Skip to main content
Cancer Science logoLink to Cancer Science
. 2005 Aug 19;94(12):1029–1033. doi: 10.1111/j.1349-7006.2003.tb01396.x

The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors

Keigo Nishida 3, Toshio Hirano 1,2,3,
PMCID: PMC11160109  PMID: 14662016

Abstract

The Grb2‐associated binder (Gab) family adapter proteins are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a substrate for the protein tyrosine phosphatase Corkscrew. Gab proteins contain a pleckstrin homology (PH) domain and binding sites for SH2 and SH3 domains. A number of studies in multiple systems have implicated Gab in signaling via many different types of receptors, such as growth factor, cytokine, and antigen receptors, and via oncoproteins. Recent studies of Gab1 and Gab2 knockout mice have clearly indicated an important role for Gabs in vivo. Gab1‐deficient mice die as embryos with multiple defects in placental, heart, skin, and muscle development. Gab2‐deficient mice are viable, but have a defect in the mast cell lineages and in allergic reactions. Given the apparently central role played by Gab signaling via many receptors, delineating the precise mechanism(s) of Gab‐mediated signaling is critical to understanding how cytokines, growth factors, and oncoproteins mediate a variety of biological activities: cell growth, differentiation, survival and malignant transformation.

References

  • 1. Hunter T. Signaling‐2000 and beyond. Cell 2000; 100: 113–27. [DOI] [PubMed] [Google Scholar]
  • 2. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–25. [DOI] [PubMed] [Google Scholar]
  • 3. Pawson T, Gish GD. SH2 and SH3 domains: from structure to function. Cell 1992; 71: 359–62. [DOI] [PubMed] [Google Scholar]
  • 4. Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997; 278: 2075–80. [DOI] [PubMed] [Google Scholar]
  • 5. White MF. The IRS‐signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 1998; 182: 3–11. [PubMed] [Google Scholar]
  • 6. Yamanashi Y, Baltimore D. Identification of the Abl‐ and rasGAP‐associated 62 kDa protein as a docking protein, Dok. Cell 1997; 88: 205–11. [DOI] [PubMed] [Google Scholar]
  • 7. Kouhara H, Hadari YR, Spivak‐Kroizman T, Schilling J, Bar‐Sagi D, Lax I, Schlessinger J. A lipid‐anchored Grb2‐binding protein that links FGF‐receptor activation to the Ras/MAPK signaling pathway. Cell 1997; 89: 693–702. [DOI] [PubMed] [Google Scholar]
  • 8. Hibi M, Hirano T. Gab‐family adapter molecules in signal transduction of cytokine and growth factor receptors, and T and B cell antigen receptors. Leuk Lympkoma 2000; 37: 299–307. [DOI] [PubMed] [Google Scholar]
  • 9. Liu Y, Rohrschneider LR. The gift of Gab. FEBS Lett 2002; 515: 1–7. [DOI] [PubMed] [Google Scholar]
  • 10. Gu H, Neel BG. The ‘Gab’ in signal transduction. Trends Cell Biol 2003; 13: 122–30. [DOI] [PubMed] [Google Scholar]
  • 11. Pawson T, Raina M, Nash P. Interaction domains: from simple binding events to complex cellular behavior. FEBS Lett 2002; 513: 2–10. [DOI] [PubMed] [Google Scholar]
  • 12. Holgado‐Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ. A Grb2‐associated docking protein in EGF‐ and insulin‐receptor signalling. Nature 1996; 379: 560–4. [DOI] [PubMed] [Google Scholar]
  • 13. Gu H, Pratt JC, Burakoff SJ, Neel BG. Cloning of p97/Gab2, the major SHP2‐binding protein in hematopoietic cells, reveals a novel pathway for cytokine‐induced gene activation. Mol Cell 1998; 2: 729–40. [DOI] [PubMed] [Google Scholar]
  • 14. Nishida K, Yoshida Y, Itoh M, Fukada T, Ohtani T, Shirogane T, Atsumi T, Takahashi‐Tezuka M, Ishihara K, Hibi M, Hirano T. Gab‐family adapter proteins act downstream of cytokine and growth factor receptors and T‐ and B‐cell antigen receptors. Blood 1999; 93: 1809–16. [PubMed] [Google Scholar]
