada T, Kihara‐Negishi F, Yamamoto H, Kondoh N, Hitomi Y, Hashimoto Y. The role of Ets family transcription factor PU.l in hematopoietic cell differentiation, proliferation and apoptosis. Cell Death Differ 1999; 6: 599–608. [DOI] [PubMed] [Google Scholar]
  • 27. Hitomi Y, Yamada T, Oikawa T. Extinction of expression of the PU.1/Sfpi‐l putative Oncogene encoding a B‐cell‐ and macrophage‐specific transcription factor in somatic cell hybrids. Cancer Res 1993; 53: 5759–65. [PubMed] [Google Scholar]
  • 28. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA. Targeted disruption of the PU.l gene results in multiple hematopoietic abnormalities. EMBO J 1996; 15: 5647–58. [PMC free article] [PubMed] [Google Scholar]
  • 29. Moreau‐Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, Briand P, Vainchenker W, Tavitian A. Spi‐1/PU.l transgenic mice develop multistep erythroleukemias. Mol Cell Biol 1996; 16: 2453–63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Yamada T, Kondoh N, Matsumoto M, Yoshida M, Maekawa A, Oikawa T. Overexpression of PU.l induces growth and differentiation inhibition and apoptotic cell death in murine erythroleukemia cells. Blood 1997; 89: 1383–93. [PubMed] [Google Scholar]
  • 31. Kihara‐Negishi F, Yamamoto H, Suzuki M, Yamada T, Sakurai T, Tamura T, Oikawa T. In vivo complex formation of PU.l with HDAC1 associated with PU. 1‐mediated transcriptional repression. Oncogene 2001; 20: 6039–47. [DOI] [PubMed] [Google Scholar]
  • 32. Suzuki M, Yamada T, Kihara‐Negishi F, Sakurai T, Oikawa T. Direct association between PU.l and MeCP2 that recruits mSin3A‐HDAC complex for PU.l‐mediated transcriptional repression. Oncogene 2003; 22: 8688–98. [DOI] [PubMed] [Google Scholar]
  • 33. Yamada T, Kihara‐Negishi F, Yamamoto H, Yamamoto M, Hashimoto Y, Oikawa T. Role of DNA binding activity of the GATA‐1 transcription factor in the apoptotic process induced by overexpression of PU.l in murine erythroleukemia cells. Exp Cell Res 1998; 245: 186–94. [DOI] [PubMed] [Google Scholar]
  • 34. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, Narravula S, Torbett BE, Orkin S, Tenen DG. PU.l inhibits GATA‐1 function and erythroid differentiation by blocking GATA‐1 DNA binding. Blood 2000; 96: 2641–8. [PubMed] [Google Scholar]
  • 35. Kihara‐Negishi F, Yamada T, Kubota Y, Kondoh N, Yamamoto H, Abe M, Shirai T, Hashimoto Y, Oikawa T. Down‐regulation of c‐myc and bcl‐2 gene expression in PU.l‐induced apoptosis in murine erythroleukemia cells. Int J Cancer 1998; 76: 523–30. [DOI] [PubMed] [Google Scholar]
  • 36. Yamada T, Suzuki M, Satoh H, Kihara‐Negishi F, Nakano H, Oikawa T. Effect of PU.l‐induced mouse calcium‐calmodulin‐dependent kinase I‐like kinase (CKLiK) on apoptosis of murine erythroleukemia cells. Exp Cell Res 2004; 294: 39–50. [DOI] [PubMed] [Google Scholar]
  • 37. Manabe N, Yamamoto H, Yamada T, Kihara‐Negishi F, Hashimoto Y, Mochizuki M, Oikawa T. Prevention of PU.l‐induced growth inhibition and apoptosis but not differentiation block in murine eyrthroleukemia cells by overexpression of CBP. Int J Oncol 2003; 22: 1345–50. [PubMed] [Google Scholar]
  • 38. Nerlov C, Graf T. PU.l induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev 1998; 12: 2403–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39. Yamada T, Abe M, Higashi T, Yamamoto H, Kihara‐Negishi F, Sakurai T, Shirai T, Oikawa T. Lineage switch induced by overexpression of Ets family transcription factor PU.l in murine erythroleukemia cells. Blood 2001; 97: 2300–7. [DOI] [PubMed] [Google Scholar]
