Abstract
Malignant lymphoma frequently develops in the pleural cavity of patients with over 20 years' history of pyothorax. The term pyothorax‐associated lymphoma (PAL) has been proposed for this type of tumor. We established four novel lymphoma cell lines (OPL‐3, ‐4, ‐5, and ‐7) from four patients with PAL. Characteristics of the four cell lines are as follows: B‐cell nature with defective expression of B‐cell and T‐cell surface antigens, monoclonal pattern of Epstein‐Barr virus (EBV) infection in lymphoma cells (thus indicating an etiological role of EBV for lymphomagenesis), complicated chromosomal abnormalities with numerous structural and numerical abnormalities, and occasional but distinct genome instability. These abnormalities in cell character might be caused by the specific circumstances of PAL lymphomagenesis, i.e., chronic inflammation. Thus, PAL cell lines could be useful in analysis of molecular mechanisms leading to malignancy in chronic inflammation.
References
- 1. Nakatsuka S, Yao M, Hoshida Y, Yamamoto S, Iuchi K, Aozasa K. Pyothorax‐associated lymphoma‐a review of 106 cases. J Clin Oncol 2002; 20: 4255–60. [DOI] [PubMed] [Google Scholar]
- 2. Iuchi K, Aozasa K, Yamamoto S, Mori T, Tajima K, Minato K, Mukai K, Komatsu H, Tagaki T, Kobashi Y, Yamabe H, Shimoyama M. Non‐Hodgkin's lymphoma of the pleural cavity developing from long‐standing pyothorax. Summary of clinical and pathological findings in thirty‐seven cases. Jpn J Clin Oncol 1989; 19: 249–57. [PubMed] [Google Scholar]
- 3. Al Satti T, Delecluze HJ, Chittal S, Brousset P, Magaud JP, Dastugue N, Cohen KE, Laurent G, Rubin B, Delsol G. A novel human lymphoma cell line (Deglis) with dual B/T phenotype and gene rearrangements and containing Epstein‐Barr virus genomes. Blood 1992; 80: 209–16. [PubMed] [Google Scholar]
- 4. Daibata M, Taguchi T, Nemoto Y, Saito T, Machida H, Imai S, Miyoshi I, Taguchi H. Epstein‐Barr virus (EBV)‐positive pyothorax‐associated lymphoma (PAL): chromosomal integration of EBV in a novel CD2‐positive PAL B‐cell line. Br J Haematol. 1994; 117: 546–57. [DOI] [PubMed] [Google Scholar]
- 5. Eshleman JR, Markowitz SD. Microsatellite instability in inherited and sporadic neoplasms. Curr Opin Oncol 1995; 7: 83–9. [PubMed] [Google Scholar]
- 6. Brentnall TA, Chen R, Lee JG, Kimmey MB, Bronner MP, Haggitt RC, Kowdley KV, Hecker LM, Byrd DR. Microsatellite instability and K‐ras mutations associated with pancreatic adenocarcinoma and pancreatitis. Cancer Res 1995; 55: 4264–7. [PubMed] [Google Scholar]
- 7. Suzuki H, Harpaz N, Tarmin L, Yin J, Jiang HY, Bell JD, Hontanosas M, Groisman GM, Abraham JM, Meltzer SJ. Microsatellite instability in ulcerative colitis‐associated colorectal dysplasias and cancers. Cancer Res 1994; 54: 4841–4. [PubMed] [Google Scholar]
- 8. Gamberi B, Gaidano G, Parsa N, Carbone A, Roncella S, Knowles DM, Louie DC, Shibata D, Chaganti RS, Dalla‐Favera R. Microsatellite instability is rare in B‐cell non‐Hodgkin's lymphomas. Blood 1997; 89: 975–9. [PubMed] [Google Scholar]
- 9. Chong JM, Fukayama M, Hayashi Y, Hishima T, Funata N, Koike M, Matsuya S, Konishi M, Miyaki M. Microsatellite instability and loss of heterozygosity in gastric lymphoma. Lab Invest 1997; 77: 639–45. [PubMed] [Google Scholar]
- 10. Peng H, Chen G, Du M, Singh N, Isaacson PG, Pan L. Replication error phenotype and p53 gene mutation in lymphomas of mucosa‐associated lymphoid tissue. Am J Pathol 1996; 148: 643–8. [PMC free article] [PubMed] [Google Scholar]
- 11. Bedi GC, Westra WH, Farzadegan H, Pitha PM, Sidransky D. Microsatellite instability in primary neoplasms from HIV+ patients. Nat Med 1995; 1: 65–8. [DOI] [PubMed] [Google Scholar]
- 12. Fukayama M, Ibuka T, Hayashi Y, Ooba T, Koike M, Mizutani S. Epstein‐Barr virus in pyothorax‐associated pleural lymphoma. Am J Pathol 1993; 143: 1044–9. [PMC free article] [PubMed] [Google Scholar]
- 13. Gualandi G, Giselico L, Carloni M, Palitti F, Mosesso P, Alfonsi AM. Enhancement of genetic instability in human B cells by Epstein‐Barr virus latent infection. Mutagenesis 2001; 16: 203–8. [DOI] [PubMed] [Google Scholar]
- 14. Kanno H, Yasunaga Y, Ohsawa M, Taniwaki M, Iuchi K, Naka N, Torikai K, Shimoyama M, Aozasa K. Expression of Epstein‐Barr virus latent infection genes and oncogenes in lymphoma cell lines derived from pyothorax‐associated lymphoma. Int J Cancer 1996; 67: 86–94. [DOI] [PubMed] [Google Scholar]
- 15. Weiss LM, Jaffe ES, Liu XF, Chen YY, Shibata D, Medeiros LJ. Detection and localization of Epstein‐Barr viral genomes in angioimmunoblastic lymphadenopathy and angioimmunoblastic lymphadenopathy‐like lymphoma. Blood 1992; 79: 1789–95. [PubMed] [Google Scholar]
- 16. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez BM, Fodde R, Ranzani GN, Srivastava S. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248–57. [PubMed] [Google Scholar]
- 17. Wolf H, Bogedain C, Schwarzmann F. Epstein‐Barr virus and its interaction with the host. Intervirology 1993; 35: 26–39. [DOI] [PubMed] [Google Scholar]
- 18. Rickinson AB, Murray RJ, Brooks J, Griffin H, Moss DJ, Masucci MG. T cell recognition of Epstein‐Barr virus associated lymphomas. Cancer Surv 1992; 13: 53–80. [PubMed] [Google Scholar]
- 19. Kanno H, Naka N, Yasunaga Y, Aozasa K. Role of an immunosuppressive cytokine, interleukin‐10, in the development of pyothorax‐associated lymphoma. Leukemia 1997; 3: 525–6. [PubMed] [Google Scholar]
- 20. Kanno H, Nakatsuka S, Iuchi K, Aozasa K. Sequences of cytotoxic T‐lymphocyte epitopes in the Epstein‐Barr virus (EBV) nuclear antigen‐3B gene in a Japanese population with or without EBV‐positive lymphoid malignancies. Int J Cancer 2000; 88: 626–32. [DOI] [PubMed] [Google Scholar]
- 21. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 1996; 13: 336–42. [DOI] [PubMed] [Google Scholar]
- 22. Lowsky R, DeCoteau JF, Reitmair AH, Ichinohasama R, Dong WF, Xu Y, Mak TW, Kadin ME, Minden MD. Defects of the mismatch repair gene MSH2 are implicated in the development of murine and human lymphoblastic lymphomas and are associated with the aberrant expression of rhombotin‐2 (Lmo‐2) and Tal‐1 (SCL). Blood 1997; 89: 2276–82. [PubMed] [Google Scholar]
- 23. Prolla TA, Baker SM, Harris AC, Tsao JL, Yao X, Bronner CE, Zheng B, Gordon M, Reneker J, Arnheim N, Shibata D, Bradley A, Liskay RM. Tumour susceptibility and spontaneous mutation in mice deficient in Mlh1, Pms1 and Pms2 DNA mismatch repair. Nat Genet 1998; 18: 276–9. [DOI] [PubMed] [Google Scholar]
- 24. Takakuwa T, Hongyo T, Syaifudin M, Kanno H, Matsuzuka F, Narabayashi I, Nomura T, Aozasa K. Microsatellite instability and k‐ras, p53 mutations in thyroid lymphoma. Jpn J Cancer Res 2000; 91: 280–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Kodera T, Kohno T, Takakura S, Morishita K, Hamaguchi H, Hayashi Y, Sasaki T, Yokota J. Microsatellite instability in lymphoid leukemia and lymphoma cell lines but not in myeloid leukemia cell lines. Genes Chromosom Cancer 1999; 26: 267–9. [DOI] [PubMed] [Google Scholar]
- 26. Molenaar JJ, Gerard B, Chambon PC, Cave H, Duval M, Vilmer E, Grandchamp B. Microsatellite instability and frameshift mutations in BAX and transforming growth factor‐beta RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines. Blood 1998; 92: 230–3. [PubMed] [Google Scholar]