Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(8):718–724. doi: 10.1111/j.1349-7006.2003.tb01508.x

A naturally occurring p73 mutation in a p73‐p53 double‐mutant lung cancer cell line encodes p73α protein with a dominant‐negative function

Huqun 1, Yoshiyuki Endo 1, Hong Xin 1, Mitsu Takahashi 1, Toshihiro Nukiwa 1, Koichi Hagiwara 2,
PMCID: PMC11160092  PMID: 12901798

Abstract

p73, a close homolog of p53 tumor suppressor, induces growth arrest and apoptosis. However, its role in cancers is controversial because of the rarity of p73 mutations, lack of tumors in p73‐knockout mice, and the presence of multiple isotypes, among which ΔN isotypes inhibit the function of TA isotypes. We analyzed three naturally occurring p73 mutants found in lung cancer cell lines, NCI‐H1155, DMS 92 and A427. NCI‐H1155 is a cell line that has a p73 mutation [p73(G264W)] in the DNA‐binding domain, as well as a p53 mutation [p53(R273H)], which is frequently found in human cancers and has a “gain‐of‐function” characteristic. p73α(G264W) not only lacks transactivation activity itself, but also suppressed the transactivation activity of the wild‐type p73α in a dose‐dependent manner, indicating that p73α(G264W) is a dominant‐negative mutant. p73α(G264W) failed to suppress colony formation. We tested two other mutations, p73(Del418) in DMS 92 and p73(Del603) in A427. Both mutants retained similar levels of transactivation activity and suppression of colony formation to those of wild‐type p73. The biological significance of these two mutations is unclear. In NCI‐H1155 cells the coexistence of mutations that abrogate the normal functions of p73 and p53 may indicate that each mutation confers an additive growth advantage upon the cells.

References

  • 1. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90: 809–19. [DOI] [PubMed] [Google Scholar]
  • 2. Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, Ikawa Y, Nimura Y, Nakagawara A, Obinata M, Ikawa S. Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med 1998; 4: 839–43. [DOI] [PubMed] [Google Scholar]
  • 3. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death‐inducing, and dominant‐negative activities. Mol Cell 1998; 2: 305–16. [DOI] [PubMed] [Google Scholar]
  • 4. Futreal PA, Kasprzyk A, Birney E, Mullikin JC, Wooster R, Stratton MR. Cancer and genomics. Nature 2001; 409: 850–2. [DOI] [PubMed] [Google Scholar]
  • 5. Jost CA, Marin MC, Kaelin WG Jr. p73 is a simian [correction of human] p53‐related protein that can induce apoptosis. Nature 1997; 389: 191–4. [DOI] [PubMed] [Google Scholar]
  • 6. Strano S, Rossi M, Fontemaggi G, Munarriz E, Soddu S, Sacchi A, Blandino G. From p63 to p53 across p73. FEBS Lett 2001; 490: 163–70. [DOI] [PubMed] [Google Scholar]
  • 7. Hagiwara K, McMenamin MG, Miura K, Harris CC. Mutational analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using intronic primers. Cancer Res 1999; 59: 4165–9. [PubMed] [Google Scholar]
  • 8. De Laurenzi V, Costanzo A, Barcaroli D, Terrinoni A, Falco M, Annicchiarico‐Petruzzelli M, Levrero M, Melino G. Two new p73 splice variants, gamma and delta, with different transcriptional activity. J Exp Med 1998; 188: 1763–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Tani M, Shimizu K, Kawahara C, Kohno T, Ishimoto O, Ikawa S, Yokota J. Mutation and expression of the p51 gene in human lung cancer. Neoplasia 1999; 1: 71–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10. Yang A, Walker N, Bronson R, Kaghad M. Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D. p73‐deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 2000; 404: 99–103. [DOI] [PubMed] [Google Scholar]