  • 40. Yamamoto H, Kihara‐Negishi F, Yamada T, Hashimoto Y, Oikawa T. Physical and functional interactions between the transcription factor PU.l and the coactivator CBP. Oncogene 1999; 18: 1495–501. [DOI] [PubMed] [Google Scholar]
  • 41. Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD, Behre G, Hiddemann W, Ito Y, Tenen DG. Heterozygous PU.l mutations are associated with acute myeloid leukemia. Blood 2002; 100: 998–1007. [DOI] [PubMed] [Google Scholar]
  • 42. Vangala RK, Heiss‐Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG, Hiddemann W, Behre G. The myeloid master regulator transcription factor PU.l is inactivated by AML1‐ETO in t(8;21) myeloid leukemia. Blood 2003; 101: 270–7. [DOI] [PubMed] [Google Scholar]
  • 43. Tenen DG, Hromas R, Licht JD, Zhang D‐E. Transcription factors, normal myeloid development, and leukemia. Blood 1997; 90: 489–519. [PubMed] [Google Scholar]
  • 44. Sakurai T, Yamada T, Kihara‐Negishi F, Teramoto S, Sato Y, Izawa T, Oikawa T. Effect of overexpression of the Ets family transcription factor TEL on cell growth and differentiation of K562 cells. Int J Oncol 2003; 22: 1327–33. [PubMed] [Google Scholar]
  • 45. Waga K, Nakamura Y, Maki K, Arai H, Yamagata T, Sasaki K, Kurokawa M, Hirai H, Mitani K. Leukemia‐related transcription factor TEL accelerates differentiation of Friend erythroleukemia cells. Oncogene 2003; 22: 59–68. [DOI] [PubMed] [Google Scholar]
  • 46. Iijima Y, Ito T, Oikawa T, Eguchi M, Eguchi‐Ishimae M, Kamada N, Asano S, Sakaki Y, Sato Y. A new ETV6/TEL partner gene, ARC (ABL‐related gene or ABL2), identified in an AML‐M3 cell line with a t(l;12)(q25;p13) translocation. Blood 2000, 95: 2126–31. [PubMed] [Google Scholar]
  • 47. Golub TR, Barker GF, Stegmaier K, Gilliland DG. The TEL gene contributes to the pathogenesis of myeloid and lymphoid leukemias by diverse molecular genetic mechanisms. Curr Top Microbiol Immunol 1997; 220: 67–79. [DOI] [PubMed] [Google Scholar]
  • 48. Langer SJ, Bortner DM, Roussel MF, Sherr CJ, Ostrowski MC. Mitogenic signaling by colony‐stimulating factor 1 and ras is suppressed by the ets‐2 DNA‐binding domain and restored by myc overexpression. Mol Cell Biol 1992; 12: 5355–62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Pourtier‐Manzanedo A, Vercamer C, Van Belle E, Mattot V, Mouquet F, Vandenbunder B. Expression of an Ets‐1 dominant‐negative mutant perturbs normal and tumor angiogenesis in a mouse ear model. Oncogene 2003; 22: 1795–806. [DOI] [PubMed] [Google Scholar]
  • 50. Fenrick R, Wang L, Nip J, Amann JM, Rooney RJ, Walker‐Daniels J, Crawford HC, Hulboy DL, Kinch MS, Matrisian LM, Hiebert SW TEL, a putative tumor suppressor, modulates cell growth and cell morphology of ras‐transformed cells while repressing the transcription of stromelysin‐1. Mol Cell Biol 2000; 20: 5828–39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Irvin BJ, Wood LD, Wang L, Fenrick R, Sansam CG, Packham G, Kinch M, Yang E, Hiebert SW. TEL, a putative tumor suppressor, induces apoptosis and represses transcription of Bel‐XL. J Biol Chem 2003; 278: 46378–86. [DOI] [PubMed] [Google Scholar]
  • 52. Klappacher GW, Lunyak VV, Sykes DB, Sawka‐Verhelle D, Sage J, Brard G, Ngo SD, Gangadharan D, Jacks T, Kamps MP, Rose DW, Rosenfeld MG, Glass CK. An induced Ets represser complex regulates growth arrest during terminal macrophage differentiation. Cell 2002; 109: 169–80. [DOI] [PubMed] [Google Scholar]
  • 53. Li R, Pei H, Papas T. The p42 variant of ETS1 protein rescues defective Fas‐induced apoptosis in colon carcinoma cells. Proc Natl Acad Sci USA 1999; 96: 3876–81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Xing X, Wang SC, Xia W, Zou Y, Shao R, Kwong KY, Yu Z, Zhang S, Miller S, Huang L, Hung MC. The ets protein PEA3 suppresses HER‐2/neu overexpression and inhibits tumorigenesis. Nat Med 2000; 6: 189–95. [DOI] [PubMed] [Google Scholar]
  • 55. Agarwal N, Gewirtz AM. Oligonucleotide therapeutics for hematologic disorders. Biochim Biophys Acta 1999; 1489: 85–96. [DOI] [PubMed] [Google Scholar]
  • 56. Kitange G, Shibata S, Tokunaga Y, Yagi N, Yasunaga A, Kishikawa M, Naito S. Ets‐1 transcription factor‐mediated urokinase‐type plasminogen activator expression and invasion in glioma cells stimulated by serum and basic fibroblast growth factors. Lab Invest 1999; 79: 407–16. [PubMed] [Google Scholar]
  • 57. Song E, Lee SK, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 2003; 9: 347–51. [DOI] [PubMed] [Google Scholar]
  • 58. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M. Specific inhibition of bcr‐abl gene expression by small interfering RNA. Blood 2003; 101: 1566–9. [DOI] [PubMed] [Google Scholar]
  • 59. Heidenreich O, Krauter J, Riehle H, Hadwiger P, John M, Heil G, Vornlocher HP, Nordheim A. AML1 /MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)‐positive leukemic cells. Blood 2003; 101: 3157–63. [DOI] [PubMed] [Google Scholar]
  • 60. Yang G, Thompson JA, Fang B, Liu J. Silencing of H‐ras gene expression by retrovirus‐mediated siRNA decreases transformation efficiently and tumor growth in a model of human ovarian cancer. Oncogene 2003; 22: 5694–701. [DOI] [PubMed] [Google Scholar]
  • 61. Jiang M, Milner J. Bcl‐2 constitutively suppresses p53‐dependent apoptosis in colorectal cancer cells. Genes Dev 2003; 17: 832–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. von Bubnoff N, Veach DR, Miller WT, Li W, Sanger J, Peschel C, Bornmann WG, Clarkson B, Duyster J. Inhibition of wild‐type and mutant Bcr‐Abl by pyrido‐pyrimidine‐type small molecule kinase inhibitors. Cancer Res 2003; 63: 6395–404. [PubMed] [Google Scholar]
  • 63. Argiris A, Wang CX, Whalen SG, DiGiovanna MP. Synergistic interactions between Tamoxifen and Trastuzumab (Herceptin). Clin Cancer Res 2004; 10: 1409–20. [DOI] [PubMed] [Google Scholar]
  • 64. Yoshida M, Matsuyama A, Komatsu Y, Nishino N. From discovery to the coming generation of histone deacetylase inhibitors. Curr Med Chem 2003; 10: 2351–8. [DOI] [PubMed] [Google Scholar]
  • 65. Freemantle SJ, Spinella MJ, Dmitrovsky E. Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 2003; 22: 7305–15. [DOI] [PubMed] [Google Scholar]
  • 66. Oka Y, Udaka K, Tsuboi A, Elisseeva OA, Ogawa H, Aozasa K, Kishimoto T, Sugiyama H. Cancer immunotherapy targeting Wilms' tumor gene WT1 product. J Immunol 2000; 164: 1873–80. [DOI] [PubMed] [Google Scholar]
  • 67. Padua RA, Larghero J, Robin M, le Pogam C, Schlageter MH, Muszlak S, Fric J, West R, Rousselot P, Phan TH, Mudde L, Teisserenc H, Carpentier AF, Kogan S, Degos L, Pla M, Bishop JM, Stevenson F, Charron D, Chomienne C. PML‐RARA‐targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat Med 2003; 9: 1413–7. [DOI] [PubMed] [Google Scholar]
  • 68. Swisher SG, Roth JA, Nemunaitis J, Lawrence DD, Kemp BL, Carrasco CH, Connors DG, El‐Naggar AK, Fossella F, Glisson BS, Hong WK, Khuri FR, Kurie JM, Lee JJ, Lee JS, Mack M, Merritt JA, Nguyen DM, Nesbitt JC, Perez‐Soler R, Pisters KM, Putnam JB Jr, Richli WR, Savin M, Shrump DS, Shin DM, Shukin A, Walsh GL, Wait J, Weill D, Waugh MK. Adenovirus‐mediated p53 gene transfer in advanced non‐small‐cell lung cancer. J Natl Cancer Inst 1999; 91: 763–71. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES