Abstract
Clinically and biologically relevant animal models are indispensable to evaluate both the pathophysiology and strategies for diagnosis and treatment of multiple myeloma (MM). We examined the tumorigenicity of MM cell lines KMM‐1 and U‐266 in an in vivo cell proliferation model using NOD/SCID/γCnull (NOG) mice. Two cell lines were inoculated either subcutaneously (s.c.) in the post‐auricular region or intravenously (i.v.) in the tail of NOG mice. The KMM‐1 cell line produced a progressively growing large tumor with infiltration of the cells expressing human λ‐chain in various organs of all NOG mice, while the U‐266 cell line failed to do so. Tumor cells grown in NOG mice maintained the original histomorphology, as well as expression patterns of tumor markers human λ, Ig light chain and VEGF. Tumor progression in mice also correlated with elevation of serum human soluble IL‐6R and gp130. Tumor cells sustained a strong NF‐κB activity in vivo and induced NF‐κB components were indistinguishable from those in cells cultured in vitro. The rapid and efficient engraftment of the MM cell line in NOG mice suggests that this is a very useful animal model which could provide a novel system in which to clarify the mechanism of growth of cancer cells, as well as to develop new therapeutic regimens against MM.
References
- 1. Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21. [PMC free article] [PubMed] [Google Scholar]
- 2. Aguayo A, Estey E, Kantarjian H, Mansouri T, Gidel C, Keating M, Giles F, Estrov Z, Barlogie B, Albitar M. Cellullar vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood 1999; 94: 3717–21. [PubMed] [Google Scholar]
- 3. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–57. [DOI] [PubMed] [Google Scholar]
- 4. Bataille R, Manolagas SC, Berenson JR. Pathogenesis and management of bone lesions in multiple myeloma. Hematol Oncol Clin North Am 1997; 11: 349–361. [DOI] [PubMed] [Google Scholar]
- 5. Uneda S, Hata H, Matsuno F, Nagasaki A, Harada N, Mitsuya Y, Matsuzaki H, Mitsuya H. A nitric oxide synthase inhibitor, NG‐nitro‐L‐arginine methyl ester, exerts potent antiangiogenic effects on plasmacytoma in a newly established multiple myeloma severe combined immunodeficienct mouse model. Br J Haematol 2003; 120: 396–404. [DOI] [PubMed] [Google Scholar]
- 6. Dingli D, Timm M, Russell SJ, Witzig TE, Rajkumar SV. Promising preclinical activity of 2‐methoxyestradiol in multiple myeloma. Clin Cancer Res 2002; 8: 3948–54. [PubMed] [Google Scholar]
- 7. Miyakawa Y, Ohnishi Y, Tomisawa M, Monnai M, Kohmura K, Ueyama Y, Ito M, Ikeda Y, Kizaki M, Nakamura M. Establishment of a new model of human multiple myeloma using NOD/SCID/γcnull (NOG) mice. Biochem Biophys Res Common 2004; 313: 258–62. [DOI] [PubMed] [Google Scholar]
- 8. Yaccoby S, Barlogie B, Epstein J. Primary myeloma cells growing in SCID‐hu mice: a model for studying the biology and treatment of myeloma and its manifestations. Blood 1998; 92: 2908–13. [PubMed] [Google Scholar]
- 9. Yaccoby S, Epstein J. The proliferative potential of myeloma plasma cells manifest in the SCID‐hu host. Blood 1999; 94: 3576–82. [PubMed] [Google Scholar]
- 10. Reme T, Gueydon E, Jacquet C, Klein B, Brochier J. Growth and immortalization of human myeloma cells in immunodeficient severe combined immunodeficient mice: a preclinical model. Br J Haematol 2001; 114: 406–13. [DOI] [PubMed] [Google Scholar]
- 11. Quarmby S, Kumar S, Kumar P. Radiation‐induced normal tissue injury: role of adhesion molecules in leukocyte‐endothelial cell interactions. Int J Cancer 1999; 82: 385–95. [DOI] [PubMed] [Google Scholar]
- 12. Adam L, Crepin M, Lelong J, Spanakis E, Israel L. Selective interactions between mammary epithelial cells and fibroblasts in co‐culture. Int J Cancer 1994; 59: 262–8. [DOI] [PubMed] [Google Scholar]
- 13. Sawhney N, Garrahan N, Douglas‐Jones A, Williams ED. Epithelial stomal interaction in tumors. Cancer 1992; 70: 2115–20. [DOI] [PubMed] [Google Scholar]
- 14. van Roosendaal C, van Ooijen B, Klijn JG, Claassen L, Eggemont AM, Henzen‐Logmans SC, Foehens JA. Stromal influences on breast cancer cell growth. Br J Cancer 1992; 65: 77–81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Dewan MZ, Terashima K, Teruishi M, Hasegawa H, Ito M, Tanaka Y, Mori N, Sata T, Koyanagi Y, Maeda M, Kubuki Y, Okayama A, Fujji M, Yamamoto N. Rapid tumor formation of HTLV‐1‐infected cell lines in novel NOD‐SCID/γcnull mice: suppression by an inhibitor against NF‐κB. J Virol 2003; 77: 5286–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T. NOD/SCID/γcnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100: 3175–82. [DOI] [PubMed] [Google Scholar]
- 17. Jones SA, Novick D, Horiuchi S, Yamamoto N, Szalai A, Filler GM. C‐Reactive protein: a physiological activation of interleukin 6 receptor shedding. J Exp Med 1999; 189: 599–604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Ohtani K, Niomiya H, Hasegawa Y, Kobayashi T, Kojima H, Nagasawa T, Abe T. Clinical significance of elevated soluble interleukin‐6 receptor levels in the sera of patients with plasma cell dyscrasias. Br J Haematol 1995; 91: 116–20. [DOI] [PubMed] [Google Scholar]
- 19. Pulkki K, Pelliniemi T‐T, Rajamaki A, Tienhaara A, Laakso M, Lahtinen R. Soluble interleukin‐6 receptor as a prognostic factor in multiple myeloma. Br J Haematol 1995; 92: 370–4. [DOI] [PubMed] [Google Scholar]
- 20. Kyrtsonis M, Dedoussis G, Zervas C, Perifanis V, Baxevanis C, Stamatelon M, Maniatis A. Soluble interleukin‐6 receptor (sIL‐6R), a new prognostic factor in multiple myeloma. Br J Haematol 1996; 93: 398–400. [DOI] [PubMed] [Google Scholar]
- 21. Kyriakou D, Papadaki H, Eliopoulos AG, Foudoulakis A, Alexandrakis M, Eliopoulos GD. Serum soluble IL‐6 receptor concentrations correlate with stages of multiple myeloma defined by serum beta 2‐microglobulin and C‐reactive protein. Int J Haematol 1996; 66: 367–71. [DOI] [PubMed] [Google Scholar]
- 22. Rebouissiou C, Wijdenes J, Autissier P, Tarte K, Costes V, Liautard J, Rossi J‐F, Brochier J, Klein B. A gp130 interleukin‐6 transducer‐dependent SCID model of human multiple myeloma. Blood 1998; 91: 4727–37. [PubMed] [Google Scholar]
- 23. Landowski TH, Olashaw NE, Agrawal D, Dalton WS. Cell adhesion‐mediated drug resistance (CAM‐DR) is associated with activation of NF‐kappa B (BelB/p50) in myeloma cells. Oncogene 2003; 22: 2417–21. [DOI] [PubMed] [Google Scholar]
- 24. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dong L, Castro A, Palombella V, Adams J, Anderson KC. NF‐κB as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277: 16639–47. [DOI] [PubMed] [Google Scholar]
- 25. Feuer G, Stewart SA, Baird SM, Lee F, Feuer R, Chen ISY Potential role of natural killer cells in controlling tumorigenesis by human T‐cell leukemia viruses. J Virol 1994; 69: 1328–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Dorshkind K, Pollack SB, Bosma MJ, Phillips RA. Natural killer (NK) cells present in mice with severe combined immunodeficiency (scid). J Immunol 1985; 134: 3798–801. [PubMed] [Google Scholar]
- 27. Bukowshi JF, Warner JF, Dennert G, Welsh RM. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo . J Exp Med 1985; 161: 40–52. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Welsh RM. Regulation of virus infections by natural killer cells: a review. Nat Immun Cell Growth Regul 1986; 5: 169–99. [PubMed] [Google Scholar]
- 29. Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation‐friends or foe Immunity 2001; 14: 357–68. [DOI] [PubMed] [Google Scholar]