  • 11. Ishimoto O, Kawahara C, Enjo K, Obinata M, Nukiwa T, Ikawa S. Possible oncogenic potential of DeltaNp73: a newly identified isoform of human p73. Cancer Res 2002; 62: 636–41. [PubMed] [Google Scholar]
  • 12. Lee CW, La NB. Thangue promotor specificity and stability control of the p53‐related protein p73. Oncogene 1999; 18: 4171–81. [DOI] [PubMed] [Google Scholar]
  • 13. Agami R, Blandino G, Oren M, Shaul Y. Interaction of c‐Abl and p73alpha and their collaboration to induce apoptosis. Nature 1999; 399: 809–13. [DOI] [PubMed] [Google Scholar]
  • 14. Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG Jr, Levrero M, Wang JY. The tyrosine kinase c‐Abl regulates p73 in apoptotic response to cisplatin‐induced DNA damage. Nature 1999; 399: 806–9. [DOI] [PubMed] [Google Scholar]
  • 15. Yuan ZM, Shioya H, Ishiko T, Sun X, Gu J, Huang YY, Lu H, Kharbanda S, Weichselbaum R, Kufe D. p73 is regulated by tyrosine kinase c‐Abl in the apoptotic response to DNA damage. Nature 1999; 399: 814–7. [DOI] [PubMed] [Google Scholar]
  • 16. Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, Flores ER, Tsai KY, Jacks T, Vousden KH, Kaelin WG Jr. Role for the p53 homologue p73 in E2F‐1‐induced apoptosis. Nature 2000; 407: 645–8. [DOI] [PubMed] [Google Scholar]
  • 17. Lissy NA, Davis PK, Irwin M, Kaelin WG, Dowdy SF. A common E2F‐1 and p73 pathway mediates cell death induced by TCR activation. Nature 2000; 407: 642–5. [DOI] [PubMed] [Google Scholar]
  • 18. Stiewe T, Putzer BM. Role of the p53‐homologue p73 in E2F1‐induced apoptosis. Nat Genet 2000; 26: 464–9. [DOI] [PubMed] [Google Scholar]
  • 19. Mai M, Yokomizo A, Qian C, Yang P, Tindall DJ, Smith DI, Liu W. Activation of p73 silent allele in lung cancer. Cancer Res 1998; 58: 2347–9. [PubMed] [Google Scholar]
  • 20. Nimura Y, Mihara M, Ichimiya S, Sakiyama S, Seki N, Ohira M, Nomura N, Fujimori M, Adachi W, Amano J, He M, Ping YM, Nakagawara A. p73, a gene related to p53, is not mutated in esophageal carcinomas. Int J Cancer 1998; 78: 437–40. [DOI] [PubMed] [Google Scholar]
  • 21. Sunahara M, Ichimiya S, Nimura Y, Takada N, Sakiyama S, Sato Y, Todo S, Adachi W, Amano J, Nakagawara A. Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas. Int J Oncol 1998; 13: 319–23. [PubMed] [Google Scholar]
  • 22. Takahashi H, Ichimiya S, Nimura Y, Watanabe M, Furusato M, Wakui S, Yatani R, Aizawa S, Nakagawara A. Mutation, allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma. Cancer Res 1998; 58: 2076–7. [PubMed] [Google Scholar]
  • 23. Kovalev S, Marchenko N, Swendeman S, LaQuaglia M, Moll UM. Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ 1998; 9: 897–903. [PubMed] [Google Scholar]
  • 24. Chi SG, Chang SG, Lee SJ, Lee CH, Kim JI, Park JH. Elevated and biallelic expression of p73 is associated with progression of human bladder cancer. Cancer Res 1999; 59: 2791–3. [PubMed] [Google Scholar]
  • 25. Imyanitov EN, Birrell GW, Filippovich I, Sorokina N, Arnold J, Mould MA, Wright K, Walsh M, Mok SC, Lavin MF, Chenevix‐Trench G, Khanna KK. Frequent loss of heterozygosity at 1p36 in ovarian adenocarcinomas but the gene encoding p73 is unlikely to be the target. Oncogene 1999; 18: 4640–2. [DOI] [PubMed] [Google Scholar]
  • 26. Tannapfel A, Wasner M, Krause K, Geissler F, Katalinic A, Hauss J, Mossner J, Engeland K, Wittekind C. Expression of p73 and its relation to histopathology and prognosis in hepatocellular carcinoma. J Natl Cancer Inst 1999; 91: 1154–8. [DOI] [PubMed] [Google Scholar]
  • 27. Zaika AI, Kovalev S, Marchenko ND, Moll UM. Overexpression of the wild type p73 gene in breast cancer tissues and cell lines. Cancer Res 1999; 59: 3257–63. [PubMed] [Google Scholar]
  • 28. Kartasheva NN, Contente A. T., Lenz‐Stoppler C, Roth J, Dobbelstein M. p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene 2002; 21: 4715–27. [DOI] [PubMed] [Google Scholar]
  • 29. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T. p63 and p73 are required for p53‐dependent apoptosis in response to DNA damage. Nature 2002; 416: 560–4. [DOI] [PubMed] [Google Scholar]
  • 30. Yoshikawa H, Nagashima M, Khan MA, McMenamin MG, Hagiwara K, Harris CC. Mutational analysis of p73 and p53 in human cancer cell lines. Oncogene 1999; 18: 3415–21. [DOI] [PubMed] [Google Scholar]
  • 31. Zauberman A, Barak Y, Ragimov N, Levy N, Oren M. Sequence‐specific DNA binding by p53: identification of target sites and lack of binding to p53‐MDM2 complexes. EMBO J 1993; 12: 2799–808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. Ke SH, Madison EL. Rapid and efficient site‐directed mutagenesis by single‐tube ‘megaprimer’ PCR method. Nucleic Acids Res 1997; 25: 3371–2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33. Hollander MC, Alamo I, Jackman J, Wang MG, McBride OW, Fornace AJ Jr. Analysis of the mammalian gadd45 gene and its response to DNA damage. JBiol Chem 1993; 268: 24385–93. [PubMed] [Google Scholar]
  • 34. Alonso ME, Bello MJ, Gonzalez‐Gomez P, Lomas J, Arjona D, de Campos JM, Kusak ME, Sarasa JL, Isla A, Rey JA. Mutation analysis of the p73 gene in nonastrocytic brain tumours. Br J Cancer 2001; 85: 204–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35. El‐Naggar AK, Lai S, Clayman GL, Mims B, Lippman SM, Coombes M, Luna MA Lozano G. p73 gene alterations and expression in primary oral and laryngeal squamous carcinomas. Carcinogenesis 2001; 22: 729–35. [DOI] [PubMed] [Google Scholar]
  • 36. Han S, Semba S, Abe T, Makino N, Furukawa T, Fukushige S, Takahashi H, Sakurada A, Sato M, Shiiba K, Matsuno S, Nimura Y, Nakagawara A, Horii A. Infrequent somatic mutations of the p73 gene in various human cancers. EurJSurg Oncol 1999; 25: 194–8. [DOI] [PubMed] [Google Scholar]
  • 37. Lomas J, Bello MJ, Arjona D, Gonzalez‐Gomez P, Alonso ME, de Campos JM, Vaquero J, Ruiz‐Barnes P, Sarasa JL, Casartelli C, Rey JA. Analysis of p73 gene in meningiomas with deletion at 1p. Cancer Genet Cytogenet 2001; 129: 88–91. [DOI] [PubMed] [Google Scholar]
  • 38. Ichimiya S, Nimura Y, Kageyama H, Takada N, Sunahara M, Shishikura T, Nakamura Y, Sakiyama S, Seki N, Ohira M, Kaneko Y, McKeon F, Caput D, Nakagawara A. p73 at chromosome 1p36.3 is lost in advanced stage neuroblastoma but its mutation is infrequent. Oncogene 1999; 18: 1061–6. [DOI] [PubMed] [Google Scholar]
  • 39. Corn PG, Kuerbitz SJ, van Noesel MM, Esteller M, Compitello N, Baylin SB, Herman JG. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res 1999; 59: 3352–6. [PubMed] [Google Scholar]