  • 15. Zhao C, Yu DH, Shen R, Feng GS. Gab2, a new pleckstrin homology domain‐containing adapter protein, acts to uncouple signaling from ERK kinase to Elk‐1. J Biol Chem 1999; 274: 19649–54. [DOI] [PubMed] [Google Scholar]
  • 16. Wolf I, Jenkins BJ, Liu Y, Seiffert M, Custodio JM, Young P, Rohrschneider LR. Gab3, a new DOS/Gab family member, facilitates macrophage differentiation. Mol Cell Biol 2002; 22: 231–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17. Burdon T, Stracey C, Chambers I, Nichols J, Smith A. Suppression of SHP‐2 and ERK signalling promotes self‐renewal of mouse embryonic stem cells. Dev Biol 1999; 210: 30–43. [DOI] [PubMed] [Google Scholar]
  • 18. Miyakawa Y, Rojnuckarin P, Habib T, Kaushansky K. Thrombopoietin induces phosphoinositol 3‐kinase activation through SHP2, Gab, and insulin receptor substrate proteins in BAF3 cells and primary murine megakaryocytes. J Biol Chem 2001; 276: 2494–502. [DOI] [PubMed] [Google Scholar]
  • 19. Raabe T, Riesgo‐Escovar J, Liu X, Bausenwein BS, Deak P, Maroy P, Hafen E. DOS, a novel pleckstrin homology domain‐containing protein required for signal transduction between sevenless and Ras1 in Drosophila . Cell 1996; 85: 911–20. [DOI] [PubMed] [Google Scholar]
  • 20. Herbst R, Carroll PM, Allard JD, Schilling J, Raabe T, Simon MA. Daughter of sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during sevenless signaling. Cell 1996; 85: 899–909. [DOI] [PubMed] [Google Scholar]
  • 21. Schutzman JL, Borland CZ, Newman JC, Robinson MK, Kokel M, Stern MJ. The Caenorhabditis elegans EGL‐15 signaling pathway implicates a DOS‐like multisubstrate adaptor protein in fibroblast growth factor signal transduction. Mol Cell Biol 2001; 21: 8104–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Abbeyquaye T, Riesgo‐Escovar J, Raabe T, Thackeray JR. Evolution of Gab family adaptor proteins. Gene 2003; 311: 43–50. [DOI] [PubMed] [Google Scholar]
  • 23. Takahashi‐Tezuka M, Yoshida Y, Fukada T, Ohtani T, Yamanaka Y, Nishida K, Nakajima K, Hibi M, Hirano T. Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen‐activated protein kinase. Mol Cell Biol 1998; 18: 4109–17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24. Rocchi S, Tartare‐Deckert S, Murdaca J, Holgado‐Madruga M, Wong AJ, Van Obberghen E. Determination of Gab1 (Grb2‐associated binder‐1) interaction with insulin receptor‐signaling molecules. Mol Endocrinol 1998; 12: 914–23. [DOI] [PubMed] [Google Scholar]
  • 25. Lehr S, Kotzka I, Herkner A, Sikmann A, Meyer HE, Krone W, MullerWieland D. Identification of major tyrosine phosphorylation sites in the human insulin receptor substrate Gab‐1 by insulin receptor kinase in vitro . Biochemistry 2000; 39: 10898–907. [DOI] [PubMed] [Google Scholar]
  • 26. Weidner KM, Di Cesare S, Sachs M, Brinkmann V, Behrens J, Birchmeier W. Interaction between Gab1 and the c‐Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 1996; 384: 173–6. [DOI] [PubMed] [Google Scholar]
  • 27. Bardelli A, Longati P, Gramaglia D, Stella MC, Comoglio PM. Gabl coupling to the HGF/Met receptor multifunctional docking site requires binding of Grb2 and correlates with the transforming potential. Oncogene 1997; 15: 3103–11. [DOI] [PubMed] [Google Scholar]
  • 28. Tulasne D, Paumelle R, Weidner KM, Vandenbunder B, Fafeur V. The multisubstrate docking site of the MET receptor is dispensable for MET‐mediated RAS signaling and cell scattering. Mol Biol Cell 1999; 10: 551–65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Maroun CR, Holgado‐Madruga M, Royal I, Naujokas MA, Fournier TM, Wong AJ, Park M. The Gab1 PH domain is required for localization of Gab1 at sites of cell‐cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 1999; 19: 1784–99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30. Niemann C, Brinkmann V, Spitzer E, Hartmann G, Sachs M, Naundorf H, Birchmeier W. Reconstitution of mammary gland development in vitro: requirement of c‐met and c‐erbB2 signaling for branching and alveolar morphogenesis. J Cell Biol 1998; 143: 533–45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Korhonen JM, Said FA, Wong AJ, Kaplan DR. Gab1 mediates neurite outgrowth, DNA synthesis, and survival in PC12 cells. J Biol Chem 1999; 274: 37307–14. [DOI] [PubMed] [Google Scholar]
  • 32. Rakhit S, Pyne S, Pyne NJ. The platelet‐derived growth factor receptor stimulation of p42/p44 mitogen‐activated protein kinase in airway smooth muscle involves a G‐ protein‐mediated tyrosine phosphorylation of Gab1. Mol Pharmacol 2000; 58: 413–20. [DOI] [PubMed] [Google Scholar]
  • 33. Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A. Signal characteristics of G protein‐transactivated EGF receptor. EMBO J 1997; 16: 7032–44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Cunnick JM, Dorsey JF, Munoz‐Antonia T, Mei L, Wu J. Requirement of SHP2 binding to Grb2‐associated binder‐1 for mitogen‐activated protein kinase activation in response to lysophosphatidic acid and epidermal growth factor. J Biol Chem 2000; 275: 13842–8. [DOI] [PubMed] [Google Scholar]
  • 35. Laffargue M, Raynal P, Yart A, Peres C, Wetzker R, Roche S, Payrastre B, Chap H. An epidermal growth factor receptor/Gab1 signaling pathway is required for activation of phosphoinositide 3‐kinase by lysophosphatidic acid. J Biol Chem 1999; 274: 32835–41. [DOI] [PubMed] [Google Scholar]
  • 36. Lecoq‐Lafon C, Verdier F, Fichelson S, Chretien S, Gisselbrecht S, Lacombe C, Mayeux P. Erythropoietin induces the tyrosine phosphorylation of GAB1 and its association with SHC, SHP2, SHIP, and phosphatidylinositol 3‐kinase. Blood 1999; 93: 2578–85. [PubMed] [Google Scholar]
  • 37. Kojima H, Shinagawa A, Shimizu S, Kanada H, Hibi M, Hirano T, Nagasawa T. Role of phosphatidylinositol‐3 kinase and its association with Gab1 in thrombopoietin‐mediated up‐regulation of platelet function. Exp Hematol 2001; 29: 616–22. [DOI] [PubMed] [Google Scholar]
  • 38. Pratt JC, Igras VE, Maeda H, Baksh S, Gelfand EW, Burakoff SJ, Neel BG, Gu H. Cutting edge: gab2 mediates an inhibitory phosphatidylinositol 3′‐ kinase pathway in T cell antigen receptor signaling. J Immunol 2000; 165: 4158–63. [DOI] [PubMed] [Google Scholar]
  • 39. Yamasaki S, Nishida K, Hibi M, Sakuma M, Shiina R, Takeuchi A, Ohnishi H, Hirano T, Saito T. Docking protein Gab2 is phosphorylated by ZAP‐70 and negatively regulates T cell receptor signaling by recruitment of inhibitory molecules. J Biol Chem 2001; 276: 45175–83. [DOI] [PubMed] [Google Scholar]
  • 40. Bone H, Welham MJ. Shc associates with the IL‐3 receptor beta subunit, SHIP and Gab2 following IL‐3 stimulation. Contribution of Shc PTB and SH2 domains. Cell Signal 2000; 12: 183–94. [DOI] [PubMed] [Google Scholar]
  • 41. Craddock BL, Hobbs J, Edmead CE, Welham MJ. Phosphoinositide 3‐kinase‐dependent regulation of interleukin‐3‐induced proliferation: involvement of mitogen‐activated protein kinases, SHP2 and Gab2. J Biol Chem 2001; 276: 24274–83. [DOI] [PubMed] [Google Scholar]
  • 42. Gadina M, Sudarshan C, Visconti R, Zhou YJ, Gu H, Neel BG, O'Shea JJ. The docking molecule gab2 is induced by lymphocyte activation and is involved in signaling by interleukin‐2 and interleukin‐15 but not other common gamma chain‐using cytokines. J Biol Chem 2000; 275: 26959–66. [DOI] [PubMed] [Google Scholar]
  • 43. Bouscary D, Lecoq‐Lafon C, Chretien S, Zompi S, Fichelson S, Muller O, Porteu F, Dusanter‐Fourt I, Gisselbrecht S, Mayeux P, Lacombe C. Role of Gab proteins in phosphatidylinositol 3‐kinase activation by thrombopoietin (Tpo). Oncogene 2001; 20: 2197–204. [DOI] [PubMed] [Google Scholar]
  • 44. Wickrema A, Uddin S, Sharma A, Chen F, Alsayed Y, Ahmad S, Sawyer ST, Krystal G, Yi T, Nishada K, Hibi M, Hirano T, Platanias LC. Engagement of Gab1 and Gab2 in erythropoietin signaling. J Biol Chem 1999; 274: 24469–74. [DOI] [PubMed] [Google Scholar]
  • 45. Boudot C, Kadri Z, Petitfrere E, Lambert E, Chretien S, Mayeux P, Haye B, Billat C. Phosphatidylinositol 3‐kinase regulates glycosylphosphatidylinositol hydrolysis through PLC‐gamma(2) activation in erythropoietin‐stimulated cells. Cell Signal 2002; 14: 869–78. [DOI] [PubMed] [Google Scholar]
  • 46. Liu Y, Jenkins B, Shin JL, Rohrschneider LR. Scaffolding protein Gab2 mediates differentiation signaling downstream of Fms receptor tyrosine kinase. Mol Cell Biol 2001; 21: 3047–56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47. Zhang S, Broxmeyer HE. Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp‐2, grb2, and PI3 kinase. Biochem Biophys Res Commun 2000; 277: 195–9. [DOI] [PubMed] [Google Scholar]
  • 48. Xie ZH, Ambudkar I, Siraganian RP. The adapter molecule Gab2 regulates Fc epsilon RI‐mediated signal transduction in mast cells. J Immunol 2002; 168: 4682–91. [DOI] [PubMed] [Google Scholar]
  • 49. Gu H, Saito K, Klaman LD, Shen J, Fleming T, Wang Y, Pratt JC, Lin G, Lim B, Kinet JP, Neel BG. Essential role for Gab2 in the allergic response. Nature 2001; 412: 186–90. [DOI] [PubMed] [Google Scholar]
  • 50. Gu H, Botelho RJ, Yu M, Grinstein S, Neel BG. Critical role for scaffolding adapter Gab2 in Fc{gamma}R‐mediated phagocytosis. J Cell Biol 2003; 161: 1151–61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51. Fixman ED, Holgado‐Madruga M, Nguyen L, Kamikura DM, Fournier TM, Wong AJ, Park M. Efficient cellular transformation by the Met oncoprotein requires a functional Grb2 binding site and correlates with phosphorylation of the Grb2‐associated proteins, Cb1 and Gab1. J Biol Chem 1997; 272: 20167–72. [DOI] [PubMed] [Google Scholar]
  • 52. Agazie Y, Ischenko I, Hayman M. Concomitant activation of the PI3K‐Akt and the Ras‐ERK signaling pathways is essential for transformation by the V‐SEA tyrosine kinase oncogene. Oncogene 2002; 21: 697–707. [DOI] [PubMed] [Google Scholar]
  • 53. Gu H, Griffin JD, Neel BG. Characterization of two SHP‐2‐associated binding proteins and potential substrates in hematopoietic cells. J Biol Chem 1997; 272: 16421–30. [DOI] [PubMed] [Google Scholar]
  • 54. Zhao C, Ma H, Bossy‐Wetzel E, Lipton S, Zhang Z, Feng GS. GC‐GAP, a Rho family GAP protein that interacts with signaling adapters Gab1 and Gab2. J Biol Chem 2003; 278: 34641–53. [DOI] [PubMed] [Google Scholar]
  • 55. Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T. Role of Gab1 in heart, placenta, and skin development and growth factor‐ and cytokine‐induced extracellular signal‐regulated kinase mitogen‐activated protein kinase activation. Mol Cell Biol 2000; 20: 3695–704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Sachs M, Brohmann H, Zechner D, Muller T, Hulsken J, Walther I, Schaeper U, Birchmeier C, Birchmeier W. Essential role of Gab1 for signaling by the c‐Met receptor in vivo . J Cell Biol 2000; 150: 1375–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Cai T, Nishida K, Hirano T, Khavari PA. Gab1 and SHP‐2 promote Ras/MAPK regulation of epidermal growth and differentiation. J Cell Biol 2002; 159: 103–12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58. Itoh S, Itoh M, Nishida K, Yamasaki S, Yoshida Y, Narimatsu M, Park SJ, Hibi M, Ishihara K, Hirano T. Adapter molecule Grb2‐associated binder 1 is specifically expressed in marginal zone B cells and negatively regulates thymus‐independent antigen‐2 responses. J Immunol 2002; 168: 5110–6. [DOI] [PubMed] [Google Scholar]
  • 59. Yamasaki S, Nishida K, Sakuma M, Berry D, McGlade CJ, Hirano T, Saito T. Gads/Grb2‐mediated association with LAT is critical for the inhibitory function of Gab2 in T cells. Mol Cell Biol 2003; 23: 2515–29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60. Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S, Yamasaki S, Fujishima M, Ishihara K, Hibi M, Kitamura Y, Hirano T. Requirement of Gab2 for mast cell development and KitL/c‐Kit signaling. Blood 2002; 99: 1866–9. [DOI] [PubMed] [Google Scholar]
  • 61. Seiffert M, Custodio JM, Wolf I, Harkey M, Liu Y, Blattman JN, Greenberg PD, Rohrschneider LR. Gab3‐deficient mice exhibit normal development and hematopoiesis and are immunocompetent. Mol Cell Biol 2003; 23: 2415–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62. Yamasaki S, Nishida K, Yoshida Y, Itoh M, Hibi M, Hirano T. Gab1 is required for EGF receptor signaling and the transformation by activated ErbB2. Oncogene 2003; 22: 1546–56. [DOI] [PubMed] [Google Scholar]
  • 63. Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. Coupling of Gab1 to c‐Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 2000; 149: 1419–32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64. Maroun CR, Naujokas MA, Holgado‐Madruga M, Wong AJ, Park M. The tyrosine phosphatase SHP‐2 is required for sustained activation of extracellular signal‐regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 2000; 20: 8513–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Cunnick JM, Mei L, Doupnik CA, Wu J. Phosphotyrosines 627 and 659 of Gab1 constitute a bisphosphoryl tyrosine‐based activation motif (BTAM) conferring binding and activation of SHP2. J Biol Chem 2001; 276: 24380–7. [DOI] [PubMed] [Google Scholar]
  • 66. Holgado‐Madruga M, Moscatello DK, Emlet DR, Dieterich R, Wong AJ. Grb2‐associated binder‐1 mediates phosphatidylinositol 3‐kinase activation and the promotion of cell survival by nerve growth factor. Proc Natl Acad Sci USA 1997; 94: 12419–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Maroun CR, Moscatello DK, Naujokas MA, Holgado‐Madruga M, Wong AJ, Park M. A conserved inositol phospholipid binding site within the pleckstrin homology domain of the Gab1 docking protein is required for epithelial morphogenesis. J Biol Chem 1999; 274: 31719–26. [DOI] [PubMed] [Google Scholar]
  • 68. Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J. A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3‐kinase in epidermal growth factor receptor signaling. Mol Cell Biol 2000; 20: 1448–59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69. Gu H, Maeda H, Moon JJ, Lord JD, Yoakim M, Nelson BH, Neel BG. New role for Shc in activation of the phosphatidylinositol 3‐kinase/Akt pathway. Mol Cell Biol 2000; 20: 7109–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Yart A, Laffargue M, Mayeux P, Chretien S, Peres C, Tonks N, Roche S, Payrastre B, Chap H, Raynal P. A critical role for phosphoinositide 3‐kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen‐activated protein kinases by epidermal growth factor. J Biol Chem 2001; 276: 8856–64. [DOI] [PubMed] [Google Scholar]
  • 71. Thiery JP. Epithelial‐mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–54. [DOI] [PubMed] [Google Scholar]
  • 72. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K, Gesbert F, Iwasaki H, Li S, Van Etten RA, Gu H, Griffin JD, Neel BG. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–92. [DOI] [PubMed] [Google Scholar]
  • 73. Ong SH, Dilworth S, Hauck‐Schmalenberger I, Pawson T, Kiefer F. ShcA and Grb2 mediate polyoma middle T antigen‐induced endothelial transformation and Gab1 tyrosine phosphorylation. EMBO J 2001; 20: 6327–36. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Cancer Science are provided here courtesy of Wiley

RESOURCES