Abstract
Recombinant adenovirus is used as a competent vector in a wide spectrum of cancer gene therapies. Adenovirus infection depends on coxsackievirus and adenovirus receptor (CAR)‐mediated virus attachment to the cell surface. However, the expression levels of CAR and the efficiency of adenoviral gene transduction in musculoskeletal tumors have not been systematically investigated. To study the feasibility of gene therapy in musculoskeletal tumors, the expression levels of CAR and the antiproliferative effect of an adenovirally transduced wild‐type p53 tumor suppressor gene were examined in 15 distinct musculoskeletal tumor cell lines, 19 tumor tissue samples, and the corresponding pathologically unremarkable mesenchymal tissues. The expression levels of the CAR gene were significantly higher in six of seven osteosarcoma cell lines and two of five osteosarcoma tissue samples than in the other cell lines, musculoskeletal tumors, and mesenchymal tissues. CAR expression levels were closely correlated with adenoviral gene transduction efficiency and the antiproliferative effect of a transduced adenoviral p53 gene in the tested cell lines. In addition, an immunocytochemical study confirmed that transfected green fluorescent protein (GFP) borne by Ad‐CAG‐GFP was expressed at the cell surface of CAR‐positive cells. These results indicate that CAR expression is a critical determinant of transduction efficiency in adenovirus‐based gene therapy. Most osteosarcomas appeared to express high levels of CAR, and thus adenovirus‐mediated p53 gene therapy is likely to be suitable for the treatment of such tumors. (Cancer Sci 2003; 94: 70–75)
Abbreviations: CAR, coxsackievirus and adenovirus receptor; FBS, fetal bovine serum; CAG, cytomegalovirus‐enhancer, chicken β‐actin promoter, rabbit β‐globin polyA signal hybrid; GFP, green fluorescent protein; MOI, multiplicity of infection; CP, crossing points; G3PDH, glyceraldehyde‐3‐phosphate dehydrogenase; Ad‐CAG‐GFP, GFP‐expressing adenovirus vector; PBS, phosphate‐buffered saline. E‐mail: inskawa@med.niigata-u.ac.jp
References
- 1. Wang J, Bucana CD, Roth JA. Zhang WW Apoptosis induced in human osteosarcoma cells is one of the mechanisms for the cytocidal effect of Ad5CMV‐p53. Cancer Gene Ther 1995; 2: 9–17. [PubMed] [Google Scholar]
- 2. Endo K, Kuratate I, Watanabe M, Yoshida H, Teshima R, Osaki M, Ito H. Wild‐type p53 gene transduction in human cultured sarcomas: effect of CDDR Oncol Rep 2001; 8: 637–42. [DOI] [PubMed] [Google Scholar]
- 3. Bergelson JM. Receptors mediating adenovirus attachment and internalization. Biochem Phamacol 1999; 57: 975–9. [DOI] [PubMed] [Google Scholar]
- 4. Bergelson JM, Cunningham JA, Droguett G, Kurt‐Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW Isolation of a common receptor for Coxsackie B viruses and Adenoviruses 2 and 5. Science 1997; 275: 1320–3. [DOI] [PubMed] [Google Scholar]
- 5. Li D, Duan L, Freimuth P, O'Malley BW Jr. Variability of adenovirus receptor density influences gene transfer efficiency and therapeutic response in head and neck cancer. Clin Cancer Res 1999; 5: 4175–81. [PubMed] [Google Scholar]
- 6. Hemmi S, Geertsen R, Mezzacasa A, Peter I, Dummer R. The presence of human Coxsackievirus and adenovirus receptor is associated with efficient adenovirus‐mediated transgene expression in human melanoma cell cultures. Hum Gene Ther 1998; 9: 2363–73. [DOI] [PubMed] [Google Scholar]
- 7. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, Tseng CP, Wang Z, Hsieh JT. Loss of adenoviral receptor in human bladder cancer cells: a potential impact on the efficiency of gene therapy. Cancer Res 1999; 59: 325–30. [PubMed] [Google Scholar]
- 8. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS, Raben D, Curiel DT. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor‐independent gene transfer. Cancer Res 1998; 58: 5738–48. [PubMed] [Google Scholar]
- 9. Thoelen I, Magnusson C, Tagerud S, Polacek C, Lindberg M, Van Ranst M. Identification of alternative splice products encoded by the human coxsackie‐adenovirus receptor gene. Biochem Biophys Res Commun 2001; 287: 216–22. [DOI] [PubMed] [Google Scholar]
- 10. Hotta T, Motoyama T, Watanabe H. Three human osteosarcoma cell lines exhibiting different phenotypic expressions. Acta Pathol Jpn 1992; 42: 595–603. [DOI] [PubMed] [Google Scholar]
- 11. Imaizumi S, Motayama T, Ogose A, Hotta T, Takahashi HE. Characterization and chemosensitivity of two human malignant peripheral nerve sheath tumour cell lines derived from a patient with neurofibromatosis type 1. Virchows Arch 1998; 433: 435–41. [DOI] [PubMed] [Google Scholar]
- 12. Ogose A, Motoyama T, Hotta T, Watanabe H. In vitro differentiation and proliferation in a newly established human rhabdomyosarcoma cell lines. Virchows Arch 1995; 90: 6859–63. [DOI] [PubMed] [Google Scholar]
- 13. Åman P, Ron D, Mandahl N, Fioretos T, Heim S, Arheden K, Willen H, Rydholm A, Mitelman F. Rearrangement of the transcription factor gene CHOP in myxoid liposarcoma with t(12;16)(q13;p11). Genes Chromosom Cancer 1992; 5: 278–85. [DOI] [PubMed] [Google Scholar]
- 14. Sonobe H, Manabe Y, Furihata M, Iwata J, Oka T, Mizobuchi H, Yamamoto H, Kumano O, Abe S. Establishment and characterization of a new human synovial sarcoma cell line, HS‐SY‐II. Lab Invest 1992; 67: 498–505. [PubMed] [Google Scholar]
- 15. Kunisada T, Miyazaki M, Mihara K, Gao C, Kawai A, Inoue H, Namba H. A new human chondrosarcoma cell line (OUMS‐27) that maintains chondrocytic differentiation. Int J Cancer 1998; 77: 854–9. [DOI] [PubMed] [Google Scholar]
- 16. Tomko RP, Xu R, Philipson L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackievi‐ruses. Proc Natl Acad Sci USA 1997; 94: 3352–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M, Schoemaker R, Veghel R, Houtsmuller A, Schultheiss HP, Lamers J, Poller W. Expression of coxsackie adenovirus receptor and alphav‐integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 1999; 6: 1520–35. [DOI] [PubMed] [Google Scholar]
- 18. Chomczynski P, Sacchi N. Single‐step method of RNA isolation by acud guanidium thyocyanate‐phenol‐chloroform (AGPC) extraction. Anal Biochem 1987; 36: 245–54. [DOI] [PubMed] [Google Scholar]
- 19. Honda T, Saitoh H, Masuko M, Katagiri‐Abe T, Tominaga K, Kozakai I, Kobayashi K, Kumanishi T, Watanabe YG, Odani S, Kuwano R. The coxsackievirus‐adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res 2000; 77: 19–28. [DOI] [PubMed] [Google Scholar]
- 20. Miyake S, Makimura M, Kanegae Y, Harada S, Sato Y, Takamori K, Tokuda C, Saito I. Efficient generation of recombinant adenoviruses using adenovirus DNA‐terminal protein complex and a cosmid bearing the full‐length virus genome. Proc Natl Acad Sci USA 1996; 93: 1320–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Lan KH, Kanai F, Shiratori Y, Okabe S, Yoshida Y, Wakimoto H, Hamada H, Tanaka T, Ohashi M, Omata M. Tumor‐specific gene expression in carcino‐embryonic antigen‐producing gastric cancer cells using adenovirus vectors. Gastroenterology 1996; 111: 1241–51. [DOI] [PubMed] [Google Scholar]
- 22. Kanai F, Lan KH, Shiratori Y, Tanaka T, Ohashi M, Okudaira T, Yoshida Y, Wakimoto H, Hamada H, Wakabayashi H, Tamaoki T, Omata M. In vivo gene therapy for alpha‐fetoprotein‐producing hepatocellular carcinoma by adenovirus‐mediated transfer of cytosine deaminase gene. Cancer Res 1997; 57: 461–5. [PubMed] [Google Scholar]
- 23. Leopold PL, Ferris B, Grinberg I, Worgall S, Hackett NR, Crystal RG. Fluorescent virions: dynamic tracking of the pathway of adenoviral gene transfer vectors in living cells. Hum Gene Ther 1998; 9: 367–8. [DOI] [PubMed] [Google Scholar]
- 24. Andrianarivo AG, Robinson JA, Mann KG, Tracy RP. Growth on type I collagen promotes expression of the osteoblastic phenotype in human osteosarcoma MG‐63 cells. J Cell Physiol 1992; 153: 256–65. [DOI] [PubMed] [Google Scholar]
- 25. Bonewald LF, Kester MB, Schwartz Z, Swaun LD, Khare A, Johnson TL, Leach RJ, Boyan BD. Effects of combining transforming growth factor beta and 1,25‐dihydroxyvitamin D3 on differentiation of a human osteosarcoma (MG‐63). J Biol Chem 1992; 267: 8943–9. [PubMed] [Google Scholar]
- 26. Jimenez MJ, Balbin M, Lopez JM, Alvarez J, Komori T, Lopez‐Otin C. Collagenase 3 is a target of Cbfal, a transcription factor of the runt gene family involved in bone formation. Mol Cell Biol 1999; 19: 4431–42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Stewart K, Walsh S, Screen J, Jefferiss CM, Chainey J, Jordan GR, Beresford JN. Further characterization of cells expressing STRO‐1 in cultures of adult human bone marrow stromal cells. J Bone Miner Res 1999; 14: 1345–56. [DOI] [PubMed] [Google Scholar]
- 28. Olmsted EA, Blum JS, Rill D, Yotnda P, Gugala Z, Lindsey RW, Davis AR. Adenovirus‐mediated BMP2 expression in human bone marrow stromal cells. J Cell Biochem. 2001; 82: 11–21. [DOI] [PubMed] [Google Scholar]
- 29. Kasono K, Blackwell JL, Douglas JT, Dmitriev I, Strong TV, Reynolds P, Kropf DA, Carroll WR, Peters GE, Bucy RP, Curiel DT, Krasnykh V. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res 1999; 5: 2571–9. [PubMed] [Google Scholar]
- 30. Freimuth P. A human cell line selected for resistance to adenovirus infection has reduced levels of the virus receptor. J Virol 1996; 70: 4081–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Blackwell JL, Miller CR, Douglas JT, Li H, Reynolds PN, Carroll WR, Peters GE, Strong TV, Curiel DT. Retargeting to EGFR enhances adenovirus infection efficiency of squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1999; 125: 856–63. [DOI] [PubMed] [Google Scholar]
- 32. Koizumi N, Mizuguchi H, Hosono T, Ishii‐Watanabe A, Uchida E, Utoguchi N, Watanabe Y, Hayakawa T. Efficient gene transfer by fiber‐mutant adenoviral vectors containing RGD peptide. Biochim Biophys Acta 2001; 1568: 13–20. [DOI] [PubMed] [Google Scholar]
- 33. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A. Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Shayakhmetov DM, Lieber A. Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol 2000; 74: 10274–86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Lee CT, Seol JY, Park KH, Yoo CG, Kim YW, Ahn C, Song YW, Han SK, Han JS, Kim S, Lee JS, Shim YS. Differential effects of adenovirus‐p16 on bladder cancer cell lines can be overcome by the addition of butyrate. Clin Cancer Res 2001; 7: 210–4. [PubMed] [Google Scholar]
- 36. Leon RP, Hedlund T, Meech SJ, Li S, Schaack J, Hunger SP, Duke RC, DeGregori J. Adenoviral‐mediated gene transfer in lymphocytes. Proc Natl Acad Sci USA 1998; 95: 1359–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37. Asaoka K, Tada M, Sawamura Y, Ikeda J, Abe H. Dependence of efficient adenoviral gene delivery in malignant glioma cells on the expression levels of the Coxsackievirus and adenovirus receptor. J Neurosurg 2000; 92: 1002–8. [DOI] [PubMed] [Google Scholar]