  • 40. Kawano S, Miller CW, Gombart AF, Bartram CR, Matsuo Y, Asou H, Sakashita A, Said J, Tatsumi E, Koeffler HP. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 1999; 94: 1113–20. [PubMed] [Google Scholar]
  • 41. Knudson AGJ. Mutation and cancer: statistical study of retinoblastoma. Proc NatlAcadSci USA 1971; 68: 820–3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Hollstein M, Moeckel G, Hergenhahn M, Spiegelhalder B, Keil M, Werle‐Schneider G, Bartsch H, Brickmann J. On the origins of tumor mutations in cancer genes: insights from the p53 gene. Mut at Res 1998; 405: 145–54. [DOI] [PubMed] [Google Scholar]
  • 43. Brachmann RK, Vidal M, Boeke JD. Dominant‐negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci USA 1996; 93: 4091–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 2002; 19: 607–14. [DOI] [PubMed] [Google Scholar]
  • 45. van Oijen MG, Slootweg PJ. Gain‐of‐function mutations in the tumor suppressor gene p53. Clin Cancer Res 2000; 6: 2138–45. [PubMed] [Google Scholar]
  • 46. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M, Finlay C, Levine AJ. Gain of function mutations in p53. Nat Genet 1993; 4: 42–5. [DOI] [PubMed] [Google Scholar]
  • 47. Ludes‐Meyers JH, Subler MA, Shivakumar CV, Munoz RM, Jiang P, Bigger JE, Brown DR, Deb SP, Deb S. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol 1996; 16: 6009–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Kawamura M, Yamashita T, Segawa K, Kaneuchi M, Shindoh M, Fujinaga K. The 273rd codon mutants of p53 show growth modulation activities not correlated with p53‐specific transactivation activity. Oncogene 1996; 12: 2361–7. [PubMed] [Google Scholar]
  • 49. Frazier MW, He X, Wang J, Gu Z, Cleveland JL, Zambetti GP. Activation of c‐myc gene expression by tumor‐derived p53 mutant requires a discrete C‐terminal domain. Mol Cell Biol 1998; 18: 3735–43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Blandino G, Levine AJ, Oren M. Mutant p53 gain of function: differential effects of different p53 mutant on resistance of cultured cells to chemotherapy. Oncogene 1999; 18: 477–85. [DOI] [PubMed] [Google Scholar]
  • 51. Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP, Forrester K, Gerwin B, Serrano M, Beach DH, Harris CC. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci USA 1994; 91: 11045–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52. Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Casero RA Jr, Meltzer PS, Hahn SA, Kern SE. DPC4 gene in various tumor types. Cancer Res 1996; 56: 2527–30. [PubMed] [Google Scholar]
  • 53. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–67. [DOI] [PubMed] [Google Scholar]
  • 54. Takada N, Ozaki T, Ichimiya S, Todo S, Nakagawara A. Identification of a transactivation activity in the COOH‐terminal region of p73 which is impaired in the naturally occurring mutants found in human neuroblastomas. Cancer Res 1999; 59: 2810–4. [PubMed] [Google Scholar]
  • 55. Chi SW, Ayed A, Arrowsmith CH. Solution structure of a conserved C‐terminal domain of p73 with structural homology to the SAM domain. EMBO J 1999; 18: 4438–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Wang WK, Bycroft M, Foster NW, Buckle AM, Fersht AR, Chen YW. Structure of the C‐terminal sterile alpha‐motif (SAM) domain of human p73 alpha. Acta Crystallogr D Biol Crystallogr 2001; 57: 545–51. [DOI] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES